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On the variational calculus in fibered-fibered manifolds

by W. M. Mikulski (Kraków)

Abstract. In this paper we extend the variational calculus to fibered-fibered man-
ifolds. Fibered-fibered manifolds are surjective fibered submersions π : Y → X between
fibered manifolds. For natural numbers s ≥ r ≤ q with r ≥ 1 we define (r, s, q)th or-
der Lagrangians on fibered-fibered manifolds π : Y → X as base-preserving morphisms
λ : Jr,s,qY →

∧dimX
T ∗X. Then similarly to the fibered manifold case we define crit-

ical fibered sections of Y . Setting p = max(q, s) we prove that there exists a canonical

“Euler” morphism E(λ) : Jr+s,2s,r+pY → V∗Y ⊗
∧dimX

T ∗X of λ satisfying a decompo-
sition property similar to the one in the fibered manifold case, and we deduce that critical
fibered sections σ are exactly the solutions of the “Euler–Lagrange” equations E(λ) ◦
jr+s,2s,r+pσ = 0. Next we study the naturality of the “Euler” morphism. We prove that
any natural operator of the “Euler” morphism type is cE(λ), c ∈ R, provided dimX ≥ 2.

0. Introduction. The most important problem in the variational cal-
culus is to characterize critical values. It is known that critical sections of
a fibered manifold p : X → X0 with respect to an rth order Lagrangian
λ : JrX →

∧dimX0 T ∗X0 can be characterized by means of the solutions
of the so-called Euler–Lagrange equations. There exists a unique Euler map
E(λ) : J2rX → V ∗X ⊗

∧dimX0 T ∗X0 satisfying some decomposition for-
mula. Then the Euler–Lagrange equations are E(λ)◦j2rσ = 0 with unknown
section σ (see [2]).

Fibered-fibered manifolds generalize fibered manifolds. They are surjec-
tive fibered submersions π : Y → X between fibered manifolds. They appear
naturally in differential geometry if we consider transverse natural bundles
over foliated manifolds in the sense of R. Wolak [4] (see [3]).

A simple example of a fibered-fibered manifold is the following trivial
fibered-fibered manifold. We consider four manifolds X1, X2, X3, X4. Then
the obvious projection π : X1×X2×X3×X4 → X1×X2 is a fibered-fibered
manifold (we consider X1 × X2 × X3 × X4 as the trivial fibered manifold
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over X1 ×X3 and X1 ×X2 as the trivial fibered manifold over X1). Taking
X1, X2, X3, X4 compact we produce compact fibered-fibered manifolds.
In [3], for fibered-fibered manifolds, using the concept of (r, s, q)-jets on

fibered manifolds [2], we extended the notion of r-jet prolongation bundle to
the (r, s, q)-jet prolongation bundle Jr,s,qY for r, s, q ∈ N \ {0}, s ≥ r ≤ q.
The purpose of the present paper is to construct the variational calculus

in fibered-fibered manifolds.
In Section 2 we define (r, s, q)th order Lagrangians as base-preserving

morphisms λ : Jr,s,qY →
∧dimX

T ∗X. Then similarly to the fibered mani-
fold case we define critical fibered sections of Y . Setting p = max(q, s) we
prove that there exists a canonical “Euler” morphism E(λ) : J2p,2p,2pY →

V∗Y ⊗
∧dimX

T ∗X of λ satisfying a decomposition property similar to the
one in the fibered manifold case, where VY ⊂ TY is the vector subbundle
of vectors vertical with respect to two obvious projections from Y (onto
X and onto Y0). Then we deduce that critical fibered sections σ are ex-
actly the solutions of the “Euler–Lagrange” equations E(λ) ◦ j2p,2p,2pσ = 0.
Next we observe that E(λ) can be factorized through Jr+s,2s,r+pY and the
“Euler–Lagrange” equations are in fact of the form E(λ) ◦ jr+s,2s,r+pσ = 0.

Section 1 provides some background on the variational calculus in fibered
manifolds.
In [1], I. Kolář studied the naturality of the Euler operator E(λ) on

fibered manifolds. He showed that any natural operator of the Euler operator
type is of the form cE(λ), c ∈ R, provided dimX0 ≥ 2.

