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On the variational calculus in fibered-fibered manifolds

by W. M. MikuLskI (Krakéw)

Abstract. In this paper we extend the variational calculus to fibered-fibered man-
ifolds. Fibered-fibered manifolds are surjective fibered submersions 7 : ¥ — X between
fibered manifolds. For natural numbers s > r < ¢ with » > 1 we define (r,s, ¢)th or-
der Lagrangians on fibered-fibered manifolds 7 : ¥ — X as base-preserving morphisms
A gm0y — AYMMX X Then similarly to the fibered manifold case we define crit-
ical fibered sections of Y. Setting p = max(q, s) we prove that there exists a canonical
“Buler” morphism £()\) : JT T2 TPY L 'y /\dimX T* X of X satisfying a decompo-
sition property similar to the one in the fibered manifold case, and we deduce that critical
fibered sections o are exactly the solutions of the “Euler-Lagrange” equations £(X) o
G287 HP5 — (. Next we study the naturality of the “Euler” morphism. We prove that
any natural operator of the “Euler” morphism type is ¢€()), ¢ € R, provided dim X > 2.

0. Introduction. The most important problem in the variational cal-
culus is to characterize critical values. It is known that critical sections of
a fibered manifold p : X — X, with respect to an rth order Lagrangian
A JX — N XOT* X can be characterized by means of the solutions
of the so-called Euler— Lagrange equations. There exists a unique Euler map
EQ\) : JX — V*X @ AN"™X0 T X, satisfying sotme decomposition for-
mula. Then the Euler-Lagrange equations are E()\)oj%"o = 0 with unknown
section o (see [2]).

Fibered-fibered manifolds generalize fibered manifolds. They are surjec-
tive fibered submersions 7 : Y — X between fibered manifolds. They appear
naturally in differential geometry if we consider transverse natural bundles
over foliated manifolds in the sense of R. Wolak [4] (see [3]).

A simple example of a fibered-fibered manifold is the following trivial
fibered-fibered manifold. We consider four manifolds X1, X, X3, X4. Then
the obvious projection 7 : X7 x Xo x X3 x X4 — X7 x X5 is a fibered-fibered
manifold (we consider X7 x X5 x X3 x X4 as the trivial fibered manifold
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over X1 x X3 and X3 x Xy as the trivial fibered manifold over X;). Taking
X1, Xo, X3, X4 compact we produce compact fibered-fibered manifolds.

In [3], for fibered-fibered manifolds, using the concept of (r, s, q)-jets on
fibered manifolds [2], we extended the notion of r-jet prolongation bundle to
the (7, s, q)-jet prolongation bundle J"*?Y for r,s,q € N\ {0}, s >r <q.

The purpose of the present paper is to construct the variational calculus
in fibered-fibered manifolds.

In Section 2 we define (r,s, q)th order Lagrangians as base-preserving
morphisms A : J"%9Y — /\dimx T*X. Then similarly to the fibered mani-
fold case we define critical fibered sections of Y. Setting p = max(q, s) we
prove that there exists a canonical “Euler” morphism £()\) : J?P:2P:2PY —
VY ® /\dimX T* X of X satisfying a decomposition property similar to the
one in the fibered manifold case, where VY C TY is the vector subbundle
of vectors vertical with respect to two obvious projections from Y (onto
X and onto Yj). Then we deduce that critical fibered sections o are ex-
actly the solutions of the “Euler-Lagrange” equations £(\) o j2P-2P-2Pg = (.
Next we observe that £(\) can be factorized through J"+$2%7+PY and the
“Euler-Lagrange” equations are in fact of the form £(\) o j7 %257 +Pg = (.

Section 1 provides some background on the variational calculus in fibered
manifolds.

In [1], I. Kolaf studied the naturality of the Euler operator E()) on
fibered manifolds. He showed that any natural operator of the Euler operator
type is of the form cE()), ¢ € R, provided dim Xy > 2.

