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Abstract. For bounded logarithmically convex Reinhardt pairs “compact set – do-
main” (K,D) we solve positively the problem on simultaneous approximation of such a
pair by a pair of special analytic polyhedra, generated by the same polynomial mapping
f : D → Cn, n = dimΩ. This problem is closely connected with the problem of approx-
imation of the pluripotential ω(D,K; z) by pluripotentials with a finite set of isolated
logarithmic singularities ([23, 24]). The latter problem has been solved recently for arbi-
trary pluriregular pairs “compact set – domain” (K,D) by Poletsky [12] and S. Nivoche
[10, 11], while the first one is still open in the general case.

1. Introduction. The problem of approximation of the Green pluripo-
tential ω(D,K; z) by pluripotentials with a finite set of isolated logarithmic
singularities ([23, 24]), which is of great importance in Complex Potential
Theory, has been solved recently (E. Poletsky [12], S. Nivoche [10, 11]) for
general pluriregular pairs (K,D); in the particular case of Reinhardt pairs it
was proved independently in [25] in a different way (see Corollary 4 below).
The above problem is closely connected with the problem of simultaneous
approximation of a pluriregular pair “open set – compact set” D ⊃ K
by a pair of special analytic polyhedra, generated by the same mapping
f : D → Cn (see Problem 2 below). In the one-dimensional case both prob-
lems were studied long ago: moreover, approximation of the Green potential
by partial sums of its integral representation (as well as approximation of a
pair (D,K) by a pair of lemniscates) is a powerful tool in analytic function
theory (see, e.g., [20, 13, 19]).

In the present paper, which is a revised version of the preprint [25]
updated in connection with the above mentioned results of Poletsky and
Nivoche, we give a positive answer to the second problem for Reinhardt
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pairs in Cn. This result is based on simultaneous reduction of the frames of
analytic polyhedral pairs under certain quite special conditions, which hold
for similar n-circular polyhedral pairs (Lemma 2). The construction used for
that reduction is of independent interest: for example, it was applied, after
some generalization, in [2] to strengthen the classical Lelong–Bremermann
Lemma (see, e.g., [5, Q]) by proving that the number N of analytic fuctions
involved is bounded by 2n+ 1.

It is quite obvious that a positive answer to the second problem yields
automatically a positive solution of the first one, while the converse conclu-
sion, as far as I know, is still open in the general case.

We also consider some applications in approximation theory and discuss
the connection of the above problems with an extremal problem in Complex
Analysis (cf. [24, item 3.2.5]).

Acknowledgements. The author would like to express his gratitude
to Professor A. Aytuna for fruitful discussions and useful remarks, and to
the referee for a considerable improvement of the manuscript.

2. Preliminaries. Let D be a bounded pseudoconvex domain on a
Stein manifold Ω and K be a compact subset of D. The Green pluripotential
ω(D,K; z) of K with respect to D was introduced by J. Siciak [16] (see also
[17, 18, 22, 15]):

ω(z) = ω(D,K; z) = lim
ζ→z

sup{u(ζ) : u ∈ P (D), u ≤ 1, u|K ≤ 0},(1)

where P (D) stands for the set of all plurisubharmonic functions in D.
The pair (K,D) is said to be pluriregular if ω(z) ≤ 0 on K and ω(zk)→ 1

for any sequence {zk} having no limit points in D; everywhere in this paper,
when using the term “pluriregular pair” we will assume that the following
two additional natural conditions are fulfilled: (a) A(D) is dense in A(K)
(this is some sort of Runge condition); (b) D has no components disjoint
from K (which is a dual Runge condition, impying that A(K)∗ is densely
embedded into A(D)∗).

The complex Monge–Ampère operator (ddc)n (see [3]) is defined for any
bounded plurisubharmonic function u in D so that (ddcu)n is a non-negative
Borel measure on D (here d = ∂ + ∂̄, dc = i(∂̄ − ∂)). In particular, for
a pluriregular pair we get a CPT analogue of the equilibrium measure
µ0(K,Ω) := (ddcω)n, supported by K (see [3]).