In Section 3 we study the naturality of the “Euler” operator E(λ) on
fibered-fibered manifolds. We prove that any natural operator of the “Euler”
operator type is of the form cE(λ), c ∈ R, provided dimX ≥ 2.
A 2-fibered manifold is a sequence of two surjective submersions X →

X1 → X0. For example, given a fibered manifold X →M we have 2-fibered
manifolds TX → X → M , T ∗X → X → M , JrX → X → M , etc. Every
2-fibered manifold X → X1 → X0 can be considered as the fibered-fibered
manifold X → X1, where we consider X as the fibered manifold X → X0
and X1 as the fibered manifold X1 → X0. So, the results of the paper can be
obviously applied to produce the variational calculus on 2-fibered manifolds.

A fibered manifold X → X0 can be considered as the 2-fibered manifold
X → X0 → pt with the one-point manifold pt. So, we recover the known
variational calculus on fibered manifolds.
All manifolds and maps are assumed to be of class C∞.

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion p : X → X0 between
manifolds. If p′ : X ′→X ′0 is another fibered manifold then a map f : X→X ′
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is called fibered if there exist a (unique) map f0 : X0 → X ′0 such that
p′ ◦ f = f0 ◦ p.
Denote the set of (local) sections of p by ΓX. The r-jet prolongation

JrX = {jrx0σ | σ ∈ ΓX, x0 ∈ X0}

of X is a fibered manifold over X0 with respect to the source projection
pr : JrX → X0. If p

′ : X ′ → X ′0 is another fibered manifold and f : X0 → X ′

is a fibered map covering a local diffeomorphism f0 : X0 → X ′0 then we have
Jrf : JrX → JrX ′ given by Jrf(jrxσ) = j

r
f0(x)
(f ◦ σ ◦ f−10 ) for j

r
xσ ∈ J

rX.

1.2. Let p : X → X0 be as above. A vector field V on X is projectable
if there exists a vector field V0 on X0 such that V is p-related to V0. If V is
projectable on X, then its flow Exp tV is formed by local fibered diffeomor-
phisms, and we can define a vector field

J rV =
∂

∂t |t=0
Jr(Exp tV )

on JrX. If V is p-vertical (i.e. V0 = 0), then J
rV is pr-vertical.

1.3. An rth order Lagrangian on a fibered manifold p : X → X0 with
dimX0 = m is a base-preserving morphism

λ : JrX →
∧m

T ∗X0.

Given a section σ ∈ ΓX and a compact subset K ⊂ dom(σ) contained in a
chart domain, the action is

S(λ, σ,K) =
\
K

λ ◦ jrσ.

A section σ ∈ ΓX is called critical if for any compactK ⊂ dom(σ) contained
in a chart domain and any p-vertical vector field η on X with compact
support in p−1(K) we have

d

dt |t=0
S(λ,Exp tη ◦ σ,K) = 0.

By derivation inside the integral we see that σ is critical iff for any compact
K ⊂ dom(σ) contained in a chart domain and any p-vertical vector field η
on X with compact support in p−1(K) we have\

K

〈δλ,J rη〉 ◦ jrσ = 0,

where δλ : V JrX →
∧m

T ∗X0 is the p
r-vertical part of the differential of λ.

1.4. Given a base-preserving morphism ϕ : JqX →
∧k

T ∗X0, its formal

exterior differential Dϕ : Jq+1X →
∧k+1

T ∗X0 is defined by

Dϕ(jq+1x0 σ) = d(ϕ ◦ jqσ)(x0)
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for every local section σ of X, where d means the exterior differential at
x0 ∈ X0 of the local k-form ϕ ◦ jqσ on X0.

1.5. In the following assertion we do not indicate explicitly the pull back
to J2rX.

Proposition 1 ([2, Prop. 49.3]). For every rth order Lagrangian λ :
JrX →

∧m
T ∗X0, m = dimX0, there exists a morphism K(λ) : J2r−1X

→ V ∗Jr−1X ⊗
∧m−1

T ∗X0 over the identity of J
r−1X and a unique Euler

morphism E(λ) : J2rX → V ∗X⊗
∧m

T ∗X0 over the identity of X such that

(1) 〈δλ,J rη〉 = D(〈K(λ),J r−1η〉) + 〈E(λ), η〉

for any vertical vector field η on X.

