On approximation by special analytic polyhedral pairs

by V. ZAHARIUTA (Istanbul and Ankara)

Dedicated to Professor Józef Siciak on the occasion of his seventieth birthday

Abstract. For bounded logarithmically convex Reinhardt pairs "compact set – domain" (K, D) we solve positively the problem on simultaneous approximation of such a pair by a pair of special analytic polyhedra, generated by the same polynomial mapping $f: D \to \mathbb{C}^n$, $n = \dim \Omega$. This problem is closely connected with the problem of approximation of the pluripotential $\omega(D, K; z)$ by pluripotentials with a finite set of isolated logarithmic singularities ([23, 24]). The latter problem has been solved recently for arbitrary pluriregular pairs "compact set – domain" (K, D) by Poletsky [12] and S. Nivoche [10, 11], while the first one is still open in the general case.

1. Introduction. The problem of approximation of the Green pluripotential $\omega(D, K; z)$ by pluripotentials with a finite set of isolated logarithmic singularities ([23, 24]), which is of great importance in Complex Potential Theory, has been solved recently (E. Poletsky [12], S. Nivoche [10, 11]) for general pluriregular pairs (K, D); in the particular case of Reinhardt pairs it was proved independently in [25] in a different way (see Corollary 4 below). The above problem is closely connected with the problem of simultaneous approximation of a pluriregular pair "open set – compact set" $D \supset K$ by a pair of special analytic polyhedra, generated by the same mapping $f: D \to \mathbb{C}^n$ (see Problem 2 below). In the one-dimensional case both problems were studied long ago: moreover, approximation of the Green potential by partial sums of its integral representation (as well as approximation of a pair (D, K) by a pair of lemniscates) is a powerful tool in analytic function theory (see, e.g., [20, 13, 19]).

In the present paper, which is a revised version of the preprint [25] updated in connection with the above mentioned results of Poletsky and Nivoche, we give a positive answer to the second problem for Reinhardt

²⁰⁰⁰ Mathematics Subject Classification: 32A07, 32U20.

 $Key\ words\ and\ phrases:$ pluripotential, Reinhardt domains, special analytic polyhedron.

pairs in \mathbb{C}^n . This result is based on simultaneous reduction of the frames of analytic polyhedral pairs under certain quite special conditions, which hold for similar *n*-circular polyhedral pairs (Lemma 2). The construction used for that reduction is of independent interest: for example, it was applied, after some generalization, in [2] to strengthen the classical Lelong–Bremermann Lemma (see, e.g., [5, Q]) by proving that the number N of analytic fuctions involved is bounded by 2n + 1.

It is quite obvious that a positive answer to the second problem yields automatically a positive solution of the first one, while the converse conclusion, as far as I know, is still open in the general case.

We also consider some applications in approximation theory and discuss the connection of the above problems with an extremal problem in Complex Analysis (cf. [24, item 3.2.5]).

Acknowledgements. The author would like to express his gratitude to Professor A. Aytuna for fruitful discussions and useful remarks, and to the referee for a considerable improvement of the manuscript.

2. Preliminaries. Let D be a bounded pseudoconvex domain on a Stein manifold Ω and K be a compact subset of D. The *Green pluripotential* $\omega(D, K; z)$ of K with respect to D was introduced by J. Siciak [16] (see also [17, 18, 22, 15]):

(1)
$$\omega(z) = \omega(D, K; z) = \overline{\lim_{\zeta \to z}} \sup \{ u(\zeta) : u \in P(D), u \le 1, u|_K \le 0 \},$$

where P(D) stands for the set of all plurisubharmonic functions in D.

The pair (K, D) is said to be *pluriregular* if $\omega(z) \leq 0$ on K and $\omega(z_k) \to 1$ for any sequence $\{z_k\}$ having no limit points in D; everywhere in this paper, when using the term "pluriregular pair" we will assume that the following two additional natural conditions are fulfilled: (a) A(D) is dense in A(K)(this is some sort of Runge condition); (b) D has no components disjoint from K (which is a dual Runge condition, impying that $A(K)^*$ is densely embedded into $A(D)^*$).

The complex Monge-Ampère operator $(dd^c)^n$ (see [3]) is defined for any bounded plurisubharmonic function u in D so that $(dd^c u)^n$ is a non-negative Borel measure on D (here $d = \partial + \overline{\partial}, d^c = i(\overline{\partial} - \partial)$). In particular, for a pluriregular pair we get a CPT analogue of the equilibrium measure $\mu_0(K, \Omega) := (dd^c \omega)^n$, supported by K (see [3]).

The *pluricapacity* $\tau(K, \Omega)$ of K with respect to Ω (or of the condenser (K, Ω)) is the number

(2)
$$\tau(K,\Omega) = (2\pi)^{-n} \int_{K} (dd^{c}\omega(\Omega,K;z))^{n},$$

which differs from the Bedford–Taylor pluricapacity ([3]) only by a constant factor.

The multipolar Green pluripotential for an open set $D \subset \Omega$ with a given sequence $\Lambda = (\lambda_1, \ldots, \lambda_m) \in D^m$ of logarithmic poles and distribution of measures $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^n_+$ is the following extremal plurisubharmonic function:

(3)
$$g_D(\Lambda, \alpha; z) := \limsup_{\zeta \to z} \sup \{ u(\zeta) : u \in G(D, \Lambda, \alpha) \},$$

where $G(D, \Lambda, \alpha)$ is the set of all functions $u \in P(D)$ such that $u \leq 0$ in D and $u(\zeta) \leq \alpha \ln |\zeta - \lambda_j| + \text{const in a neighborhood of any point } \lambda_j, j = 1, \ldots, m.$

We will use the notation $D_s \Uparrow D$ to mean that D_s and D are open sets, D_s is relatively compact in D_{s+1} , $s \in \mathbb{N}$, and $D = \bigcup_{s=1}^{\infty} D_s$; $K_s \Downarrow K$ means that K_s and K are compact sets, $K_{s+1} \subset \operatorname{int} K_s$, and $K = \bigcap_{s=1}^{\infty} K_s$.