In Section 3 we study the naturality of the “Euler” operator £(\) on
fibered-fibered manifolds. We prove that any natural operator of the “Euler”
operator type is of the form c€(X), ¢ € R, provided dim X > 2.

A 2-fibered manifold is a sequence of two surjective submersions X —
X1 — Xo. For example, given a fibered manifold X — M we have 2-fibered
manifolds TX — X - M, T*X - X — M, J'X — X — M, etc. Every
2-fibered manifold X — X; — X can be considered as the fibered-fibered
manifold X — Xy, where we consider X as the fibered manifold X — X
and X, as the fibered manifold X; — Xg. So, the results of the paper can be
obviously applied to produce the variational calculus on 2-fibered manifolds.

A fibered manifold X — X can be considered as the 2-fibered manifold
X — Xy — pt with the one-point manifold pt. So, we recover the known
variational calculus on fibered manifolds.

All manifolds and maps are assumed to be of class C*.

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion p : X — Xy between
manifolds. If p’ : X’ — X{, is another fibered manifold then amap f : X — X’
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is called fibered if there exist a (unique) map fo : Xo — X{, such that
pof=foop.
Denote the set of (local) sections of p by I'X. The r-jet prolongation
J' X ={jroloelX, zoc Xo}
of X is a fibered manifold over Xy with respect to the source projection
pr i JTX — Xo. If p’ : X! — X is another fibered manifold and f : Xg — X’
is a fibered map covering a local diffeomorphism fj : Xo — X, then we have
J'f I X — J'X" given by J"f(jro) = j} y(fooo foh) for jro € JTX.
1.2. Let p : X — X be as above. A vector field V on X is projectable
if there exists a vector field Vi on X such that V is p-related to Vy. If V is
projectable on X, then its flow ExptV is formed by local fibered diffeomor-
phisms, and we can define a vector field
0
TV —
J Ot |t=0
on J'X. If V is p-vertical (i.e. Vj = 0), then J"V is p"-vertical.

J"(ExptV)

1.3. An rth order Lagrangian on a fibered manifold p : X — X, with
dim Xy = m is a base-preserving morphism
A JX - N"T*X,.
Given a section o € I'X and a compact subset K C dom(o) contained in a
chart domain, the action is

S\ o, K)=|xojo.
K

A section o € I'X is called critical if for any compact K C dom(o) contained
in a chart domain and any p-vertical vector field n on X with compact
support in p~!(K) we have

d

dt |t=0
By derivation inside the integral we see that o is critical iff for any compact
K C dom(o) contained in a chart domain and any p-vertical vector field 7
on X with compact support in p~!(K) we have

S (0N, Ty ojlo=0,
K

where X : VJ"X — A" T* X is the p"-vertical part of the differential of .

S(\,Exptnoo,K)=0.

1.4. Given a base-preserving morphism ¢ : J9X — /\k T* Xy, its formal
exterior differential Dy : JIT1X — /\kJrl T* X is defined by

Dy(jitto) = d(p 0 j%0)(x0)
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for every local section o of X, where d means the exterior differential at
xg € X of the local k-form ¢ o j90 on Xj.

1.5. In the following assertion we do not indicate explicitly the pull back
to J?rX.

PROPOSITION 1 ([2, Prop. 49.3]). For every rth order Lagrangian X :
J'X — N"T*Xy, m = dim Xy, there exists a morphism K(\) : J* 71X
- VX ® /\m_1 T*Xq over the identity of J"~'X and a unique Euler
morphism E()\) : J*"X — V*X @ N\"™ T*Xo over the identity of X such that
(1) (0N, T"n) = DK (X), T~ ")) + (BE(A),m)
for any vertical vector field n on X.

REMARK 1. The morphism E()) is called the Fuler morphism. If f :
J?X — R is a function, we have a coordinate decomposition

Df = (Dif)da',

where

le: 8f + Z %yp . :Jq+1X_>R

axl a+11
lal<q

is the so-called formal (or total) derivative of f and (x%,y") are fiber coor-
dinates on X and (2%, y*) are the induced coordinates on J9X. The local
coordinate form of E(\) is

_Y Y (-1)eip, o 10 © "

k=1|a|<r

(see the proof of Proposition 49.3 in [2]), where d"x = dax' A -+ A da™
A =L ®d™"x and D, means the iterated formal derivative with respect to
the multiindex a.