The pluricapacity τ(K,Ω) of K with respect to Ω (or of the condenser
(K,Ω)) is the number

τ(K,Ω) = (2π)−n
�
K

(ddcω(Ω,K; z))n,(2)
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which differs from the Bedford–Taylor pluricapacity ([3]) only by a constant
factor.

The multipolar Green pluripotential for an open set D ⊂ Ω with a given
sequence Λ = (λ1, . . . , λm) ∈ Dm of logarithmic poles and distribution of
measures α = (α1, . . . , αm) ∈ Rn+ is the following extremal plurisubharmonic
function:

gD(Λ,α; z) := lim sup
ζ→z

sup {u(ζ) : u ∈ G(D,Λ, α)},(3)

where G(D,Λ, α) is the set of all functions u ∈ P (D) such that u ≤ 0
in D and u(ζ) ≤ α ln |ζ − λj | + const in a neighborhood of any point λj ,
j = 1, . . . ,m.

We will use the notation Ds ⇑ D to mean that Ds and D are open sets,
Ds is relatively compact in Ds+1, s ∈ N, and D =

⋃∞
s=1Ds; Ks ⇓ K means

that Ks and K are compact sets, Ks+1 ⊂ intKs, and K =
⋂∞
s=1Ks.

3. Two problems. We discuss two important problems of Complex
Potential Theory.

Problem 1 ([23, 24]). Let (K,D) be a pluriregular pair. Do there exist
Λ(s) ∈ Kms and α(s) ∈ Rms+ , ms ∈ N, s ∈ N, such that

gD(Λ(s), α(s); z)→ ω(D,K; z)− 1(4)

uniformly on any compact subset of D \K?

For the one-dimensonal case this problem has an immediate positive
answer: it is sufficient to take an appropriate sequence of integral sums of the
integral representing the Green potential. The lack of such representation in
the multidimensional case was for a long time a serious obstacle to attacking
Problem 1, which has been solved only recently in [12, 10, 11] (the particular
case of Reinhardt pairs was done independently, in a different way, in [25],
see also Corollary 4 below).

Notice that the solution of this problem itself may be considered as an
efficient substitution for an integral representation, especially in connection
with many applications.

Let D be an open set on a Stein manifoldΩ, dimΩ = n, and f : D → Cm
be an analytic mapping, m ≥ n. We say that (L,G) is a similar analytic
polyhedral pair in D (represented by the mapping f) if there exists an open
subset U in D and multiradii r(ν) = (r(ν)

j ) ∈ Rm+ , ν = 0, 1, r(0)
j < r

(1)
j ,

j = 1, . . . ,m, such that

G = {z ∈ U : |fj(z)| < r
(1)
j , j = 1, . . . ,m},

L = {z ∈ G : |fj(z)| ≤ r(0)
j , j = 1, . . . ,m},

(5)
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and G is relatively compact in U. The quadruple [U, f ; r(0), r(1)] is called the
frame of the pair (L,G); to stress that the polyhedral pair is generated by
m analytic functions we will speak about m-polyhedral pairs or m-frames.
If m = n we say that the polyhedral pair (L,G) is special ; a special polyhe-
dral pair is a natural multidimensional analogue of a lemniscate pair in C,
generated by a single analytic function.

The following statement is known as the Lelong–Bremermann Lemma
([9, 4], see also [5, Q]):

Proposition 1. Let u be a continuous plurisubharmonic function on a
pseudoconvex domain D. Then for each compact subset A of D and any
ε > 0 there exists an analytic mapping f = (fj) : D → CN and numbers
αj > 0 such that

|ω(z)−max {αj ln |fj(z)| : j = 1, . . . , N}| < ε, z ∈ A.(6)

A drawback of this result is that, in general, the number N = N(ε,A)
in (6) may increase without bound.