3. Two problems. We discuss two important problems of Complex Potential Theory.

PROBLEM 1 ([23, 24]). Let (K, D) be a pluriregular pair. Do there exist $\Lambda^{(s)} \in K^{m_s}$ and $\alpha^{(s)} \in \mathbb{R}^{m_s}_+$, $m_s \in \mathbb{N}$, $s \in \mathbb{N}$, such that

(4)
$$g_D(\Lambda^{(s)}, \alpha^{(s)}; z) \to \omega(D, K; z) - 1$$

uniformly on any compact subset of $\overline{D} \setminus K$?

For the one-dimensional case this problem has an immediate positive answer: it is sufficient to take an appropriate sequence of integral sums of the integral representing the Green potential. The lack of such representation in the multidimensional case was for a long time a serious obstacle to attacking Problem 1, which has been solved only recently in [12, 10, 11] (the particular case of Reinhardt pairs was done independently, in a different way, in [25], see also Corollary 4 below).

Notice that the solution of this problem itself may be considered as an efficient substitution for an integral representation, especially in connection with many applications.

Let D be an open set on a Stein manifold Ω , dim $\Omega = n$, and $f: D \to \mathbb{C}^m$ be an analytic mapping, $m \geq n$. We say that (L, G) is a *similar analytic* polyhedral pair in D (represented by the mapping f) if there exists an open subset U in D and multiradii $\mathbf{r}^{(\nu)} = (r_j^{(\nu)}) \in \mathbb{R}^m_+, \nu = 0, 1, r_j^{(0)} < r_j^{(1)},$ $j = 1, \ldots, m$, such that

(5)
$$G = \{ z \in U : |f_j(z)| < r_j^{(1)}, j = 1, \dots, m \}, L = \{ z \in G : |f_j(z)| \le r_j^{(0)}, j = 1, \dots, m \},$$

and G is relatively compact in U. The quadruple $[U, f; \mathbf{r}^{(0)}, \mathbf{r}^{(1)}]$ is called the *frame* of the pair (L, G); to stress that the polyhedral pair is generated by m analytic functions we will speak about m-polyhedral pairs or m-frames. If m = n we say that the polyhedral pair (L, G) is *special*; a special polyhedral pair is a natural multidimensional analogue of a lemniscate pair in \mathbb{C} , generated by a single analytic function.

The following statement is known as the Lelong–Bremermann Lemma $([9, 4], \text{ see also } [5, \mathbf{Q}])$:

PROPOSITION 1. Let u be a continuous plurisubharmonic function on a pseudoconvex domain D. Then for each compact subset A of D and any $\varepsilon > 0$ there exists an analytic mapping $f = (f_j) : D \to \mathbb{C}^N$ and numbers $\alpha_j > 0$ such that

(6)
$$|\omega(z) - \max\{\alpha_j \ln |f_j(z)| : j = 1, \dots, N\}| < \varepsilon, \quad z \in A.$$

A drawback of this result is that, in general, the number $N = N(\varepsilon, A)$ in (6) may increase without bound.

It is proved in [2], using the reduction suggested in the next section, that the constant N has a bound $\leq 2n+1$, $n = \dim D$. Since the plurisubharmonic function $\omega(z) = \omega(D, K; z)$ is continuous in D for any pluriregular pair (K, D) (see [22]), one can derive from this that for any pluriregular pair (K, D) there exists a sequence of similar analytic polyhedral pairs (L_s, G_s) generated by analytic mappings $f^{(s)} : D \to \mathbb{C}^{2n+1}$ such that $G_s \uparrow D$ and $L_s \Downarrow K$. But it is well known that in the one-dimensional case any regular pair (K, L) can be approximated by pairs of analytic polyhedra (lemniscates) generated by single analytic functions $f_s : D_s \to \mathbb{C}$, with $D_s \uparrow D$ (see, e.g., [20, 8.7]; this is a natural development of Hilbert's result [6] about approximating a simple Jordan curve by polynomial lemniscates). So, for the multidimensional case the following problem arises naturally:

PROBLEM 2. Is it possible to approximate any pluriregular pair (K, D) simultaneously by *special* similar analytic polyhedral pairs?

This problem can be reformulated in the following equivalent form.

PROBLEM 2a. For any pluriregular pair (K, D), dim D = n, find a sequence of analytic mappings $f^{(s)} = (f_j^{(s)}) : D \to \mathbb{C}^n$ and vectors $\alpha^{(s)} = (\alpha_i^{(s)}) \in \mathbb{R}^n_+$ such that the sequence

(7)
$$u^{(s)}(z) := \max\{\alpha_j^{(s)} \ln |f_j^{(s)}| : j = 1, \dots, n\}$$

converges to $\omega(D, K; z) - 1$ uniformly on any compact subset of $D \setminus K$.

In the present paper we solve this problem positively for Reinhardt pairs (K, D).

Notice that an approach to general pluriregular pairs (K, D) is given in [10, 11] (see also [12]). Namely, it is proved there that such a pair can be approximated by pairs (5) if in the expression for L the set G is replaced by some open set $V \supset K$. So, in that context, instead of the uniform convergence on compact subsets of $D \setminus K$ for the sequence (7), a weaker condition is proved: $\int_{D} (dd^{c}(u^{(s)}(z) - \omega(z)))^{n} \to 0$ as $s \to \infty$.