Proposition 1 yields immediately the following well known fact.

PROPOSITION 2. A section o € I'X s critical iff it satisfies the Fuler—
Lagrange equations E()\) o j2"o = 0.

2. The variational calculus in fibered-fibered manifolds

2.1. In [3], we generalized the concept of fibered manifolds as follows.
A fibered-fibered manifold is a fibered surjective submersion 7 : ¥ — X
between fibered manifolds p¥ : Y — Yy and p¥ : X — X, i.e. a surjec-
tive submersion which sends fibers into fibers such that the restricted maps
(between fibers) are submersions. If 7/ : Y’ — X’ is another fibered-fibered
manifold then a fibered map f : Y — Y’ is called fibered-fibered if there
exists a (unique) fibered map fo : X — X’ such that 7’ o f = fyom.
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Let r,s,q € N\ {0}, s >r <q.

Denote the set of local fibered maps o : X — Y with 7 0 0 = idgom(q)
(fibered sections) by [g,Y . By 12.19 in [1], 0,0 € IxpY represent the same
(r,s,q)-jet jo590 = 7599 at a point x € X iff

Jo0 = Ju0,  Ja(0|Xa) = Jo(0lXao),  ji,00 = ji 00,
where Xy and Y[ are the bases of fibered manifolds X and Y, zg € Xj is

the element under x, X, is the fiber of X over z¢ and o9, 0o : Xo — Yj are
the underlying maps of o, p. The (r, s, q)-jet prolongation

Jr3Y = {35 | o € IhpY, x € X}

of Y is a fibered manifold over X with respect to the source projection
" ? o Jr51Y — X (see [3]). We also have the target projection wy™? :
Jr9Y — Y. If ' 1 Y’ — X’ is another fibered-fibered manifold and f :
Y — Y’ is a fibered-fibered map covering a local fibered diffeomorphism
fo : X — X'’ then we have a map J"®4f : J»%9Y — J"%9Y"’ given by

JTAf(jrsd0) = j;(’)s(f)(f oo o fy!) for any jo%90 € JTSY.

2.2. Let 7 : Y — X be a fibered-fibered manifold which is a fibered sub-
mersion between fibered manifolds p¥ : Y — Y and p* : X — X,. A pro-
jectable vector field W on the fibered manifold Y is projectable-projectable
if there exists a w-related (to W) projectable vector field W on X. If W
is projectable-projectable on Y, then its flow ExptW is formed by local
fibered-fibered diffeomorphisms, and we define a vector field

0
JrSMW = —  J0S9(ExptW)

Ot |t=0
on J"*9Y. If additionally W is m-vertical and pY-vertical (i.e. W is 7-
related and pY-related to zero vector fields), then J™4W is 7" %-vertical
and pY o 1y " Y-vertical.

2.3. Let r,s,q be as above. An (r, s, q)th order Lagrangian on a fibered-

fibered manifold 7 : Y — X with dim X = m is a base-preserving (covering

the identity of X) morphism
A J0oY — N"'THX.
Given a fibered section o € I5,Y and a compact subset K C dom(o) C X
contained in a chart domain, the action is
S\ o,K) = S Ao jl*ig,
K

A fibered section o € I§,Y is called critical (with respect to A) if for any
compact K C dom(o) contained in a chart domain and any 7w-vertical and
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pY -vertical vector field 7 on Y with compact support in 77 !(K) we have
d
dt |i=0
By derivation inside the integral we see that o is critical iff for any compact

K C dom(o) contained in a chart domain and any m-vertical and pY -vertical
vector field  on Y with compact support in 77 !(K) we have

J(ox, grean)jreio = o,

where d\ : VJ"$9X — A" T*X is the restriction of the differential of A to
the vector subbundle VJ"%4¢ C T J"%1Y of vectors vertical with respect to
the projections from J™*9Y onto X and onto Yj.