It is proved in [2], using the reduction suggested in the next section, that
the constantN has a bound≤ 2n+1, n = dimD. Since the plurisubharmonic
function ω(z) = ω(D,K; z) is continuous in D for any pluriregular pair
(K,D) (see [22]), one can derive from this that for any pluriregular pair
(K,D) there exists a sequence of similar analytic polyhedral pairs (Ls, Gs)
generated by analytic mappings f (s) : D → C2n+1 such that Gs ⇑ D and
Ls ⇓ K. But it is well known that in the one-dimensional case any regular
pair (K,L) can be approximated by pairs of analytic polyhedra (lemniscates)
generated by single analytic functions fs : Ds → C, with Ds ↑ D (see,
e.g., [20, 8.7]; this is a natural development of Hilbert’s result [6] about
approximating a simple Jordan curve by polynomial lemniscates). So, for
the multidimensional case the following problem arises naturally:

Problem 2. Is it possible to approximate any pluriregular pair (K,D)
simultaneously by special similar analytic polyhedral pairs?

This problem can be reformulated in the following equivalent form.

Problem 2a. For any pluriregular pair (K,D), dimD = n, find a se-
quence of analytic mappings f (s) = (f (s)

j ) : D → Cn and vectors α(s) =

(α(s)
j ) ∈ Rn+ such that the sequence

u(s)(z) := max{α(s)
j ln |f (s)

j | : j = 1, . . . , n}(7)

converges to ω(D,K; z)− 1 uniformly on any compact subset of D \K.
In the present paper we solve this problem positively for Reinhardt pairs

(K,D).



Approximation by analytic polyhedral pairs 247

Notice that an approach to general pluriregular pairs (K,D) is given in
[10, 11] (see also [12]). Namely, it is proved there that such a pair can be
approximated by pairs (5) if in the expression for L the set G is replaced by
some open set V ⊃ K. So, in that context, instead of the uniform conver-
gence on compact subsets of D \K for the sequence (7), a weaker condition
is proved: � D (ddc(u(s)(z)− ω(z)))n → 0 as s→∞.

4. Reduction of analytic polyhedral pairs. Any similar analytic
m-polyhedral pair with a frame [D, f ; r(0), r(1)] can be represented by its
normalized frame:

[D, g; r] := [D, g; 1, r],(8)

where g = (fj/r
(0)
j ), 1 := (1, . . . , 1), r := (r(1)

j /r
(0)
j ).

We say that an analytic polyhedral pair with the frame (8) is equilateral
if

r = r · 1, r ∈ R+.(9)

Let (L,G) be an equilateral similar analytic polyhedral pair with the m-
frame (8), (9). For any J = {j1, . . . , jk} with j1 < . . . < jk, 1 ≤ k ≤ m, we
define

σ(J) := {z ∈ G \ L : |gj1(z)| = . . . = |gjk(z)| > |gj(z)|, j 6∈ J}
Suppose that there exists l with n ≤ l < m such that

σ(J) = ∅(10)

if #J > l, and l is the smallest number satisfying this condition. Then we
consider the sequence of analytic mappings

g(s) = (g(s)
1 , . . . , g

(s)
l ) : D → Cl,

g
(s)
k (z) =

( ∑

j1<...<jk

(gj1(z))s . . . (gjk(z))s
)l!/k

,(11)

where k = 1, . . . , l.

Lemma 2. Let (L,G) be an equilateral polyhedral pair with the frame (8)
such that the condition (10) holds. Let

ϕ(z): =
1

ln r
max {ln |gj(z)| : j = 1, . . . ,m},(12)

ϕs(z): =
1

sl! ln r
max{ln |g(s)

k (z)| : k = 1, . . . , l},(13)

where g(s)
k (z) are defined in (11). Then ϕs(z)→ ϕ(z) uniformly on G \ L.