4. Reduction of analytic polyhedral pairs. Any similar analytic *m*-polyhedral pair with a frame $[D, f; \mathbf{r}^{(0)}, \mathbf{r}^{(1)}]$ can be represented by its normalized frame:

(8)
$$[D,g;\mathbf{r}] := [D,g;\mathbf{1},\mathbf{r}],$$

where $g = (f_j/r_j^{(0)})$, $\mathbf{1} := (1, ..., 1)$, $\mathbf{r} := (r_j^{(1)}/r_j^{(0)})$. We say that an analytic polyhedral pair with the frame (8) is *equilateral*

We say that an analytic polyhedral pair with the frame (8) is *equilateral* if

(9)
$$\mathbf{r} = r \cdot \mathbf{1}, \quad r \in \mathbb{R}_+.$$

Let (L, G) be an equilateral similar analytic polyhedral pair with the *m*-frame (8), (9). For any $J = \{j_1, \ldots, j_k\}$ with $j_1 < \ldots < j_k$, $1 \le k \le m$, we define

$$\sigma(J) := \{ z \in \overline{G \setminus L} : |g_{j_1}(z)| = \ldots = |g_{j_k}(z)| > |g_j(z)|, j \notin J \}$$

Suppose that there exists l with $n \leq l < m$ such that

(10)
$$\sigma(J) = \emptyset$$

if #J > l, and l is the smallest number satisfying this condition. Then we consider the sequence of analytic mappings

(11)
$$g^{(s)} = (g_1^{(s)}, \dots, g_l^{(s)}) : D \to \mathbb{C}^l,$$
$$g_k^{(s)}(z) = \left(\sum_{j_1 < \dots < j_k} (g_{j_1}(z))^s \dots (g_{j_k}(z))^s\right)^{l!/k},$$

where $k = 1, \ldots, l$.

LEMMA 2. Let (L, G) be an equilateral polyhedral pair with the frame (8) such that the condition (10) holds. Let

(12)
$$\varphi(z) := \frac{1}{\ln r} \max \{ \ln |g_j(z)| : j = 1, \dots, m \},$$

(13)
$$\varphi_s(z) := \frac{1}{sl! \ln r} \max\{\ln |g_k^{(s)}(z)| : k = 1, \dots, l\},\$$

where $g_k^{(s)}(z)$ are defined in (11). Then $\varphi_s(z) \to \varphi(z)$ uniformly on $\overline{G \setminus L}$. Proof. Since, by the construction,

$$|g_k^{(s)}(z)| \le 2^{ml!/k} (\max\{|g_j(z)|: j = 1, \dots, m\})^{sl!},$$

we get an estimate from above:

(14) $\varphi_s(z) \le \varphi(z) + \frac{m \ln 2}{sk \ln r}$

for each $z \in \overline{G \setminus L}$.

Now we deal with the estimate from below for the function (13). First, by the continuity of φ on $\overline{G \setminus L}$, for each $\varepsilon > 0$ we can find $\sigma(\varepsilon) > 0$ such that

(15)
$$|\varphi(z) - \varphi(\zeta)| < \varepsilon$$
 if $|\zeta - z| < \sigma(\varepsilon), \ z, \zeta \in \overline{G \setminus L}.$

Now we fix any $\zeta \in \overline{G \setminus L}$. By the hypothesis, there is $J = J(\zeta) = \{j_1, \ldots, j_k\}, k = k(\zeta) \leq l$, such that

(16)
$$|g_{j_1}(\zeta)| = \ldots = |g_{j_k}(\zeta)| > |g_i(\zeta)|, \quad i \notin J,$$

hence

(17)
$$d(\zeta) := \max\left\{ \left| \frac{g_{i_1}(\zeta) \dots g_{i_k}(\zeta)}{g_{j_1}(\zeta) \dots g_{j_k}(\zeta)} \right| : I = \{i_1, \dots, i_k\} \neq J \right\} < 1.$$

Thus, using the continuity of all the functions involved, we can find a neighborhood $U(\zeta) = \{z \in \overline{G \setminus L} : |z - \zeta| < \varepsilon\}$ with $\delta(\zeta) < \sigma(\varepsilon)$ such that

(18)
$$\left| \frac{g_{i_1}(z) \dots g_{i_k}(z)}{g_{j_1}(z) \dots g_{j_k}(z)} \right| \le q(\zeta) := \frac{1 + d(\zeta)}{2} < 1, \quad I = \{i_1, \dots, i_k\} \ne J,$$

and

(19)
$$|g_j(z)| \ge r^{-\varepsilon}|g_j(\zeta)|, \quad j \in J,$$

for all $z \in U(\zeta)$. Applying (11), (18), and (19) we obtain the estimate

$$|g_k^{(s)}(z)| \ge |g_{j_1}(z)\dots g_{j_k}(z)|^{sl!/k} \left(1 - \sum_{I \ne J} \left|\frac{g_{i_1}(z)\dots g_{i_k}(z)}{g_{j_1}(z)\dots g_{j_k}(z)}\right|^s\right)^{l!/k}$$
$$\ge r^{-\varepsilon sl!} |g_{j_1}(\zeta)\dots g_{j_k}(\zeta)|^{sl!/k} (1 - 2^m q(\zeta)^s)^{l!/k}$$

for every $z \in U(\zeta)$. Hence taking into account (12), (13), and (15), we deduce that

$$\varphi_s(z) \ge \frac{\ln |g_k^{(s)}(z)|}{sl! \ln r} \ge \frac{\ln |g_{j_1}(\zeta)|}{\ln r} + \frac{\ln (1 - 2^m q(\zeta))}{k \ln r} - \varepsilon$$
$$\ge \varphi(\zeta) - 2\varepsilon \ge \varphi(z) - 3\varepsilon$$

for $z \in U(\zeta)$ and $s \ge s_0(\zeta, \varepsilon)$.