S(\,Exptnoo,K)=0.

2.4. Given a base-preserving morphism ¢ : JPPPY — /\k T*X, its for-
mal exterior differential Dy : JPTLPTLIHLY — AR T* X is defined by

Dp(jETHPHLPH ) = d(p 0 jPPP0)(z)

for every local fibered section o of Y, where d means the exterior differential
at € X of the local k-form ¢ o j?PPg on X.

(We remark that if s > 7 < ¢ then given a base-preserving morphism ¢ :
Jrsay — /\k T*X the value d(p o j™*90)(z) is usually not determined by
jr+1s+1.a+1 5 Then the corresponding formal exterior differential does not
exist. One can see that the above-mentioned value depends on j2+1.P+L.P+1,
for p = max(s,q), but the relevant formal exterior differential will not be
used.)

2.5. In the following assertion we do not indicate explicitly the pull back
to J2P:2P2PY,

PROPOSITION 3. Let r,s,q be natural numbers with s > r < q, r > 1,
p = max(q, s). For every (v, s, q)th order Lagrangian X : J»%1Y — N" T*X,
there are a morphism KC(\) : J?—L2p=L2p=1ly . p* jp=lp=lp=ly g
/\m_1 T* X over the identity of JP~1P~1P=1Y and a canonical “Buler” mor-
phism E(N) : JP22PY — V'Y @ N™ T* X over the identity of Y satisfying

(2) (0A, ") = DK(N), TP~ 17107 )) 4+ (E(N),m)

for every m-vertical and pY -vertical vector field n on Y. Here VY is the
vector subbundle of TY of vectors that are m-vertical and p* -vertical, and
YJr=Lp=Lp=ly s the vector subbundle of TJP~1P~LP=LY of vectors verti-
cal with respect to the obvious projections from JP~1P=LP=1Y onto X and
onto Y.

Proof. Let w2l JPPPY — J5%9Y Dbe the jet projection and let
ip + JPPPY — JPY be the canonical inclusion, where in J?Y we con-
sider Y as a fibered manifold over X. Using a suitable partition of unity
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on X and local fibered-fibered coordinate arguments we produce a pth
order Lagrangian A : J?Y — A™T*X such that Ao, = X o alPP.
Then by the decomposition formula (Proposition 1) there exists a mor-
phism K (A) : J2-1Y — V*JP=1y @ A™ ' T*X and the Euler morphism
E(A): J?*X - V*Y @ \" T*X satisfying

(64, TPn) = D((K(A), T~ 'n)) + (E(A),n)

for every m-vertical vector field n on Y. Composing both sides of the last
formula with iy, and using the obvious equality D(p) o ig, = D(p 0 i2p—1)
for ¢ : J?=1Y — A"T*X we easily obtain (2) for any 7-vertical and p¥ -
vertical vector field n on Y, provided we put £(\) = the restriction of E(A)o
isp to VY and K(A) = the restriction of K(A) oig,—q to VJP~LP=Lr=1ly C
VJP=1Y . Using Remark 1 it is easy to see (see Remark 2) that the definition
of £(A\) does not depend on the choice of A. m

REMARK 2. Let (z%, X1, y¥ YE) fori=1,....m;, [ =1,...,mg, k =
1,...,n1 and K =1,...,n9 be a fibered-fibered local coordinate system on
a fibered-fibered manifold Y. If f : JPPPY — R is a function we have the
decomposition

D(f) = D;(f)da’ + Dy(f)dX",

where D;(f) : JPHLPELPTY — R and Dy(f) : JFFPTLPHY — R are the
“total” derivatives of f. Let ' : JPY — R be such that F' oiz = f. From
the clear equality D(F) o izyq1 = D(f) we easily deduce that

Dl(f) = DZ(F) o ’L'”ﬁ+1 and D[(f) = D[(F) o ’L'ﬁ+1.