Proof. Since, by the construction,

|g(s)
k (z)| ≤ 2ml!/k(max {|gj(z)| : j = 1, . . . ,m})sl!,
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we get an estimate from above:

ϕs(z) ≤ ϕ(z) +
m ln 2
sk ln r

(14)

for each z ∈ G \ L.
Now we deal with the estimate from below for the function (13). First,

by the continuity of ϕ on G \ L, for each ε > 0 we can find σ(ε) > 0 such
that

|ϕ(z)− ϕ(ζ)| < ε if |ζ − z| < σ(ε), z, ζ ∈ G \ L.(15)

Now we fix any ζ∈G \ L. By the hypothesis, there is J=J(ζ)={j1, . . . , jk},
k = k(ζ) ≤ l, such that

|gj1(ζ)| = . . . = |gjk(ζ)| > |gi(ζ)|, i 6∈ J,(16)

hence

d(ζ) := max
{∣∣∣∣
gi1(ζ) . . . gik(ζ)
gj1(ζ) . . . gjk(ζ)

∣∣∣∣ : I = {i1, . . . , ik} 6= J

}
< 1.(17)

Thus, using the continuity of all the functions involved, we can find a neigh-
borhood U(ζ) = {z ∈ G \ L : |z − ζ| < ε} with δ(ζ) < σ(ε) such that∣∣∣∣

gi1(z) . . . gik(z)
gj1(z) . . . gjk(z)

∣∣∣∣ ≤ q(ζ) :=
1 + d(ζ)

2
< 1, I = {i1, . . . , ik} 6= J,(18)

and

|gj(z)| ≥ r−ε|gj(ζ)|, j ∈ J,(19)

for all z ∈ U(ζ). Applying (11), (18), and (19) we obtain the estimate

|g(s)
k (z)| ≥ |gj1(z) . . . gjk(z)|sl!/k

(
1−

∑

I 6=J

∣∣∣∣
gi1(z) . . . gik(z)
gj1(z) . . . gjk(z)

∣∣∣∣
s)l!/k

≥ r−εsl!|gj1(ζ) . . . gjk(ζ)|sl!/k(1− 2mq(ζ)s)l!/k

for every z ∈ U(ζ). Hence taking into account (12), (13), and (15), we deduce
that

ϕs(z) ≥ ln |g(s)
k (z)|

sl! ln r
≥ ln |gj1(ζ)|

ln r
+

ln (1− 2mq(ζ))
k ln r

− ε
≥ ϕ(ζ)− 2ε ≥ ϕ(z)− 3ε

for z ∈ U(ζ) and s ≥ s0(ζ, ε).
Now, choosing a finite covering: G \ L ⊂ ⋃N

i=1 U(ζ(i)), we conclude that

ϕ(s)(z) ≥ ϕ(z)− 3ε(20)

for all z ∈ G \ L if s ≥ s0(ε) := max {s0(ζ(i), ε) : i = 1, . . . , N}.
The estimates (14) and (20) imply that ϕs(z) converges to ϕ(z) uniformly

on G \ L.
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5. Pluripotentials for Reinhardt pairs. Let D be a logarithmically
convex bounded complete n-circular domain in Cn. Its characteristic func-
tion

hD(θ) = sup
{∑

θk ln |zk| : z ∈ D
}
, θ ∈ Rn+,

is convex and homogeneous. The domain D can be recovered from its char-
acteristic function as follows:

D =
{
z ∈ Cn :

∑
θk ln |zk| < hD(θ), θ ∈ Σ

}
,

where Σ := {θ = (θ1, . . . , θn) ∈ Rn+ :
∑n

k=1 θk = 1}.
Let D0, D1 be a pair of bounded logarithmically convex complete Rein-

hardt (= n-circular) domains such that D0 ⊂ D1. The following formula for
the pluripotential of D0 with respect to D1 was presented in [23, Proposition
1.4.3]:

ω(z) = ω(D1,D0; z) = sup {γ(θ, z) : θ ∈ Σ}(21)

for z ∈ D1 \D0, where

γ(θ, z) :=
∑n

ν=1 θν ln |zν | − hD0(θ)
hD1(θ)− hD0(θ)

.(22)

The formula (21) is extended onto ∂D1 by setting ω(z) ≡ 1 there.
We consider the following level sets of the function ω:

Dα := {z ∈ D1 : ω(z) < α}, Γα := {z ∈ D1 : ω(z) = α}(23)

with α ∈ [0, 1].
It is easy to see that the representation (21) leads to the following geo-

metric description of the level sets (23).