Now, choosing a finite covering: $\overline{G \setminus L} \subset \bigcup_{i=1}^{N} U(\zeta^{(i)})$, we conclude that (20) $\varphi^{(s)}(z) \ge \varphi(z) - 3\varepsilon$

for all $z \in \overline{G \setminus L}$ if $s \ge s_0(\varepsilon) := \max \{ s_0(\zeta^{(i)}, \varepsilon) : i = 1, \dots, N \}.$

The estimates (14) and (20) imply that $\varphi_s(z)$ converges to $\varphi(z)$ uniformly on $\overline{G \setminus L}$.

5. Pluripotentials for Reinhardt pairs. Let D be a logarithmically convex bounded complete *n*-circular domain in \mathbb{C}^n . Its *characteristic func*tion

$$h_D(\theta) = \sup\left\{\sum \theta_k \ln |z_k| : z \in D\right\}, \quad \theta \in \overline{\mathbb{R}^n_+},$$

is convex and homogeneous. The domain D can be recovered from its characteristic function as follows:

$$D = \Big\{ z \in \mathbb{C}^n : \sum \theta_k \ln |z_k| < h_D(\theta), \, \theta \in \Sigma \Big\},\$$

where $\Sigma := \{\theta = (\theta_1, \dots, \theta_n) \in \overline{\mathbb{R}_+^n} : \sum_{k=1}^n \theta_k = 1\}.$

Let D_0 , D_1 be a pair of bounded logarithmically convex complete Reinhardt (= *n*-circular) domains such that $\overline{D}_0 \subset D_1$. The following formula for the pluripotential of \overline{D}_0 with respect to D_1 was presented in [23, Proposition 1.4.3]:

(21)
$$\omega(z) = \omega(D_1, \overline{D}_0; z) = \sup \{\gamma(\theta, z) : \theta \in \Sigma\}$$

for $z \in \overline{D}_1 \setminus D_0$, where

(22)
$$\gamma(\theta, z) := \frac{\sum_{\nu=1}^{n} \theta_{\nu} \ln |z_{\nu}| - h_{D_0}(\theta)}{h_{D_1}(\theta) - h_{D_0}(\theta)}$$

The formula (21) is extended onto ∂D_1 by setting $\omega(z) \equiv 1$ there.

We consider the following level sets of the function ω :

(23) $D_{\alpha} := \{ z \in D_1 : \omega(z) < \alpha \}, \quad \Gamma_{\alpha} := \{ z \in \overline{D}_1 : \omega(z) = \alpha \}$ with $\alpha \in [0, 1].$

It is easy to see that the representation (21) leads to the following geometric description of the level sets (23).

LEMMA 3. Let $0 < \alpha < 1$. Then Γ_{α} is the boundary of the domain D_{α} and $z = (z_{\nu}) \in D_1$ belongs to Γ_{α} if and only if there exist $\theta \in \Sigma$, $z^{(0)} = (z_{\nu}^{(0)}) \in \Gamma_0, z^{(1)} = (z_{\nu}^{(1)}) \in \Gamma_1$ such that $|z_{\nu}| = |z_{\nu}^{(0)}|^{1-\alpha} \cdot |z_{\nu}^{(1)}|^{\alpha}$ and $\gamma(\theta, z^{(0)}) = 0, \gamma(\theta, z^{(1)}) = 1$.

Using these facts and Lemma 2 we are going to prove our main result, which gives a positive solution of Problem 2 in the case considered.

THEOREM 4. Let D_0 , D_1 , and $\omega(z)$ be as above. Then there exist a sequence of polynomial mappings $f^{(\nu)} = (f_j^{(\nu)}) : \mathbb{C}^n \to \mathbb{C}^n$, a sequence $\alpha_{\nu} > 0$, and a sequence of open sets $G^{(\nu)} \uparrow D_1$ such that

(24)
$$\omega(z) = \lim_{\nu \to \infty} \alpha_{\nu} \max\left\{ \ln |f_j^{(\nu)}(z)| : j = 1, \dots, n \right\}$$

uniformly on any compact subset of $D_1 \setminus \overline{D}_0$, and a sequence of special polynomial polyhedral pairs $(M^{(\nu)}, H^{(\nu)})$ determined by the normalized equilateral frames

(25)
$$[G^{(\nu)}, f^{(\nu)}; \exp 1/\alpha_{\nu}]$$

approximates the pair (\overline{D}_0, D_1) so that $H_{\nu} \Uparrow D_1$ and $M_{\nu} \Downarrow \overline{D}_0$.

As a corollary we get another proof of Problem 1 in the case considered (cf. [12, 10, 11]).

COROLLARY 5. Let $K = \overline{D}_0$, $D = D_1$. Then in the setting of the previous theorem, for each ν the set $\Lambda^{(\nu)} := \{\zeta \in G^{(\nu)} : f^{(\nu)}(\zeta) = 0\}$ is finite and consists only of simple roots, and the relation (4), with $\alpha^{(\nu)} := (\alpha_{\nu}, \ldots, \alpha_{\nu}) \in \mathbb{R}^n$, holds uniformly on any compact subset of $D \setminus K$.