In particular, since D; and Dy, and D; and Dj/, commute, so do D; and Dy,
and D;; and Dp . From the formulas for D; and D; (see Remark 1) and from
the above formulas for D; and D; we easily see that in local coordinates

Di() = o2 ZZ kyau DY Y
k= 1\a\<p Ya K=115+5|<p  (B:7)
and
D 8XI + Z Z YK (ﬁ J+1r1)’

K=1ig|+5|<p  (B7)
where (2%, X1, y& ys, Y(I,g( )) is the induced coordinate system on JPPPY & =
@,...,a™), = (8'...,6™) and 3 = (3%,...,7™).
Let (2, X1, yk, Y(Igw)) be the induced coordinates on JP*P"PY. Then using
the formula of Remark 1 it is easy to see that the local coordinate form of
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E(N) is
S 18]+ oL K my ma
EN=D" > (-1 Dis ) gy — Y ® (™ znd™X),
K=1|B|+]~[<p (B:7)

where ™z = dz' A--- Adz™, d™X = dXT Ao AdX™2, N o PP =
L ® (d™ ANd™X) and Dg ) denotes the iterated “total” derivative with
index (8,7), 8= (81,...,0™), v = (11,...,7™).

From the above local formula it follows that £(A) can be factorized
through Jr+s:2srry,

Proposition 3 implies the following fact.

PROPOSITION 4. A fibered section o € Ig,Y is critical iff it satisfies the
“Buler—Lagrange” equations £(\) o j?P2P2Pg = 0. In view of Remark 2 these
equations are E(N) o jTT5257 Py = (),

REMARK 3. In the proof of Proposition 4 we use the fact that if n is a
m-vertical and py-vertical vector field on Y and f : X — R is a map with
compact support then (f o m)n is m-vertical and py-vertical. If 7 is only
m-vertical projectable-projectable then (f o 7)n may not be projectable-
projectable. That is why in the definition of critical fibered sections we
consider the n’s which are w-vertical and py-vertical.

3. On naturality of the “Euler” operator. We say that a fibered
manifold p : X — Xy is of dimension (m,n) if dim Xy = m and dim X =
m + n. All (m,n)-dimensional fibered manifolds and their local fibered dif-
feomorphisms form a category which we denote by FM,, ,, and which is
local and admissible in the sense of [2].

Similarly, we say that a fibered-fibered manifold 7 : Y — X is of dimen-
sion (my, ma,ny,ng) if the fibered manifold X is of dimension (my,n) and
the fibered manifold Y is of dimension (mj+n1, ma+nsg). All (m1, ma, ny,no )
dimensional fibered-fibered manifolds and their fibered-fibered local diffeo-
morphisms form a category which we denote by F M, 1, ny,n, and which
is local and admissible in the sense of [2]. The standard (mi,mo,ni,ns)-
dimensional trivial fibered-fibered manifold 7 : R™ x R™2 x R™ x R™"? —
R™ x R™2 will be denoted by R™v™2:71:"2  Any (mgy,ma,nq,ne)-dim-
ensional fibered-fibered manifold is locally F M, 1, ny,n,-isomorphic to
R™M1,m2,n1,n2

Given two fibered manifolds Z; — M and Zy — M over the same
base M, we denote the space of all base-preserving fibered manifold mor-
phisms of Z; into Zy by C37(Z1, Z2). In [1], I. Kolaf studied the rth order
Euler morphism F(\) of the variational calculus on an (m,n)-dimensional
fibered manifold p : X — Xg as the Euler operator

E:CE(J" X, N"T*Xo) = CX(J" X, V*X @ N"T* Xy).
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He deduced the following classification theorem:

THEOREM 1 ([1]). Any FM.,, n-natural operator (in the sense of [2]) of
the type of the Euler operator is of the form cE, ¢ € R, provided m > 2.