Remark 1. The morphism E(λ) is called the Euler morphism. If f :
JqX → R is a function, we have a coordinate decomposition

Df = (Dif)dx
i,

where

Dif =
∂f

∂xi
+
∑

|α|≤q

∂f

∂ypα
ypα+1i : J

q+1X → R

is the so-called formal (or total) derivative of f and (xi, yk) are fiber coor-
dinates on X and (xi, ykα) are the induced coordinates on J

qX. The local
coordinate form of E(λ) is

E(λ) =
n∑

k=1

∑

|α|≤r

(−1)|α|Dα
∂L

∂ykα
dyk ⊗ dmx

(see the proof of Proposition 49.3 in [2]), where dmx = dx1 ∧ · · · ∧ dxm,
λ = L ⊗ dmx and Dα means the iterated formal derivative with respect to
the multiindex α.

Proposition 1 yields immediately the following well known fact.

Proposition 2. A section σ ∈ ΓX is critical iff it satisfies the Euler–
Lagrange equations E(λ) ◦ j2rσ = 0.

2. The variational calculus in fibered-fibered manifolds

2.1. In [3], we generalized the concept of fibered manifolds as follows.
A fibered-fibered manifold is a fibered surjective submersion π : Y → X
between fibered manifolds pY : Y → Y0 and p

X : X → X0, i.e. a surjec-
tive submersion which sends fibers into fibers such that the restricted maps
(between fibers) are submersions. If π′ : Y ′ → X ′ is another fibered-fibered
manifold then a fibered map f : Y → Y ′ is called fibered-fibered if there
exists a (unique) fibered map f0 : X → X ′ such that π′ ◦ f = f0 ◦ π.
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Let r, s, q ∈ N \ {0}, s ≥ r ≤ q.

Denote the set of local fibered maps σ : X → Y with π ◦ σ = iddom(σ)
(fibered sections) by ΓfibY . By 12.19 in [1], σ, ̺ ∈ ΓfibY represent the same
(r, s, q)-jet jr,s,qx σ = jr,s,qx ̺ at a point x ∈ X iff

jrxσ = j
r
x̺, jsx(σ|Xx0) = j

s
x(̺|Xx0), jqx0σ0 = j

q
x0
̺0,

where X0 and Y0 are the bases of fibered manifolds X and Y , x0 ∈ X0 is
the element under x, Xx0 is the fiber of X over x0 and σ0, ̺0 : X0 → Y0 are
the underlying maps of σ, ̺. The (r, s, q)-jet prolongation

Jr,s,qY = {jr,s,qx σ | σ ∈ ΓfibY, x ∈ X}

of Y is a fibered manifold over X with respect to the source projection
πr,s,qX : Jr,s,qY → X (see [3]). We also have the target projection πr,s,qY :
Jr,s,qY → Y . If π′ : Y ′ → X ′ is another fibered-fibered manifold and f :
Y → Y ′ is a fibered-fibered map covering a local fibered diffeomorphism
f0 : X → X ′ then we have a map Jr,s,qf : Jr,s,qY → Jr,s,qY ′ given by
Jr,s,qf(jr,s,qx σ) = jr,s,q

f0(x)
(f ◦ σ ◦ f−10 ) for any j

r,s,q
x σ ∈ Jr,s,qY .

2.2. Let π : Y → X be a fibered-fibered manifold which is a fibered sub-
mersion between fibered manifolds pY : Y → Y0 and p

X : X → X0. A pro-
jectable vector field W on the fibered manifold Y is projectable-projectable
if there exists a π-related (to W ) projectable vector field W on X. If W
is projectable-projectable on Y , then its flow Exp tW is formed by local
fibered-fibered diffeomorphisms, and we define a vector field

J r,s,qW =
∂

∂t |t=0
Jr,s,q(Exp tW )

on Jr,s,qY . If additionally W is π-vertical and pY -vertical (i.e. W is π-
related and pY -related to zero vector fields), then J r,s,qW is πr,s,qX -vertical
and pY ◦ πr,s,qY -vertical.

2.3. Let r, s, q be as above. An (r, s, q)th order Lagrangian on a fibered-
fibered manifold π : Y → X with dimX = m is a base-preserving (covering
the identity of X) morphism

λ : Jr,s,qY →
∧m

T ∗X.