Before proving these statements we consider the following

LEMMA 6. Let D_0 , D_1 , and ω be as above. Then for each $\varepsilon > 0$ there exists a finite set of multi-indices $k(j) = (k_i(j)) \in \mathbb{Z}_+^n$, a natural number q, and real numbers c_j , $j = 1, \ldots, m$, such that the maximum

(26)
$$v(z) := \frac{1}{q} \max\left\{\sum_{i=1}^{n} k_i(j) \ln |z_i| - c_j : j = 1, \dots, m\right\}$$

is attained for no more than n values of j at any point z satisfying the estimates $0 \le v(z) \le 1$, and

(27)
$$|\omega(z) - v(z)| < \varepsilon, \quad z \in \overline{D_1 \setminus D_0}.$$

Proof. First we notice that for each $\zeta = (\zeta_i) \in \overline{D_1 \setminus D_0}$ there is $\theta = \theta(\zeta)$ such that

(28)
$$\omega(\zeta) = \gamma(\theta(\zeta), \zeta).$$

Indeed, denoting by $\Sigma(\zeta)$ the set of all $\theta = (\theta_i) \in \Sigma$ such that $\theta_i = 0$ whenever $\zeta_i = 0$, we have

$$\omega(\zeta) = \sup \{ \gamma(\theta, \zeta) : \theta \in \Sigma(\zeta) \},\$$

and the function $\gamma(\theta, \zeta)$ is continuous in θ on the compact set $\Sigma(\zeta)$, so (28) is valid with some $\theta = \theta(\zeta) \in \Sigma(\zeta)$.

Now, since ω is continuous on \overline{D}_1 , while the function $\gamma(\theta(\zeta), z)$ is continuous in some neighborhood of ζ , we can find for any $\varepsilon > 0$ some open neighborhood U_{ζ} of ζ such that

$$0 \le \omega(z) - \gamma(\theta(\zeta), z) < \varepsilon/2, \quad z \in U_{\zeta},$$

Hence, using the covering theorem, we deduce that for each $\varepsilon > 0$ there is a finite set $\{\zeta^{(j)} : j = 1, \ldots, m\}$ such that

(29)
$$|\omega(z) - u(z)| < \varepsilon/2, \quad z \in \overline{D_1 \setminus D_0},$$

where

(30)
$$u(z) := \sup \left\{ \sum_{i=1}^{m} a_{i,j} \ln |z_i| - b_j : j = 1, \dots, m \right\}$$

and

(31)
$$a_{i,j} := \frac{\theta(\zeta^{(j)})}{h_{D_1}(\theta(\zeta^{(j)})) - h_{D_0}(\theta(\zeta^{(j)}))}$$

$$b_j := \frac{h_{D_0}(\theta(\zeta^{(j)}))}{h_{D_1}(\theta(\zeta^{(j)})) - h_{D_0}(\theta(\zeta^{(j)}))}$$

Recall that, by the construction, the coefficients $a_{i,j}$ satisfy the condition

(32)
$$a_{i,j} = 0$$
 if $\zeta_i^{(j)} = 0$.

Now we are going to replace the coefficients (31) by some close values $\tilde{a}_{i,j}$, \tilde{b}_j , respectively, aiming at two targets:

(a) to afford the approximation of $\omega(z)$ by the new function

(33)
$$\widetilde{u}(z) := \sup\left\{\sum_{i=1}^{m} \widetilde{a}_{i,j} \ln |z_i| - \widetilde{b}_j : j = 1, \dots, m\right\}$$

so that

(34)
$$|\omega(z) - \widetilde{u}(z)| < \varepsilon, \quad z \in \overline{D_1 \setminus D_0};$$

(b) to provide the condition of Lemma 2, namely, that for each z such that $0 \leq \tilde{u}(z) \leq 1$ the maximum in (33) will be attained for no more than n values of j.

To guarantee (a) we must retain the nullity of the new coefficients where the old coefficients vanish (see (32)); indeed, if some of the new coefficients $\tilde{a}_{i,j}$ were non-zero, while $\zeta_{i,j} = 0$, then $\sum_{i=1}^{m} \tilde{a}_{i,j} \ln |\zeta_i^{(j)}| - \tilde{b}_j = -\infty$ so the closeness to the function ω would be violated.

To reach both purposes we use the following quite standard algebraic considerations. Given a set N of indices (i, j), we consider the set of all matrices

(35)
$$A = \begin{pmatrix} a_{1,1} & \dots & a_{i,1} & \dots & a_{n,1} & b_1 \\ \dots & \dots & \dots & \dots \\ a_{1,j} & \dots & a_{i,j} & \dots & a_{n,j} & b_j \\ \dots & \dots & \dots & \dots & \dots \\ a_{1,m} & \dots & a_{i,m} & \dots & a_{n,m} & b_m \end{pmatrix}$$

such that $a_{i,j} = 0$ when $(i, j) \in N$. We identify this set of matrices with the space \mathbb{R}^d , where d = m(n+1) - #N (writing, for example, the matrix terms row-by-row and dropping those which are the prescribed zeros). Each minor M of a matrix A of order r may then be considered as a homogeneous polynomial M(A) of degree $\leq r$ in \mathbb{R}^d . Denote by \mathcal{M} the set of all non-trivial minors M, i.e. such that $M(A) \not\equiv 0$ on \mathbb{R}^d . Then the set \mathcal{A}_0 of all matrices

V. Zahariuta

 $A \in \mathbb{R}^d$ such that $M(A) \neq 0$ for all $M \in \mathcal{M}$ is an open dense set in \mathbb{R}^d , since it can be obtained by removing some algebraic set from \mathbb{R}^d . It is clear that, by the construction, each matrix $A \in \mathcal{A}_0$ satisfies the condition: for every set $J = \{j_1, \ldots, j_{n+1}\}$ with $j_1 < \ldots < j_{n+1}$ the system

