
ANNALES

POLONICI MATHEMATICI

89.1 (2006)

On a kth-order differential equation

by Xiao-Min Li and Cun-Chen Gao (Qingdao)

Abstract. We prove a theorem on the growth of a solution of a kth-order linear
differential equation. From this we obtain some uniqueness theorems. Our results improve
several known results. Some examples show that the results are best possible.

1. Introduction and main results. In this paper, by meromorphic
function we shall always mean a meromorphic function in the complex plane.
We adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [5], [7], [11]. It will be convenient to let E denote
any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For any nonconstant meromorphic function h(z),
we denote by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions and let a be a
finite complex number. We say that f and g share the value a CM provided
that f − a and g − a have the same zeros with the same multiplicities.
Similarly, we say that f and g share the value a IM provided that f −a and
g− a have the same zeros ignoring multiplicities. In addition, we say that f
and g share ∞ CM if 1/f and 1/g share the value 0 CM, and we say that f
and g share ∞ IM if f and g share the value 0 IM (see [13]). In this paper,
we also need the following two definitions.

Definition 1.1. Let f be a nonconstant entire function. The order of f,
denoted σ(f), is defined by

σ(f) = lim sup
r→∞

log T (r, f)

log r
= lim sup

r→∞

log logM(r, f)

log r
,

where M(r, f) = max|z|=r{|f(z)|}.
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Definition 1.2. Let f be a non-constant meromorphic function. The
hyper-order of f, denoted ν(f), is defined by

ν(f) = lim sup
r→∞

log log T (r, f)

log r
.

In 1977, L. A. Rubel and C. C. Yang proved the following theorem.

Theorem A (see [9]). Let f be a nonconstant entire function. If f and
f ′ share two finite distinct values CM , then f ≡ f ′.

In 1996, R. Brück proved the following theorems.

Theorem B (see [1]). Let f be a nonconstant entire function satisfying
ν(f) <∞, where ν(f) is not a positive integer. If f and f ′ share the value
0 CM , then f ≡ cf ′ for some constant c 6= 0.

Theorem C (see [1]). Let f be a nonconstant entire function. If f and
f ′ share the value 1 CM , and if N(r, 1/f ′) = S(r, f), then f − 1 ≡ c(f ′− 1)
for some constant c 6= 0.

Brück made the following conjecture.

Conjecture 1.1 (see [1]). Let f be a nonconstant entire function sat-
isfying ν(f) <∞, where ν(f) is not a positive integer. If f and f ′ share one
finite value a CM, then f − a ≡ c(f ′ − a) for some constant c 6= 0.

Regarding Conjecture 1.1, a natural question is:

Question 1.1 (see [12, Question 1]). What can be said when a noncon-
stant entire function f shares one finite value a with one of its derivatives
f (k) (k ≥ 1)?

Consider the differential equation

(1.1) F (k) − eQ(z)F = 1,

where k is a positive integer, and Q(z) is an entire function.
Regarding Question 1.1, in 1999, Lian-Zhong Yang proved the following

results for a 6= 0 under the additional assumption σ(f) <∞.

Theorem D (see [12, Theorem 1]). Let Q(z) be a nonconstant polyno-
mial and k be a positive integer. Then every solution F of (1.1) is an entire
function of infinite order.

Theorem E (see [12, Theorem 2]). Let f be a nonconstant entire func-
tion of finite order , and let a 6= 0 be a finite constant. If f and f (k) share
one finite value a CM , where k is a positive integer , then f−a ≡ c(f (k)−a)
for some constant c 6= 0.

In this paper, we shall prove the following results, which improve and
supplement Theorems D and E.
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Theorem 1.1. Let Q(z) be a polynomial. If F is a solution of (1.1),
then ν(F ) = γQ, where γQ is the degree of Q(z).

From Theorem 1.1 we easily obtain the following two corollaries.

Corollary 1.1. Let Q(z) be a polynomial. If F is a solution of (1.1)
such that σ(F ) =∞, then Q(z) is a nonconstant polynomial and ν(F ) = γQ,
where γQ is the degree of Q(z).