Given a fibered section σ ∈ ΓfibY and a compact subset K ⊂ dom(σ) ⊂ X
contained in a chart domain, the action is

S(λ, σ,K) =
\
K

λ ◦ jr,s,qσ.

A fibered section σ ∈ ΓfibY is called critical (with respect to λ) if for any
compact K ⊂ dom(σ) contained in a chart domain and any π-vertical and
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pY -vertical vector field η on Y with compact support in π−1(K) we have

d

dt |t=0
S(λ,Exp tη ◦ σ,K) = 0.

By derivation inside the integral we see that σ is critical iff for any compact
K ⊂ dom(σ) contained in a chart domain and any π-vertical and pY -vertical
vector field η on Y with compact support in π−1(K) we have\

〈δλ,J r,s,qη〉jr,s,qσ = 0,

where δλ : VJr,s,qX →
∧m

T ∗X is the restriction of the differential of λ to
the vector subbundle VJr,s,q ⊂ TJr,sqY of vectors vertical with respect to
the projections from Jr,s,qY onto X and onto Y0.

2.4. Given a base-preserving morphism ϕ : J p̃,p̃,p̃Y →
∧k

T ∗X, its for-

mal exterior differential Dϕ : J p̃+1,p̃+1,p̃+1Y →
∧k+1

T ∗X is defined by

Dϕ(jp̃+1,p̃+1,p̃+1x σ) = d(ϕ ◦ jp̃,p̃,p̃σ)(x)

for every local fibered section σ of Y , where d means the exterior differential
at x ∈ X of the local k-form ϕ ◦ jp̃,p̃,p̃σ on X.
(We remark that if s̃ > r̃ ≤ q̃ then given a base-preserving morphism ϕ :

J r̃,s̃,q̃Y →
∧k

T ∗X the value d(ϕ ◦ j r̃,s̃,q̃σ)(x) is usually not determined by
jr̃+1,s̃+1,q̃+1x σ. Then the corresponding formal exterior differential does not
exist. One can see that the above-mentioned value depends on jp̃+1,p̃+1,p̃+1x σ
for p̃ = max(s̃, q̃), but the relevant formal exterior differential will not be
used.)

2.5. In the following assertion we do not indicate explicitly the pull back
to J2p,2p,2pY .

Proposition 3. Let r, s, q be natural numbers with s ≥ r ≤ q, r ≥ 1,
p = max(q, s). For every (r, s, q)th order Lagrangian λ : Jr,s,qY →

∧m
T ∗X,

there are a morphism K(λ) : J2p−1,2p−1,2p−1Y → V∗Jp−1,p−1,p−1Y ⊗∧m−1
T ∗X over the identity of Jp−1,p−1,p−1Y and a canonical “Euler” mor-

phism E(λ) : J2p,2p,2pY → V∗Y ⊗
∧m

T ∗X over the identity of Y satisfying

(2) 〈δλ,J r,s,qη〉 = D(〈K(λ),J p−1,p−1,p−1η〉) + 〈E(λ), η〉

for every π-vertical and pY -vertical vector field η on Y . Here VY is the
vector subbundle of TY of vectors that are π-vertical and pY -vertical , and
VJp−1,p−1,p−1Y is the vector subbundle of TJp−1,p−1,p−1Y of vectors verti-
cal with respect to the obvious projections from Jp−1,p−1,p−1Y onto X and
onto Y0.

Proof. Let πp,p,pr,s,q : J
p,p,pY → Jr,s,qY be the jet projection and let

ip : J
p,p,pY → JpY be the canonical inclusion, where in JpY we con-

sider Y as a fibered manifold over X. Using a suitable partition of unity
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on X and local fibered-fibered coordinate arguments we produce a pth
order Lagrangian Λ : JpY →

∧m
T ∗X such that Λ ◦ ip = λ ◦ πp,p,pr,s,q .