(36)
$$a_{1,j}x_1 + \ldots + a_{n,j}x_n = b_j, \quad j \in J,$$

has no solution. Analogously, we can show that there exists an open dense subset \mathcal{A}_1 obtained by removing some algebraic set from \mathbb{R}^d and such that each matrix $A \in \mathcal{A}_1$ satisfies the condition: each system

(37)
$$a_{1,j}x_1 + \ldots + a_{n,j}x_n = 1 + b_j, \quad j \in J,$$

has no solution when #J = n + 1. Thus for any matrix $A \in \mathcal{A}_0 \cap \mathcal{A}_1$ each of the systems (36) and (37) has no solution if #J = n + 1.

Applying the above considerations to the matrix (35) defined by (31) (with N determined by the condition (32)), we can choose the coefficients $\tilde{a}_{i,j}$ and \tilde{b}_j to be rational and such that the condition (34) holds and the condition (b) is valid for all z such that $\tilde{u}(z) = 1$ or $\tilde{u}(z) = 0$. Let us show that (b) is also true for all z such that $0 < \tilde{u}(z) < 1$. Supposing the contrary, we find that there is z such that $\tilde{u}(z) = \alpha$, $0 < \alpha < 1$, and

(38)
$$\sum_{i=1}^{n} \widetilde{a}_{i,j} \ln |z_i| = \alpha, \quad j \in J,$$

for some J with #J > n. Then, by Lemma 3, $|z_i| = |z_i^{(0)}|^{1-\alpha} \cdot |z_i^{(1)}|^{\alpha}$ for some $z^{(0)}$ and $z^{(1)}$ such that $\tilde{u}(z^{(0)}) = 0$ and $\tilde{u}(z^{(1)}) = 1$. Hence, by what is proved above, there is $j_0 \in J$ such that $\sum_{i=1}^n \tilde{a}_{i,j_0} \ln |z_i^{(1)}| < 1$, while $\sum_{i=1}^n \tilde{a}_{i,j_0} \ln |z_i^{(0)}| \leq 0$. The last two estimates contradict (38) if $j = j_0$. Thus, the condition (b) is proved for all z such that $0 \leq \tilde{u}(z) \leq 1$.

Since the numbers $\tilde{a}_{i,j}$ are rational, there exist natural numbers $k_i(j)$ and q such that $\tilde{a}_{i,j} = k_i(j)/q$, $j = 1, \ldots, m$. It is easy to check that the numbers $k_i(j)$, q, $c_j := q\tilde{b}_j$, and the function $v(z) := \tilde{u}(z)$ satisfy all the conditions of the lemma. Thus the proof is complete.

Proof of Theorem 4. We shall use the notation

(39)
$$D_{\alpha} := \{ z \in D_1 : \omega(z) < \alpha \}, \quad K_{\alpha} := \{ z \in D_1 : \omega(z) \le \alpha \}$$

with $0 < \alpha < 1$. Take a sequence (ε_{ν}) such that

(40)
$$5\varepsilon_{\nu} < \varepsilon_{\nu-1}, \quad \nu = 2, 3, \dots, \quad \varepsilon_1 < 1/2.$$

Now, by Lemma 6, for each ν we can find $k(j) = k(j,\nu) = (k_i(j,\nu)) \in \mathbb{Z}_+^n$, $q = q_{\nu} \in \mathbb{N}$ and real numbers $c_j = c(j,\nu)$, $j = 1, \ldots, m = m_{\nu}$, such that the estimate (27) holds for the function $v(z) = v_{\nu}(z)$ with $\varepsilon = \varepsilon_{\nu+1}$ and the maximum in (26) is attained for no more than n values of j. Now we can see that all the conditions of Lemma 2 are fulfilled with l = n for the polynomial polyhedral pair $(L, G) = (L^{(\nu)}, G^{(\nu)})$ determined by the normalized equilateral frame $[D_1, g; r^{(\nu)}]$ with $g = (g_j) = (g_{j,\nu}) : \mathbb{C}^n \to \mathbb{C}^{m_{\nu}}$, where

(41)
$$g_{j,\nu}(z) := \frac{z^{k(j,\nu)}}{\exp\left(2\varepsilon_{\nu}q_{\nu} - c(j,\nu)\right)}, \quad r^{(\nu)} := \exp\left(1 - 4\varepsilon_{\nu}\right)q_{\nu}$$

1 / .)

This pair can be expressed in the form

 $G^{(\nu)} = \{ z \in D_1 : v_{\nu}(z) < 1 - 2\varepsilon_{\nu} \}, \quad L^{(\nu)} = \{ z \in D_1 : v_{\nu}(z) \le 2\varepsilon_{\nu} \}.$