In the present section we obtain a similar result in the fibered-fibered
manifold case. Namely, we study the “Euler” morphism £()\) of the varia-
tional calculus on an (mq,ms, ny,ny)-dimensional fibered-fibered manifold
m:Y — X as the “Euler” operator

E:CE(JmY, N"T*X) — C2 (TP Y VY @ N"'T*X).

Here and from now on s > r < ¢ are natural numbers, r > 1, p = max(s, q)
and m = my + mo = dim X. We prove the following classification theorem.

THEOREM 2. Any FMpm, msny.ne-natural operator A (in the sense
of [2]) of the type of the “Euler” operator is of the form c€, ¢ € R, provided
m > 2.

REMARK 4. The assumption of the last theorem means that for any
F Moy ms.namp-morphism f : Y — Y’ and any (7, s, ¢)th order Lagrangians
AeCE(JIm Y, N"T*X) and X € CE(J79Y', N T*X'), if X and X are
f-related then so are A(\) and A()\'). Moreover A is regular and local. The
regularity means that A transforms any smoothly parametrized family of La-
grangians into a smoothly parametrized family of suitable type morphisms.
The locality means that A()), depends on the germ of X at 72527 (u).

Proof of Theorem 2. From now on let (2%, X1 % YE) i =1,... ,my,
I=1,....ms, k=1,....,n1, K =1,...,n2, be the usual fibered-fibered
coordinates on R™1»72:71,02

An mel,m?,nl,ni,—morphism (28, X1y, — 0¥ (2"), YE — DK (27 X))
sends j?gﬁf’Qp(:E’,XI,ak, XK into

o= j?g’gf’zp($i,XI,0, 0) c (JZP’QP’ZPRWH’m27n17n2)(0,0,0,0)-
Then A is uniquely determined by the evaluations
(A(Ne,v) € A"TGR™
for all A € CRuy ygmo (JOSIRMEM2m0m2 ATVT*R™) and v € TyR™ =
V(0,0,0,0) R,
Using the invariance of A with respect to F My, my ny,n,-morphisms of

the form idgm X idgn:1 X for linear ¥ : R™? — R"™2 we see that A is uniquely
determined by the evaluations

8 M %M

for all X € C%u, yms (J7SIRMM2mn2 AT THRIY
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Consider an arbitrary non-vanishing f : R™ — R. There is F' : R"™ — R
such that 0F/0X! = f and F(0) = 0. Then the F M, my.ny np-map

(..., 2™ F X2 XM gty YY)

preserves 6, %0 and sends germg(fd™'x A d™X) into germy(d™'x A
d™ X), where d™'z and d"2X are as in Remark 2. Then by naturality

A is uniquely determined by the evaluations
mq mo 6 Mk mm

for all A € CR%, y grmy (J7SIR™MEM2n2:m2 ATV T*R™Y gatisfying the condition
)\(j(rg’;o’vqxo)(xi,XI, 0)) = 0 for any (zg, Xo) € R™™2 and all b € R.

Let A and b be as above. Using the invariance of A with respect to
F Moy g nyn,-maps Yr 7 = (xi,XI, Tikyk, TLKYK) for 7 > 0and 7K > 0

we get the homogeneity condition

mq mo a

_ 71 m1 mo 9

=T <A()\+ bd™x Nd™X)e, Wo>'
By Corollary 19.8 in [2] of the non-linear Peetre theorem we can assume
that A is a polynomial. The regularity of A implies that (A(X + bd™ z A
dm™X)e, %& is smooth in the coordinates of A and b. Then by the homo-
geneous function theorem (and the above type of homogeneity) we deduce
that (A(A+bd™ zAd"™ X))o, % o) is a linear combination of the coordinates

of Xonall 2P X7V}, d™wAd™ X and P X7V} d™ wAd™ X with coef-

ficients being smooth functions in b, where (z?, X1, y%, (Igﬁ), Y(%),g)) is the
induced coordinate system on J"$4R™1."2:71.72 - (Here and from now on,
a and 3 are mi-tuples, and y and g are mo-tuples with |a| < g, ||+ 7| <7
and r + 1 < |g| < s.) In other words, A is determined by the values

<A((ax5X:*Y(/16m +b)d™MzNd™X)e, %0> = afgg(b)dmlx ANd™X

and

0

B yyy1 mi mo
<A(<a$ XIYS/(([)%Q) =+ b)d T N\ d )()@7 mo

> — af0A(b)d™x A d™X
for all a,b € R, all m1-tuples B, all mo-tuples 4 and all 3,~, o0 as above.