Corollary 1.2. Let Q(z) be a polynomial , let a 6= 0 be a complex
number , and let k be a positive integer. If f is a solution of the differential
equation

(1.2)
f (k) − a

f − a
= eQ(z)

such that ν(f) is not a positive integer , then f − a ≡ c(f (k) − a) for some
constant c 6= 0.

Proof of Corollary 1.2. Let

(1.3) f/a− 1 = F.

From (1.2) and (1.3) we easily get (1.1). From (1.1), (1.3) and Theorem 1.1
we obtain the conclusion of Corollary 1.2.

Corollary 1.2 implies the following result.

Corollary 1.3. Let f be a nonconstant entire function such that σ(f)
< ∞, and let a ( 6= 0) be a complex number. If f and f (k) share the value
a CM , where k is a positive integer , then f − a ≡ c(f (k) − a) for some
constant c 6= 0.

From Theorem 1.1 we also get the following result on the growth of a
nonconstant solution of a (k + 1)th order linear differential equation.

Corollary 1.4. If F is a nonconstant solution of the differential equa-
tion

(1.4) F (k+1) − eQ(z)F ′ −Q′(z)eQ(z)F = 0,

where k is a positive integer and Q(z) is a polynomial , then ν(F ) = γQ,
where γQ is the degree of Q(z).

Proof. Since F is a nonzero solution of (1.4), we easily deduce that

(1.5) F (k) − eQ(z)F = c,

where c is a complex constant. We discuss the following two cases.

Case 1. Suppose that c = 0. Then the conclusion of Corollary 1.4 is
obvious.
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Case 2. Suppose that

(1.6) c 6= 0.

From (1.5) and (1.6) we get

(1.7)

(

F

c

)(k)

− eQ(z)
F

c
= 1.

From (1.7) and Theorem 1.1 we deduce the conclusion of Corollary 1.4.

Now we give the following two examples.

Example 1.1 (see [4]). Let f be a solution of the differential equation

f ′ − 1

f − 1
= ez

n

,

where n is a positive integer. Then f is a nonconstant entire function such
that f and f ′ share the value 1 CM. Moreover, in the same manner as in the
proof of Theorem 1.1 we can verify that ν(f) = σ(ez

n

) = n. This example
shows that the situation of Theorem 1.1 and that of Corollary 1.1 can occur.
It also shows that the condition “ν(f) is not a positive integer” in Corollary
1.2 is best possible.

Example 1.2 (see [4]). Let

f(z) =
2ez + z + 1

ez + 1
.

Then f is a nonconstant meromorphic function, but not an entire function.
Moreover, it is easily verified that σ(f) = 1 and ν(f) = 0, and that f and
f ′ share the value 1 CM. However,

f ′(z)− 1

f(z)− 1
= −

ez

ez + 1
.

This example shows that the conclusions of Corollaries 1.2 and 1.3 are invalid
if f is not an entire function.

The following three corollaries follow from Corollary 1.2; they improve
several results of Lian-Zhong Yang [12].

Corollary 1.5. Let Q(z) be a polynomial , and let a ( 6= 0) be a complex
number. If f is a solution of the differential equation (1.2) such that ν(f)
is not a positive integer , and if there exists a point z0 such that f

(k)(z0) =
f(z0) 6= a, then f ≡ f

(k).

Corollary 1.6. Let Q(z) be a polynomial , and let a ( 6= 0) and b ( 6= 0)
be distinct complex numbers. If f is a solution of the differential equation
(1.2) such that ν(f) is not a positive integer , and if f and f (k) share the
value b IM , then f ≡ f (k).
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Proof of Corollary 1.6. Since f and f (k) share the value b ( 6= 0) IM, by
Hayman’s inequality (see [5, Theorem 3.5]) there exists a point z0 such that
f (k)(z0) = f(z0) = b. Since a 6= b, Corollary 1.5 yields the conclusion of
Corollary 1.6.