It is easy to check that the embeddings

(42)
$$D_{1-3\varepsilon_{\nu}} \Subset G^{(\nu)} \Subset D_{1-\varepsilon_{\nu}}, \quad K_{\varepsilon_{\nu}} \Subset L^{(\nu)} \Subset K_{3\varepsilon_{\nu}}$$

hold for all $\nu \in \mathbb{N}$. Thus, applying Lemma 2 to the above polynomial polyhedral pair, for any $\nu \in \mathbb{N}$ we get, by the construction (11), polynomial mappings $(g_{i,\nu}^{(s)})_{i=1}^n : \mathbb{C}^n \to \mathbb{C}^n$ such that the sequence

$$\varphi_{\nu}^{(s)}(z) := \frac{1}{sn! \ln r^{(\nu)}} \max\left\{ \ln |g_{i,\nu}^{(s)}(z)| : i = 1, \dots, n \right\}$$

converges uniformly on $\overline{G^{(\nu)} \setminus L^{(\nu)}}$ to the function

$$\varphi_{\nu}(z) := \frac{v_{\nu}(z) - 2\varepsilon_{\nu}}{1 - 2\varepsilon_{\nu}}$$

as $s \to \infty$. Choose $s = s_{\nu}$ so large that

$$|\varphi_{\nu}(z) - \varphi_{\nu}^{(s_{\nu})}(z)| < \varepsilon_{\nu+1}, \quad z \in \overline{G^{(\nu)} \setminus L^{(\nu)}}.$$

Hence for the function $u_{\nu}(z) := \varphi_{\nu}^{(s_{\nu})}(z)(1-2\varepsilon) + 2\varepsilon$ we get

(43)
$$|u_{\nu}(z) - \omega(z)| < 2\varepsilon_{\nu+1}, \quad z \in \overline{G^{(\nu)} \setminus L^{(\nu)}}$$

Then the sequence of polyhedral pairs $(M^{(\nu)}, H^{(\nu)})$ defined by

(44)
$$M^{(\nu)} := \{ z \in G^{(\nu)} : u_{\nu}(z) \le 4\varepsilon_{\nu} \}, H^{(\nu)} := \{ z \in G^{(\nu)} : u_{\nu}(z) < 1 - 4\varepsilon_{\nu} \}$$

is as desired. First, it is easy to check that, due to (43) and (40), the embeddings

(45)
$$G^{(\nu-1)} \Subset D_{1-\varepsilon_{\nu-1}} \Subset H^{(\nu)} \Subset D_{1-3\varepsilon_{\nu}} \Subset G^{(\nu)},$$
$$L^{(\nu)} \Subset K_{3\varepsilon_{\nu}} \Subset M^{(\nu)} \Subset K_{\varepsilon_{\nu-1}} \Subset L^{(\nu-1)}$$

hold for $\nu = 2, 3, \ldots$ So, $H^{(\nu)} \uparrow D_1$ and $M^{(\nu)} \Downarrow \overline{D}_0$. Second, these pairs are determined by the normalized equilateral frames (25) with the polynomial

mapping $f^{(\nu)} = (f^{(\nu)}_i): \mathbb{C}^n \to \mathbb{C}^n$ such that

$$f_i^{(\nu)}(z) := \frac{g_{i,\nu}^{(s_\nu)}(z)}{\exp\left(\frac{2\varepsilon_\nu(1-4\varepsilon_\nu)q_\nu s_\nu n!}{1-\varepsilon_\nu}\right)}, \quad \alpha_\nu := \frac{1-2\varepsilon_\nu}{(1-4\varepsilon_\nu)(1-8\varepsilon_\nu)q_\nu s_\nu n!}.$$

Finally, by the construction, the formula (24) holds uniformly on any compact subset of $D_1 \setminus \overline{D}_0$.

Proof of Corollary 5. First, we can assume that the set $\Lambda^{(\nu)} := \{z \in G^{(\nu)} : f^{(\nu)}(z) = 0\}$ consists only of simple roots (otherwise we can change the polynomial map $f^{(\nu)}$ a little to provide this, preserving all other properties in Theorem 4). Setting $\alpha^{(\nu)} := (\alpha_{\nu}, \ldots, \alpha_{\nu})$, we get

$$\omega(H^{(\nu)}, M^{(\nu)}; z) - 1 = g_{H^{(\nu)}}(\Lambda^{\nu}, \alpha^{(\nu)}; z), \quad z \in H^{(\nu)} \setminus M^{(\nu)}$$

Then, since

$$g_{D_1}(\Lambda^{(\nu)}, \alpha^{(\nu)}; z) \le g_{H^{(\nu)}}(\Lambda^{(\nu)}, \alpha^{(\nu)}; z) \le g_{D_1}(\Lambda^{(\nu)}, \alpha^{(\nu)}; z) + \varepsilon_{\nu-1}$$

everywhere in $H^{(\nu)}$ and $\omega(H^{(\nu)}, M^{(\nu)}; z)$ converges to $\omega(D, K; z)$ uniformly on compact subsets of $D \setminus K$, we get the relation (4) uniformly on any compact subset of $D \setminus K$.

6. Application to width asymptotics. The *Kolmogorov widths* of a compact set A in a Banach space X are the numbers

$$d_s(A) = d_s(A, X) := \inf_L \sup_{x \in A} \inf \{ \|x - y\|_X : y \in L \}, \quad s \in \mathbb{Z}_+,$$

where L runs through the set of all s-dimensional subspaces of X.

Let K be a compact subset in an open set $D \subset \mathbb{C}^n$ and A_K^D the subset of the Banach space C(K) consisting of all analytic functions in D whose moduli do not exceed 1 there.

In [23] we conjectured the strong asymptotics

(46)
$$\ln d_s(A_K^D) \sim -\sigma s^{1/n}$$

with the constant

(47)
$$\sigma = \left(\frac{n!}{\tau(K,D)}\right)^{1/n}$$

(see (2)). For the one-dimensional case, this conjecture is equivalent to Kolmogorov's conjecture about the asymptotics of the ε -entropy of the compact set A_K^D ; see, e.g., [24] for the history of the problem in that case. The conjecture was proved in [1] for Reinhardt pairs (K, D), using the Rauch–Taylor result about the computation of the real Monge–Ampère operator from convex functions.