Then by the decomposition formula (Proposition 1) there exists a mor-

phism K(Λ) : J2p−1Y → V ∗Jp−1Y ⊗
∧m−1

T ∗X and the Euler morphism
E(Λ) : J2pX → V ∗Y ⊗

∧m
T ∗X satisfying

〈δΛ,J pη〉 = D(〈K(Λ),J p−1η〉) + 〈E(Λ), η〉

for every π-vertical vector field η on Y . Composing both sides of the last
formula with i2p and using the obvious equality D(ϕ) ◦ i2p = D(ϕ ◦ i2p−1)

for ϕ : J2p−1Y →
∧k

T ∗X we easily obtain (2) for any π-vertical and pY -
vertical vector field η on Y , provided we put E(λ) = the restriction of E(Λ)◦
i2p to VY and K(λ) = the restriction of K(Λ) ◦ i2p−1 to VJ

p−1,p−1,p−1Y ⊂
V Jp−1Y . Using Remark 1 it is easy to see (see Remark 2) that the definition
of E(λ) does not depend on the choice of Λ.

Remark 2. Let (xi, XI , yk, Y K) for i = 1, . . . ,m1, I = 1, . . . ,m2, k =
1, . . . , n1 and K = 1, . . . , n2 be a fibered-fibered local coordinate system on
a fibered-fibered manifold Y . If f : J p̃,p̃,p̃Y → R is a function we have the
decomposition

D(f) = Di(f)dx
i +DI(f)dX

I ,

where Di(f) : J
p̃+1,p̃+1,p̃+1Y → R and DI(f) : J

p̃+1,p̃+1,p̃+1Y → R are the
“total” derivatives of f . Let F : J p̃Y → R be such that F ◦ ip̃ = f . From
the clear equality D(F ) ◦ ip̃+1 = D(f) we easily deduce that

Di(f) = Di(F ) ◦ ip̃+1 and DI(f) = DI(F ) ◦ ip̃+1.

In particular, since Di and DI , and Di′ and DI′ , commute, so do Di and DI ,
and Di′ and DI′ . From the formulas for Di and DI (see Remark 1) and from
the above formulas for Di and DI we easily see that in local coordinates

Di(f) =
∂f

∂xi
+

n1∑

k=1

∑

|α̃|≤p̃

∂f

∂ykα̃
ykα̃+1i +

n2∑

K=1

∑

|β̃|+|γ̃|≤p̃

∂f

∂Y K
(β̃,γ̃)

Y K
(β̃+1i,γ̃)

and

DI(f) =
∂f

∂XI
+

n2∑

K=1

∑

|β̃|+|γ̃|≤p̃

∂f

∂Y K
(β̃,γ̃)

Y K
(β̃,γ̃+1I)

,

where (xi, XI , ykα̃, Y
K

(β̃,γ̃)
) is the induced coordinate system on J p̃,p̃,p̃Y , α̃ =

(α̃1, . . . , α̃m1), β̃ = (β̃1, . . . , β̃m1) and γ̃ = (γ̃1, . . . , γ̃m2).

Let (xi, XI , ykα, Y
K
(β,γ)) be the induced coordinates on J

p,p,pY . Then using
the formula of Remark 1 it is easy to see that the local coordinate form of
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E(λ) is

E(λ) =

n2∑

K=1

∑

|β|+|γ|≤p

(−1)|β|+|γ|D(β,γ)
∂L

∂Y K(β,γ)
dY K ⊗ (dm1x ∧ dm2X),

where dm1x = dx1 ∧ · · · ∧ dxm1 , dm2X = dX1 ∧ · · · ∧ dXm2 , λ ◦ πp,p,pr,s,q =
L ⊗ (dm1 ∧ dm2X) and D(β,γ) denotes the iterated “total” derivative with
index (β, γ), β = (β1, . . . , βm1), γ = (γ1, . . . , γm2).
From the above local formula it follows that E(λ) can be factorized

through Jr+s,2s,r+pY .

Proposition 3 implies the following fact.

Proposition 4. A fibered section σ ∈ ΓfibY is critical iff it satisfies the
“Euler–Lagrange” equations E(λ)◦j2p,2p,2pσ = 0. In view of Remark 2 these
equations are E(λ) ◦ jr+s,2s,r+pσ = 0.

