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On the Hartogs extension theorem

by Tomasz Sobieszek (Łódź)

Abstract. This paper contains a new approach to a proof of the Hartogs extension
theorem and its generalisation. The proof bases only on one complex variable methods.

1. Introduction. In this paper we consider the well known Hartogs
extension theorem:

Theorem 1. Let G be a domain in Cn, n ≥ 2, and let K be a compact
subset of G such that G \K is connected. Then every holomorphic function
f : G \K → C has a unique holomorphic extension f ∗ : G→ C.

There are several methods of proving this theorem; one is based on
the theorem on existence of compactly supported solutions to the inhomo-
geneous Cauchy–Riemann equations (see e.g. [H, Th. 2.3.2]), another one
makes use of the Bochner–Martinelli formula (see e.g. [S, 6.17, Th. 2]). In
still another method one defines local “extensions” of f by the formula

f̃(z) :=
1

2πi

�
γ

f(′z, ξ)
ξ − zn

dξ, γ ∈ Γ (′z), z = (′z, zn) ∈ G ⊂ Cn−1×C,

where Γ (′z) is some admissible system of curves in the open set {ξ ∈ C :
(′z, ξ) ∈ G \K}.

In the last, and as we think the most elementary method, the possible
difficulties lie in proving that the locally defined functions f̃ coincide in their
common domains. In this paper we tackle these difficulties by applying an
elementary lemma on the choice of a suitable cycle in an open set in the
plane. The method allows proving a generalisation of Theorem 1 (presented
in [JJ, Th. 2.1.1]).

For all definitions we refer to [R1] and [R2].

2. Hartogs theorem. For the sake of completeness, we recall the lem-
ma mentioned in the introduction.
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Lemma 1. Let G ⊂ C be a nonempty open set and K a compact subset
of G. Then there is a cycle C in C (or equivalently in G \K) such that

(i) indC(z) = 0 for z ∈ C \G,
(ii) indC(z) = 1 for z ∈ K.

(For the proof see e.g. [R2, 12.4, formula (3) in “Cauchy integral formula
for compact sets”]).

We shall need a version of this in Cn.
Let z = (z1, . . . , zn) ∈ Cn, ′z = (z1, . . . , zn−1). Define π : Cn 3 z 7→

′z ∈ Cn−1. For E ⊂ Cn and ′z ∈ Cn−1 set E(′z) := {ξ ∈ C | (′z, ξ) ∈ E}.
Lemma 2. Let G be an open set in Cn (n ≥ 2). Then for every ′a ∈ π(G)

and every compact subset K of G there is a cycle C in C and a polydisk
′P ⊂ π(G) with centre at ′a such that for every ′z ∈ ′P we have

(i) indC(ξ) = 0 for ξ ∈ C \G(′z),
(ii) indC(ξ) = 1 for ξ ∈ K(′z)

(and so also |C| ⊂ G(′z) \K(′z)).

Proof. By Lemma 1 there is a cycle C in C such that

indC(ξ) = 0 for ξ ∈ C \G(′a),(1)

indC(ξ) = 1 for ξ ∈ K(′a).(2)

We shall show that the cycle C is good for (i); the case of (ii) is similar
and left to the reader. Indeed, suppose to the contrary that one can find a
sequence (

ν
z)ν≥1,

ν
z ∈ Cn \ G, such that ′

ν
z → ′a and for each ν ≥ 1 either

indC(
ν
zn) 6= 0 or

ν
zn ∈ |C|. In any case the sequence (

ν
zn)ν≥1 is bounded. By

choosing a subsequence we may assume that
ν
zn → an ∈ C \ G(′a). By (1),

indC(an) = 0, which is impossible.

Theorem 2. Let G be a domain in Cn, n ≥ 2, and let K be a subset of
G such that

(a) G \K is a domain,
(b) for any ′a ∈ π(G) there is a neighbourhood ′N ⊂ π(G) of ′a such that

π−1(′N) ∩K b G,
(c) π(K)  π(G).

Then every holomorphic function f : G \K → C has a unique holomorphic
extension f∗ : G→ C.

Proof. The uniqueness follows from the identity theorem. Fix a = (′a, an)
∈ G, a polydisk ′Q ⊂ Cn−1 with centre at ′a and a disk Da⊂ C with centre at
an such that π−1(′Q) ∩K b G and ′Q×Dab G. Then the open set G, the
point ′a and the compact set [π−1(′Q) ∩K] ∪ ′Q×Da satisfy the assump-
tions of Lemma 2. Therefore there exists a cycle Ca and a polydisk ′P ⊂ ′Q
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with centre at ′a such that for every ′z ∈ ′P ,

indCa(ξ) = 0 for ξ ∈ C \G(′z),(3)

indCa(ξ) = 1 for ξ ∈ K(′z) ∪Da,(4)

|Ca| ⊂ G(′z) \ [K(′z) ∪Da].(5)

Write Pa := ′P ×Da and define fa : Pa → C by

fa(z) :=
1

2πi

�
Ca

f(′z, ξ)
ξ − zn

dξ, z ∈ Pa,

which is holomorphic by (5) and n-fold differentiation under the integral
sign (see e.g. [R1, 82.2]).

Now, we claim that for any other point b = (′b, bn) ∈ G,

fa|Pa∩Pb = f b|Pa∩Pb .(6)

Indeed, fix z ∈ Pa ∩ Pb. Put Ω := G(′z) \ [K(′z) ∪ (Da ∩Db)] and consider a
holomorphic function

g(ξ) :=
f(′z, ξ)
ξ − zn

, ξ ∈ Ω.

Observe that the properties (3) and (4) lead to

indCa−Cb(ξ) = 0 for ξ ∈ [C \G(′z)] ∪ [K(′z) ∪ (Da ∩Db)] = C \Ω.
The Cauchy theorem (see e.g. [R2, 13.1.3]) yields � Ca−Cb g(ξ) dξ = 0, i.e. (6).

Now, (6) allows us to define a global holomorphic function f ∗ : G→ C by

f∗(z) := fa(z) for z ∈ Pa.
It remains to show that f = f ∗|G\K . In order to do it, observe that

for a ∈ G ∩ π−1[π(G) \ π(K)], a nonempty open set, we have K(′a) = ∅ and
therefore we can apply the Cauchy integral formula (see e.g. [R2, 13.1.3]),

f∗(a) =
1

2πi

�
Ca

f(′a, ξ)
ξ − an

dξ = f(a) indCa(a) = f(a).

The identity theorem finishes the proof.

Remark 1. Theorem 1 follows immediately from Theorem 2.
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Reçu par la Rédaction le 7.9.2001
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