Now we obtain this fact as a simple consequence of Corollary 5 and the results from [24, items 3.1.2, 3.2.5]. Namely it was shown in [24, Proposition

3.1.4] that under the conditions which are obviously fulfilled in our case, the asymptotics (46) with the constant (47) holds whenever Problem 1 is answered positively for a pair (K, D). So, by Corollary 5 we get

THEOREM 7. Let $K = \overline{D}_0$, $D = D_1$, $K \subset D$, D_{ν} be bounded logarithmically convex domains, $\nu = 1, 2$. Then the asymptotics (46) holds with the constant (47).

Notice that recently ([12, 10, 11]) a more general result was obtained in a similar way from the complete solution of Problem 1 considered there.

7. Connection with some extremal problem. For any pluriregular pair (K, D) and $m \in \mathbb{N}$ we consider the characteristic

(48)
$$\tau_m^+(K,D) := \min \Big\{ \sum_{\mu=1}^m (\alpha_\mu)^n \Big\},$$

where the minimum is taken over all $\alpha = (\alpha_{\mu}) \in \mathbb{R}^{m}_{+}$ for which there is $\Lambda = (\zeta_{1}, \ldots, \zeta_{m}) \in K^{m}$ such that $g_{D}(\Lambda, \alpha; z) \leq -1, z \in K$. It is easy to show that for every $m \in \mathbb{N}$ there exist $\Lambda = \overline{\Lambda}^{(m)}$ and $\alpha = \overline{\alpha}^{(m)}$ for which the minimum in (48) is attained.

It is obvious that the sequence (48) is non-decreasing, so the limit

(49)
$$\lim_{m \to \infty} \tau_m(K, D) =: \tau^+(K, D)$$

exists. The last characteristic was introduced in [23, 24] and used there to estimate the Kolmogorov widths $d_s(A_K^D)$ (see the previous section); it was also shown there that a positive solution of Problem 1 for a given pluriregular pair (K, D) leads to the equality

(50)
$$\tau^+(K,D) = \tau(K,D).$$

It follows from [12, Lemma 4.2] that the extremal sequence of pluripotentials $g_D(\overline{\Lambda}^{(m)}, \overline{\alpha}^{(m)}; z)$ converges to $\omega(D, K; z) - 1$ uniformly on any compact subset of $D \setminus K$. Therefore Problem 2 is equivalent to the following

PROBLEM 3. Is the relation (50) true for any pluriregular pair (K, D)?

References

- A. Aytuna, A. Rashkovskii, and V. Zahariuta, Width asymptotics for a pair of Reinhardt domains, Ann. Polon. Math. 78 (2002), 31–38.
- [2] A. Aytuna and V. Zahariuta, On Lelong–Bremermann Lemma, preprint.
- [3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40.
- [4] M. J. Bremermann, On the conjecture of the equivalence of the plurisubharmonic functions and Hartogs functions, Math. Ann. 131 (1956), 76–86.

V. Zahariuta

- R. Gunning, Introduction to Holomorphic Functions of Several Complex Variables, Vol. 1, Wadsworth and Brooks-Cole, Pacific Grove, CA, 1990.
- [6] D. Hilbert, Über die Entwicklung einer beliebigen analytischen Funktion einer Variabeln in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe, Göttinger Nachr. 1897, 63–70.
- [7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
- [8] A. N. Kolmogorov and V. M. Tikhomirov, ε-entropy and ε-capacity of sets in function spaces, Uspekhi Mat. Nauk 14 (1959), no. 2, 3–86 (in Russian).
- P. Lelong, Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 71–76.
- [10] S. Nivoche, Proof of the Zakharyuta's conjecture about a Kolmogorov's problem, prépublication no. 213, Laboratoire de mathématiques Emile Picard, Univ. Paul Sabatier, Toulouse III, 2001.
- [11] —, Sur une conjecture de Zahariuta et un problème de Kolmogorov, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 839–843.
- [12] E. Poletsky, Negative plurisubharmonic functions. I, preprint, 2001.
- [13] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, 1995.
- [14] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345–364.
- [15] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61–119.
- [16] J. Siciak, On some extremal plurisubharmonic functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357.
- [17] —, Separately analytic functions and envelopes of holomorphy of some lower dimentional subsets of Cⁿ, Ann. Polon. Math. 22 (1969), 145–171.
- [18] —, Extremal plurisubharmonic functions in \mathbb{C}^n , ibid. 22 (1981), 175–211.
- [19] N. I. Skiba and V. P. Zahariuta, Estimates of n-diameters of some classes of functions analytic on Riemann surfaces, Math. Notes 19 (1976), 525–532.
- [20] J. L. Walsh, Interpolation and Approximation by Rational Functions, Colloq. Publ. 20, Amer. Math. Soc., Providence, 1960.
- [21] V. P. Zahariuta, On extendible bases in spaces of analytic functions of one and several variables, Siberian Math. J. 8 (1967), 204–216.
- [22] —, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II, in: Teor. Funktsii Funktsional. Anal. i Prilozhen. 19 (1974), 133–157; 21 (1974), 65–83 (in Russian).
- [23] —, Spaces of analytic functions and maximal plurisubharmonic functions, D.Sc. thesis, Rostov State Univ., 1984 (in Russian).
- [24] —, Spaces of analytic functions and complex potential theory, Linear Topol. Spaces Complex Anal. 1 (1994), 74–146.
- [25] —, On approximation of pluripotentials by multipolar ones, preprint, 2001.

Sabanci University 81474 Tuzla Istanbul, Turkey E-mail: zaha@sabanciuniv.edu.tr Middle East Technical University Ankara, Turkey