Lemma 3. Let 0 < α < 1. Then Γα is the boundary of the domain
Dα and z = (zν) ∈ D1 belongs to Γα if and only if there exist θ ∈ Σ,

z(0) = (z(0)
ν ) ∈ Γ0, z

(1) = (z(1)
ν ) ∈ Γ1 such that |zν | = |z(0)

ν |1−α · |z(1)
ν |α and

γ(θ, z(0)) = 0, γ(θ, z(1)) = 1.

Using these facts and Lemma 2 we are going to prove our main result,
which gives a positive solution of Problem 2 in the case considered.

Theorem 4. Let D0, D1, and ω(z) be as above. Then there exist a se-
quence of polynomial mappings f (ν) = (f (ν)

j ) : Cn → Cn, a sequence αν > 0,
and a sequence of open sets G(ν) ⇑ D1 such that

ω(z) = lim
ν→∞

αν max {ln |f (ν)
j (z)| : j = 1, . . . , n}(24)

uniformly on any compact subset of D1\D0, and a sequence of special polyno-
mial polyhedral pairs (M (ν),H(ν)) determined by the normalized equilateral
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frames

[G(ν), f (ν); exp 1/αν ](25)

approximates the pair (D0,D1) so that Hν ⇑ D1 and Mν ⇓ D0.

As a corollary we get another proof of Problem 1 in the case considered
(cf. [12, 10, 11]).

Corollary 5. Let K = D0, D = D1. Then in the setting of the previous
theorem, for each ν the set Λ(ν) := {ζ ∈ G(ν) : f (ν)(ζ) = 0} is finite and
consists only of simple roots, and the relation (4), with α(ν) := (αν , . . . , αν) ∈
Rn, holds uniformly on any compact subset of D \K.

Before proving these statements we consider the following

Lemma 6. Let D0, D1, and ω be as above. Then for each ε > 0 there
exists a finite set of multi-indices k(j) = (ki(j)) ∈ Zn+, a natural number q,
and real numbers cj , j = 1, . . . ,m, such that the maximum

v(z) :=
1
q

max
{ n∑

i=1

ki(j) ln |zi| − cj : j = 1, . . . ,m
}

(26)

is attained for no more than n values of j at any point z satisfying the
estimates 0 ≤ v(z) ≤ 1, and

|ω(z)− v(z)| < ε, z ∈ D1 \D0.(27)

Proof. First we notice that for each ζ = (ζi) ∈ D1 \D0 there is θ = θ(ζ)
such that

ω(ζ) = γ(θ(ζ), ζ).(28)

Indeed, denoting by Σ(ζ) the set of all θ = (θi) ∈ Σ such that θi = 0
whenever ζi = 0, we have

ω(ζ) = sup {γ(θ, ζ) : θ ∈ Σ(ζ)},
and the function γ(θ, ζ) is continuous in θ on the compact set Σ(ζ), so (28)
is valid with some θ = θ(ζ) ∈ Σ(ζ).

Now, since ω is continuous on D1, while the function γ(θ(ζ), z) is con-
tinuous in some neighborhood of ζ, we can find for any ε > 0 some open
neighborhood Uζ of ζ such that

0 ≤ ω(z)− γ(θ(ζ), z) < ε/2, z ∈ Uζ .
Hence, using the covering theorem, we deduce that for each ε > 0 there is a
finite set {ζ(j) : j = 1, . . . ,m} such that

|ω(z)− u(z)| < ε/2, z ∈ D1 \D0,(29)
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where

u(z) := sup
{ m∑

i=1

ai,j ln |zi| − bj : j = 1, . . . ,m
}

(30)

and

ai,j :=
θ(ζ(j))

hD1(θ(ζ(j)))− hD0(θ(ζ(j)))
,

bj :=
hD0(θ(ζ(j)))

hD1(θ(ζ(j)))− hD0(θ(ζ(j)))
.