Remark 3. In the proof of Proposition 4 we use the fact that if η is a
π-vertical and pY -vertical vector field on Y and f : X → R is a map with
compact support then (f ◦ π)η is π-vertical and pY -vertical. If η is only
π-vertical projectable-projectable then (f ◦ π)η may not be projectable-
projectable. That is why in the definition of critical fibered sections we
consider the η’s which are π-vertical and pY -vertical.

3. On naturality of the “Euler” operator. We say that a fibered
manifold p : X → X0 is of dimension (m,n) if dimX0 = m and dimX =
m+ n. All (m,n)-dimensional fibered manifolds and their local fibered dif-
feomorphisms form a category which we denote by FMm,n and which is
local and admissible in the sense of [2].
Similarly, we say that a fibered-fibered manifold π : Y → X is of dimen-

sion (m1,m2, n1, n2) if the fibered manifold X is of dimension (m1, n1) and
the fibered manifoldY is of dimension (m1+n1,m2+n2). All (m1,m2, n1, n2)-
dimensional fibered-fibered manifolds and their fibered-fibered local diffeo-
morphisms form a category which we denote by FMm1,m2,n1,n2 and which
is local and admissible in the sense of [2]. The standard (m1,m2, n1, n2)-
dimensional trivial fibered-fibered manifold π : Rm1 × R

m2 × R
n1 × R

n2 →
R
m1 × R

m2 will be denoted by R
m1,m2,n1,n2 . Any (m1,m2, n1, n2)-dim-

ensional fibered-fibered manifold is locally FMm1,m2,n1,n2 -isomorphic to
R
m1,m2,n1,n2 .
Given two fibered manifolds Z1 → M and Z2 → M over the same

base M , we denote the space of all base-preserving fibered manifold mor-
phisms of Z1 into Z2 by C

∞
M (Z1, Z2). In [1], I. Kolář studied the rth order

Euler morphism E(λ) of the variational calculus on an (m,n)-dimensional
fibered manifold p : X → X0 as the Euler operator

E : C∞X0(J
rX,
∧m

T ∗X0)→ C
∞
X (J

2rX,V ∗X ⊗
∧m

T ∗X0).
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He deduced the following classification theorem:

Theorem 1 ([1]). Any FMm,n-natural operator (in the sense of [2]) of
the type of the Euler operator is of the form cE, c ∈ R, provided m ≥ 2.

In the present section we obtain a similar result in the fibered-fibered
manifold case. Namely, we study the “Euler” morphism E(λ) of the varia-
tional calculus on an (m1,m2, n1, n2)-dimensional fibered-fibered manifold
π : Y → X as the “Euler” operator

E : C∞X (J
r,s,qY,

∧m
T ∗X)→ C∞Y (J

2p,2p,2pY,V∗Y ⊗
∧m

T ∗X).

Here and from now on s ≥ r ≤ q are natural numbers, r ≥ 1, p = max(s, q)
and m = m1 +m2 = dimX. We prove the following classification theorem.

Theorem 2. Any FMm1,m2,n1,n2-natural operator A (in the sense
of [2]) of the type of the “Euler” operator is of the form cE , c ∈ R, provided
m ≥ 2.

Remark 4. The assumption of the last theorem means that for any
FMm1,m2,n1,n2-morphism f : Y → Y ′ and any (r, s, q)th order Lagrangians
λ ∈ C∞X (J

r,s,qY,
∧m

T ∗X) and λ′ ∈ C∞X′(J
r,s,qY ′,

∧m
T ∗X ′), if λ and λ′ are

f -related then so are A(λ) and A(λ′). Moreover A is regular and local. The
regularity means that A transforms any smoothly parametrized family of La-
grangians into a smoothly parametrized family of suitable type morphisms.
The locality means that A(λ)u depends on the germ of λ at π

2p,2p,2p
r,s,q (u).

Proof of Theorem 2. From now on let (xi, XI , yk, Y K), i = 1, . . . ,m1,
I = 1, . . . ,m2, k = 1, . . . , n1, K = 1, . . . , n2, be the usual fibered-fibered
coordinates on R

m1,m2,n1,n2 .
An FMm1,m2,n1,n2 -morphism (x

i, XI , yk − σ
k(xi

′

), Y K −ΣK(xi
′

, XI
′

))

sends j2p,2p,2p(0,0) (xi, XI , σk, ΣK) into

Θ = j2p,2p,2p(0,0) (xi, XI , 0, 0) ∈ (J2p,2p,2pRm1,m2,n1,n2)(0,0,0,0).