Corollary 1.7. Let Q(z) be a polynomial , let a ( 6= 0) be a complex
number , and let n be a positive integer. If f is a solution of the differential
equation (1.2) such that ν(f) is not a positive integer , and if there exists a
point z0 such that f

(n)(z0) = f
(n+k)(z0) 6= 0, then f ≡ f

(k).

In 1995, H. X. Yi and C. C. Yang posed the following question named
the question of Yi and Yang.

Question 1.2 (see [13, pp. 458]). Let f be a nonconstant meromorphic
function, and let a be a nonzero complex constant. If f, f (n) and f (m) share
the value a CM , where n and m (n < m) are positive integers of different
parity , can we infer that f ≡ f (n)?

In this paper, we shall prove the following theorem.

Theorem 1.2. Let Q(z) be a polynomial , let a ( 6= 0) be a complex num-
ber , and let n and k be two positive integers. If f is a solution of the differ-
ential equation

(1.8)
f (n+k) − a

f (n) − a
= eQ(z),

where ν(f) is not a positive integer , and if the value a is shared by f and
f (n) CM , then there exist complex constants λj ( 6= 0) (1 ≤ j ≤ k), c ( 6= 0)
and b0 satisfying

λnj = λ
n+k
j = c (1 ≤ j ≤ k),(1.9)

cb0 + (1− c)a = 0,(1.10)

such that

(1.11) f(z) =
k
∑

j=1

γj
c
eλjz + b0,

where γj (1 ≤ j ≤ k) are complex constants.

Remark 1.1. If a = 0, then the conclusions of Corollaries 1.2, 1.3,
1.5–1.7 and Theorem 1.2 are also valid.

2. Some lemmas

Lemma 2.1 (see [12, Theorem 2]). Let f be a nonconstant entire function
of finite order , and let a 6= 0 be a complex number. If f and f (k) share the
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value a CM , where k is a positive integer , then

f (k) − a

f − a
≡ c

for some nonzero constant c.

Lemma 2.2 (see [7, Theorem 3.1] or [6, pp. 36–37]). If f is an entire
function of order σ(f), then

σ(f) = lim sup
r→∞

log ν(r, f)

log r
,

where ν(r, f) denotes the central index of f(z).

Lemma 2.3 (see [3, Lemma 2] or [2, Lemma 4]). If f is a transcendental
entire function of hyper-order ν(f), then

ν(f) = lim sup
r→∞

log log ν(r, f)

log r
,

where ν(r, f) denotes the central index of f(z) (for the definition see [7,
p. 50]).

Lemma 2.4 (see [8, Lemma 4]). Let f1, . . . , fn be nonconstant meromor-
phic functions satisfying

N(r, fi) +N(r, 1/fi) = S(r), i = 1, . . . , n,

and

T (r, fi) 6= S(r), T (r, fi/fj) 6= S(r), i 6= j, i, j = 1, . . . , n.

Let a0, a1, . . . , am (m ≤ n) be meromorphic functions satisfying T (r, ai) =
S(r), i = 0, 1, . . . ,m. If

m
∑

i=1

aifi ≡ a0,

then a0 ≡ a1 ≡ · · · ≡ am ≡ 0, where S(r) = o(T (r)) as r → ∞ and r 6∈ E,
and T (r) =

∑n

i=1 T (r, fi).

3. Proofs of the theorems

Proof of Theorem 1.1. We discuss the following two cases.

Case 1. Suppose that

(3.1) σ(F ) <∞.

From (1.1), (3.1) and Lemma 2.1 we easily see that ν(F ) = 0 and Q(z) ≡ c,
where c is some complex constant. Thus the conclusion of Theorem 1.1 is
valid.
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Case 2. Suppose that

(3.2) σ(F ) =∞.

From (3.2) and Lemma 2.2 we see that

(3.3) σ(F ) = lim sup
r→∞

log ν(r, F )

log r
=∞.

Write

(3.4) Q(z) = qnz
n + qn−1z

n−1 + · · ·+ q1z + q0,

where qn ( 6= 0), qn−1, . . . , q1 and q0 are complex constants. From (3.4) we
easily get

(3.5) lim
|z|→∞

|Q(z)|

|qnzn|
= 1.