(31)

Recall that, by the construction, the coefficients ai,j satisfy the condition

ai,j = 0 if ζ(j)
i = 0.(32)

Now we are going to replace the coefficients (31) by some close values
ãi,j , b̃j , respectively, aiming at two targets:

(a) to afford the approximation of ω(z) by the new function

ũ(z) := sup
{ m∑

i=1

ãi,j ln |zi| − b̃j : j = 1, . . . ,m
}

(33)

so that
|ω(z)− ũ(z)| < ε, z ∈ D1 \D0;(34)

(b) to provide the condition of Lemma 2, namely, that for each z such
that 0 ≤ ũ(z) ≤ 1 the maximum in (33) will be attained for no more than
n values of j.

To guarantee (a) we must retain the nullity of the new coefficients where
the old coefficients vanish (see (32)); indeed, if some of the new coefficients
ãi,j were non-zero, while ζi,j = 0, then

∑m
i=1 ãi,j ln |ζ(j)

i | − b̃j = −∞ so the
closeness to the function ω would be violated.

To reach both purposes we use the following quite standard algebraic
considerations. Given a set N of indices (i, j), we consider the set of all
matrices

A =




a1,1 . . . ai,1 . . . an,1 b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1,j . . . ai,j . . . an,j bj
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1,m . . . ai,m . . . an,m bm


(35)

such that ai,j = 0 when (i, j) ∈ N. We identify this set of matrices with
the space Rd, where d = m(n+ 1)−#N (writing, for example, the matrix
terms row-by-row and dropping those which are the prescribed zeros). Each
minor M of a matrix A of order r may then be considered as a homogeneous
polynomial M(A) of degree ≤ r in Rd. Denote byM the set of all non-trivial
minors M, i.e. such that M(A) 6≡ 0 on Rd. Then the set A0 of all matrices
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A ∈ Rd such that M(A) 6= 0 for all M ∈ M is an open dense set in Rd, since
it can be obtained by removing some algebraic set from Rd. It is clear that,
by the construction, each matrix A ∈ A0 satisfies the condition: for every
set J = {j1, . . . , jn+1} with j1 < . . . < jn+1 the system

a1,jx1 + . . .+ an,jxn = bj , j ∈ J,(36)

has no solution. Analogously, we can show that there exists an open dense
subset A1 obtained by removing some algebraic set from Rd and such that
each matrix A ∈ A1 satisfies the condition: each system

a1,jx1 + . . .+ an,jxn = 1 + bj , j ∈ J,(37)

has no solution when #J = n + 1. Thus for any matrix A ∈ A0 ∩ A1 each
of the systems (36) and (37) has no solution if #J = n+ 1.

Applying the above considerations to the matrix (35) defined by (31)
(with N determined by the condition (32)), we can choose the coefficients
ãi,j and b̃j to be rational and such that the condition (34) holds and the
condition (b) is valid for all z such that ũ(z) = 1 or ũ(z) = 0. Let us show
that (b) is also true for all z such that 0 < ũ(z) < 1. Supposing the contrary,
we find that there is z such that ũ(z) = α, 0 < α < 1, and

n∑

i=1

ãi,j ln |zi| = α, j ∈ J,(38)

for some J with #J > n. Then, by Lemma 3, |zi| = |z(0)
i |1−α · |z

(1)
i |α for

some z(0) and z(1) such that ũ(z(0)) = 0 and ũ(z(1)) = 1. Hence, by what
is proved above, there is j0 ∈ J such that

∑n
i=1 ãi,j0 ln |z(1)

i | < 1, while∑n
i=1 ãi,j0 ln |z(0)

i | ≤ 0. The last two estimates contradict (38) if j = j0.
Thus, the condition (b) is proved for all z such that 0 ≤ ũ(z) ≤ 1.