Then A is uniquely determined by the evaluations

〈A(λ)Θ, v〉 ∈
∧m

T ∗0R
m

for all λ ∈ C∞
Rm1×Rm2

(Jr,s,qRm1,m2,n1,n2 ,
∧m

T ∗Rm) and v ∈ T0R
n2 =

V(0,0,0,0)R
m1,m2,n1,n2 .

Using the invariance of A with respect to FMm1,m2,n1,n2 -morphisms of
the form idRm × idRn1 ×ψ for linear ψ : R

n2 → R
n2 we see that A is uniquely

determined by the evaluations
〈
A(λ)Θ,

∂

∂Y 1 0

〉
∈
∧m

T ∗0R
m

for all λ ∈ C∞
Rm1×Rm2

(Jr,s,qRm1,m2,n1,n2 ,
∧m

T ∗0R
m).
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Consider an arbitrary non-vanishing f : Rm → R. There is F : Rm → R

such that ∂F/∂X1 = f and F (0) = 0. Then the FMm1,m2,n1,n2-map

(x1, . . . , xm1 , F,X2, . . . , Xm2 , y1, . . . , yn1 , Y 1, . . . , Y n2)

preserves Θ, ∂
∂Y 1 0

and sends germ0(fd
m1x ∧ dm2X) into germ0(d

m1x ∧
dm2X), where dm1x and dm2X are as in Remark 2. Then by naturality
A is uniquely determined by the evaluations

〈
A(λ+ bdm1x ∧ dm2X)Θ,

∂

∂Y 1 0

〉
∈
∧m

T ∗0R
m

for all λ ∈ C∞
Rm1×Rm2

(Jr,s,qRm1,m2,n2,n2 ,
∧m

T ∗Rm) satisfying the condition

λ(jr,s,q(x0,X0)
(xi, XI , 0)) = 0 for any (x0, X0) ∈ R

m1,m2 and all b ∈ R.

Let λ and b be as above. Using the invariance of A with respect to
FMm1,m2,n1,n2-maps ψτ,T =

(
xi, XI , 1

τk
yk, 1
T K

Y K
)
for τk > 0 and T K > 0

we get the homogeneity condition
〈
A((ψτ,T )∗λ+ bd

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉

= T 1
〈
A(λ+ bdm1x ∧ dm2X)Θ,

∂

∂Y 1 0

〉
.

By Corollary 19.8 in [2] of the non-linear Peetre theorem we can assume
that λ is a polynomial. The regularity of A implies that 〈A(λ + bdm1x ∧
dm2X)Θ,

∂
∂Y 1 0
〉 is smooth in the coordinates of λ and b. Then by the homo-

geneous function theorem (and the above type of homogeneity) we deduce
that 〈A(λ+bdm1x∧dm2X)Θ,

∂
∂Y 1 0
〉 is a linear combination of the coordinates

of λ on all xβ̃X γ̃Y 1(β,γ)d
m1x∧dm2X and xβ̃X γ̃Y 1((0),̺)d

m1x∧dm2X with coef-

ficients being smooth functions in b, where (xi, XI , ykα, Y
K
(β,γ), Y

K
((0),̺)) is the

induced coordinate system on Jr,s,qRm1,m2,n1,n2 . (Here and from now on,
α and β are m1-tuples, and γ and ̺ are m2-tuples with |α| ≤ q, |β|+ |γ| ≤ r
and r + 1 ≤ |̺| ≤ s.) In other words, A is determined by the values
〈
A((axβ̃X γ̃Y 1(β,γ) + b)d

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉
= af β̃,γ̃β,γ (b)d

m1x ∧ dm2X

and〈
A((axβ̃X γ̃Y 1((0),̺) + b)d

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉
= af β̃,γ̺̃ (b)d

m1x ∧ dm2X

for all a, b ∈ R, all m1-tuples β̃, all m2-tuples γ̃ and all β, γ, ̺ as above.
By the invariance of A with respect to FMm1,m2,n1,n2-maps of the form

(τ ixi, T IXI , yk, Y K) for τ i 6= 0 and T I 6= 0 we get the homogeneity condi-
tions

τ β̃T γ̃τ−βT −γf β̃,γ̃β,γ (τ
(1,...,1)T (1,...,1)b) = f β̃,γ̃β,γ (b)
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and

τ β̃T γ̃T −̺f β̃,γ̺̃ (τ
(1,...,1)T (1,...,1)b) = f β̃,γ̺̃ f(b).