By the invariance of A with respect to F M, ms.n, ,n,-maps of the form
(TP, TIXT 4% YE) for 78 # 0 and T! # 0 we get the homogeneity condi-
tions . _ _

T’GT”T*BT*”J‘?”J(T(l""’l)T(l""’l)b) _ f,g,?(b)
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and - - -
¥ - 7~ 17"'71 17"'71 — 7~
BT QfEW(T( )7 ( )b) = ff TF(b).

By the homogeneous function theorem these types of homogeneity imply that

N 0), )
(+) fﬁﬂq are constant, fé(, )¢ are constant, fgﬁ(a ,,,,, @)yt (an

sibly be not zero for natural numbers a > 1 with |3| + |y| +ma < r,
and all other f’s are zero.

) may pos-

Hence A is determined by the values

m m 0

(%) <A(xﬁX7Y(1Md iz Ad™X)e, —8Y10>,
m mo 0

(**) <A(X9Yv(1(0)’g)d 1;(}/\dX X)@,m0>,

m ma 8
(***) <A((‘TﬁX,YY'(16+(a7"~7a)77+(a7"'7a)) + 1)d lx A d X)@7 aYl 0>

for all 3,7, 0 as above and natural numbers a > 1 with |3] + || + ma < 7,
or (equivalently) if the above values are zero then A = 0.

Let B, # 0 for some ig. We are going to use the invariance of A with
respect to the locally defined F M, my ny,n,-map

wig — (CCi,XI,yk, Yl + l‘iOY17Y27 o 7Yn2)—1
preserving z¢, X!, O, %0 and sending Y(lﬁm into Y(}@,y) + acioY(lﬁm +
Y(lﬁ_li0 ) (because we have
¥ho 0 T () G (0, X 0, 55))
= a(,@,'y) (21 + l‘iozl)(l'é, XOI)
= 05,7 2" (20, X0) + 2" 05,5 X (5, X5) + D1, & (20, X)
_ 1 7 1 1 -7,8,q i I k K
- (Y(ﬂ,v) +o OY(B,W) + Y(ﬁ—lioﬂ))(](zg,xg)(x , X007, 27),
where J(3 ) is the iterated partial derivative as indicated multiplied by B+M)
Using this invariance, from

d
—1; 1
<A(:cﬂ XY (5000 5y 1O> =0

(see (+)) it follows that (x) is zero if it is zero for 3 — 1; in place of f.
Continuing this procedure and a similar procedure with the F M, oy no-
morphism

vl = (2, X1,y v 4 Xyt v2 Ly

in place of 1% we see that (x) is zero if it is zero for 8 = (0) and v = (0).
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Similarly, (sx) is zero if it is zero for ¢ = (0). Similarly, (xxx) is zero if it is
zero for = (0) and v = (0).

Applying <A((Y(12a,“_,a70) +1)d™axANd™ X))o, %[ﬁ to the F Moy my no-
map id+ (0,...,0,21,0,...,0), where z! is in the mth position and where
(2a,a,...,a,0) € (NU{0})™ x (NU{0})™2, and using (+), since m > 2,
we see that the values (xxx) for § = (0) and v = (0) are zero.

Hence A is uniquely determined by the value

m m 8 Mp*xmm
<A(Y(1<0),(o)>d A d 2X)@’Wo>€/\ T;R™.

Therefore the vector space of all the A in question is 1-dimensional. This
ends the proof of Theorem 2. m

REMARK 5. In view of Remark 2 we note that Theorem 2 holds for
(r+s,2s,7 + p) in place of (2p, 2p, 2p).
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