Since the numbers ãi,j are rational, there exist natural numbers ki(j)
and q such that ãi,j = ki(j)/q, j = 1, . . . ,m. It is easy to check that the
numbers ki(j), q, cj := qb̃j , and the function v(z) := ũ(z) satisfy all the
conditions of the lemma. Thus the proof is complete.

Proof of Theorem 4. We shall use the notation

Dα := {z ∈ D1 : ω(z) < α}, Kα := {z ∈ D1 : ω(z) ≤ α}(39)

with 0 < α < 1. Take a sequence (εν) such that

5εν < εν−1, ν = 2, 3, . . . , ε1 < 1/2.(40)

Now, by Lemma 6, for each ν we can find k(j) = k(j, ν) = (ki(j, ν)) ∈ Zn+,
q = qν ∈ N and real numbers cj = c(j, ν), j = 1, . . . ,m = mν , such that
the estimate (27) holds for the function v(z) = vν(z) with ε = εν+1 and the
maximum in (26) is attained for no more than n values of j.
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Now we can see that all the conditions of Lemma 2 are fulfilled with l = n
for the polynomial polyhedral pair (L,G) = (L(ν), G(ν)) determined by the
normalized equilateral frame [D1, g; r(ν)] with g = (gj) = (gj,ν) : Cn → Cmν ,
where

gj,ν(z) :=
zk(j,ν)

exp (2ενqν − c(j, ν))
, r(ν) := exp (1− 4εν)qν .(41)

This pair can be expressed in the form

G(ν) = {z ∈ D1 : vν(z) < 1− 2εν}, L(ν) = {z ∈ D1 : vν(z) ≤ 2εν}.
It is easy to check that the embeddings

D1−3εν b G(ν) b D1−εν , Kεν b L(ν) b K3εν(42)

hold for all ν ∈ N. Thus, applying Lemma 2 to the above polynomial poly-
hedral pair, for any ν ∈ N we get, by the construction (11), polynomial
mappings (g(s)

i,ν )ni=1 : Cn → Cn such that the sequence

ϕ(s)
ν (z) :=

1
sn! ln r(ν)

max {ln |g(s)
i,ν (z)| : i = 1, . . . , n}

converges uniformly on G(ν) \ L(ν) to the function

ϕν(z) :=
vν(z)− 2εν

1− 2εν

as s→∞. Choose s = sν so large that

|ϕν(z)− ϕ(sν)
ν (z)| < εν+1, z ∈ G(ν) \ L(ν).

Hence for the function uν(z) := ϕ
(sν)
ν (z)(1− 2ε) + 2ε we get

|uν(z)− ω(z)| < 2εν+1, z ∈ G(ν) \ L(ν).(43)

Then the sequence of polyhedral pairs (M (ν),H(ν)) defined by

M (ν) := {z ∈ G(ν) : uν(z) ≤ 4εν},
H(ν) := {z ∈ G(ν) : uν(z) < 1− 4εν}

(44)

is as desired. First, it is easy to check that, due to (43) and (40), the em-
beddings

G(ν−1) b D1−εν−1 b H(ν) b D1−3εν b G(ν),

L(ν) b K3εν bM (ν) b Kεν−1 b L(ν−1)
(45)

hold for ν = 2, 3, . . . So, H (ν) ⇑ D1 and M (ν) ⇓ D0. Second, these pairs are
determined by the normalized equilateral frames (25) with the polynomial
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mapping f (ν) = (f (ν)
i ) : Cn → Cn such that

f
(ν)
i (z) :=

g
(sν)
i,ν (z)

exp
(

2εν(1− 4εν)qνsνn!
1− εν

) , αν :=
1− 2εν

(1− 4εν)(1− 8εν)qνsνn!
.