By the homogeneous function theorem these types of homogeneity imply that

(+) fβ,γβ,γ are constant, f
(0),̺
̺ are constant, fβ,γ

β+(a,...,a),γ+(a,...,a) may pos-

sibly be not zero for natural numbers a ≥ 1 with |β|+ |γ|+ma ≤ r,
and all other f ’s are zero.

Hence A is determined by the values
〈
A(xβXγY 1(β,γ)d

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉
,(∗)

〈
A(X̺Y 1((0),̺)d

m1x ∧ dXm2X)Θ,
∂

∂Y 1 0

〉
,(∗∗)

〈
A((xβXγY 1(β+(a,...,a),γ+(a,...,a)) + 1)d

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉
(∗∗∗)

for all β, γ, ̺ as above and natural numbers a ≥ 1 with |β|+ |γ|+ma ≤ r,
or (equivalently) if the above values are zero then A = 0.

Let βi0 6= 0 for some i0. We are going to use the invariance of A with
respect to the locally defined FMm1,m2,n1,n2 -map

ψi0 = (xi, XI , yk, Y 1 + xi0Y 1, Y 2, . . . , Y n2)−1

preserving xi, XI , Θ, ∂
∂Y 1 0

and sending Y 1(β,γ) into Y
1
(β,γ) + xi0Y 1(β,γ) +

Y 1(β−1i0 ,γ)
(because we have

Y 1(β,γ) ◦ J
r,s,q((ψi0)−1)(jr,s,q

(xi
0
,XI
0
)
(xi, XI , σk, ΣK))

= ∂(β,γ)(Σ
1 + xi0Σ1)(xi0, X

I
0 )

= ∂(β,γ)Σ
1(xi0, X

I
0 ) + x

i0∂(β,γ)Σ
1(xi0, X

I
0 ) + ∂(β−1i0 ,γ)Σ

1(xi0, X
I
0 )

= (Y 1(β,γ) + x
i0Y 1(β,γ) + Y

1
(β−1i0 ,γ)

)(jr,s,q
(xi
0
,XI
0
)
(xi, XI , σk, ΣK)),

where ∂(β,γ) is the iterated partial derivative as indicated multiplied by
1
β!γ! ).

Using this invariance, from
〈
A(xβ−1i0XγY 1(β,γ))Θ,

∂

∂Y 1 0

〉
= 0

(see (+)) it follows that (∗) is zero if it is zero for β − 1i in place of β.
Continuing this procedure and a similar procedure with the FMm1,m2,n1,n2-
morphism

ΨI0 = (xi, XI , yk, Y 1 +XI0Y 1, Y 2, . . . , Y n2)−1

in place of ψi0 we see that (∗) is zero if it is zero for β = (0) and γ = (0).
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Similarly, (∗∗) is zero if it is zero for ̺ = (0). Similarly, (∗∗∗) is zero if it is
zero for β = (0) and γ = (0).
Applying 〈A((Y 1(2a,...,a,0)+1)d

m1x∧dm2X)Θ,
∂,
∂Y 1 0
〉 to the FMm1,m2,n2-

map id+ (0, . . . , 0, x1, 0, . . . , 0), where x1 is in the mth position and where
(2a, a, . . . , a, 0) ∈ (N ∪ {0})m1 × (N ∪ {0})m2 , and using (+), since m ≥ 2,
we see that the values (∗∗∗) for β = (0) and γ = (0) are zero.
Hence A is uniquely determined by the value

〈
A(Y 1((0),(0))d

m1x ∧ dm2X)Θ,
∂

∂Y 1 0

〉
∈
∧m

T ∗0R
m.

Therefore the vector space of all the A in question is 1-dimensional. This
ends the proof of Theorem 2.

Remark 5. In view of Remark 2 we note that Theorem 2 holds for
(r + s, 2s, r + p) in place of (2p, 2p, 2p).
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