Finally, by the construction, the formula (24) holds uniformly on any com-
pact subset of D1 \D0.

Proof of Corollary 5. First, we can assume that the set Λ(ν) := {z ∈
G(ν) : f (ν)(z) = 0} consists only of simple roots (otherwise we can change the
polynomial map f (ν) a little to provide this, preserving all other properties
in Theorem 4). Setting α(ν) := (αν , . . . , αν), we get

ω(H(ν),M (ν); z)− 1 = gH(ν)(Λν , α(ν); z), z ∈ H(ν) \M (ν).

Then, since

gD1(Λ(ν), α(ν); z) ≤ gH(ν)(Λ(ν), α(ν); z) ≤ gD1(Λ(ν), α(ν); z) + εν−1

everywhere in H(ν) and ω(H(ν),M (ν); z) converges to ω(D,K; z) uniformly
on compact subsets of D \ K, we get the relation (4) uniformly on any
compact subset of D \K.

6. Application to width asymptotics. The Kolmogorov widths of a
compact set A in a Banach space X are the numbers

ds(A) = ds(A,X) := inf
L

sup
x∈A

inf {‖x− y‖X : y ∈ L}, s ∈ Z+,

where L runs through the set of all s-dimensional subspaces of X.
Let K be a compact subset in an open set D ⊂ Cn and ADK the subset

of the Banach space C(K) consisting of all analytic functions in D whose
moduli do not exceed 1 there.

In [23] we conjectured the strong asymptotics

ln ds(ADK) ∼ −σs1/n(46)

with the constant

σ =
(

n!
τ(K,D)

)1/n

(47)

(see (2)). For the one-dimensional case, this conjecture is equivalent to Kol-
mogorov’s conjecture about the asymptotics of the ε-entropy of the compact
set ADK ; see, e.g., [24] for the history of the problem in that case. The conjec-
ture was proved in [1] for Reinhardt pairs (K,D), using the Rauch–Taylor
result about the computation of the real Monge–Ampère operator from con-
vex functions.

Now we obtain this fact as a simple consequence of Corollary 5 and the
results from [24, items 3.1.2, 3.2.5]. Namely it was shown in [24, Proposition
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3.1.4] that under the conditions which are obviously fulfilled in our case,
the asymptotics (46) with the constant (47) holds whenever Problem 1 is
answered positively for a pair (K,D). So, by Corollary 5 we get

Theorem 7. Let K = D0, D = D1, K ⊂ D, Dν be bounded logarith-
mically convex domains, ν = 1, 2. Then the asymptotics (46) holds with the
constant (47).

Notice that recently ([12, 10, 11]) a more general result was obtained in
a similar way from the complete solution of Problem 1 considered there.

7. Connection with some extremal problem. For any pluriregular
pair (K,D) and m ∈ N we consider the characteristic

τ+
m(K,D) := min

{ m∑

µ=1

(αµ)n
}
,(48)

where the minimum is taken over all α = (αµ) ∈ Rm+ for which there is
Λ = (ζ1, . . . , ζm) ∈ Km such that gD(Λ,α; z) ≤ −1, z ∈ K. It is easy to
show that for every m ∈ N there exist Λ = Λ(m) and α = α(m) for which the
minimum in (48) is attained.

It is obvious that the sequence (48) is non-decreasing, so the limit

lim
m→∞

τm(K,D) =: τ+(K,D)(49)

exists. The last characteristic was introduced in [23, 24] and used there to
estimate the Kolmogorov widths ds(ADK) (see the previous section); it was
also shown there that a positive solution of Problem 1 for a given pluriregular
pair (K,D) leads to the equality

τ+(K,D) = τ(K,D).(50)

It follows from [12, Lemma 4.2] that the extremal sequence of pluripoten-
tials gD(Λ(m), α(m); z) converges to ω(D,K; z)−1 uniformly on any compact
subset of D \K. Therefore Problem 2 is equivalent to the following

Problem 3. Is the relation (50) true for any pluriregular pair (K,D)?
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