Hence there exists a sufficiently large positive number r0 such that

(3.6)
|Q(z)|

|qnzn|
>
1

e
(|z| > r0).

From (1.1) and (3.6) we easily deduce

n log r + log |qn| − 1 = log
|qnz

n|

e
≤ log |Q(z)| = log |log eQ(z)|(3.7)

≤ |log log eQ(z)|

=

∣

∣

∣

∣

log log
F (k) − 1

F

∣

∣

∣

∣

(|z| > r0),

On the other hand, (3.2) implies that F is a nonconstant entire function.
Thus

(3.8) M(r, F )→∞ as r →∞,

where M(r, F ) = max|z|=r |F (z)|. Again let

(3.9) M(r, F ) = |F (zr)|,

where zr = re
iθ(r) and θ(r) ∈ [0, 2π). From (3.9) and the Wiman–Valiron

theory (see [7, Theorem 3.2]), we find that there exists a subset E ⊂ (1,∞)
with finite logarithmic measure, i.e.,

T
E
dt/t <∞, such that for some zr as

above satisfying |zr| = r 6∈ E, we have

(3.10)
F (k)(zr)

F (zr)
=

(

ν(r, F )

zr

)k

(1 + o(1)) as r →∞,

where ν(r, F ) denotes the central index of F (z). From (3.7)–(3.10) we easily
see that

(3.11) n log |zr|+ log |qn| − 1 ≤

∣

∣

∣

∣

log log

((

ν(r, F )

zr

)k

(1 + o(1))

)∣

∣

∣

∣
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and

(3.12) log

((

ν(r, F )

zr

)k(

1 + o(1)

))

= k(log ν(r, F )− log reiθ(r)) + o(1)

= k(log ν(r, F )− log r − iθ(r)) + o(1)

= k

(

1−
log r

log ν(r, F )
−

iθ(r)

log ν(r, F )

)

log ν(r, F ) + o(1)

as r →∞. Thus, noting that θ(r) ∈ [0, 2π), from (3.3), (3.12) and Lemma 2.3
we easily deduce

(3.13) lim sup
r→∞

|log log((ν(r, F )/zr)
k(1 + o(1)))|

log r

≤ lim sup
r→∞

log log ν(r, F )

log r
+ lim sup
r→∞

∣

∣log
(

1− log r
log ν(r,F ) −

iθ(r)
log ν(r,F )

)∣

∣

log r

+ lim
r→∞

log 2k

log r
+ lim sup
r→∞

2k1π

log r

= lim sup
r→∞

log log ν(r, F )

log r
= ν(F ),

where k1 is some nonnegative integer. Noting that |zr| = r, from (3.11),
(3.13) and Lemma 2.3 we easily deduce

(3.14) n ≤ lim sup
r→∞

log log ν(r, F )

log r
= ν(F ).

Since Q(z) is the polynomial (3.4), we have

(3.15) σ(eQ(z)) = γQ = n.

From (3.14) and (3.15) we get

(3.16) σ(eQ(z)) ≤ ν(F ).

On the other hand, since (1.1) can be rewritten as

(3.17)
F (k)

F
−
1

F
= eQ,

by substituting (3.9) into (3.17) we get

(3.18)

(

ν(r, F )

zr

)k

(1 + o(1)) = eQ(zr) as r →∞.
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From (3.18) we easily deduce that

lim sup
r→∞

log log ν(r, F )

log r
= lim sup

r→∞

log log (ν(r,F ))
n

2rn

log r
(3.19)

≤ lim sup
r→∞

log log
( (ν(r,F ))n

|zr |n
· |1 + o(1)|

)

log r

≤ lim sup
r→∞

log logM(r, eQ(z))

log r
.

From (3.19), Lemma 2.3 and the definition of the order of an entire function
we get

(3.20) ν(F ) ≤ σ(eQ(z)).

Finally, (3.15), (3.16) and (3.20) yield the conclusion of Theorem 1.1.

Proof of Theorem 1.2. Since f and f (n) share the value a CM, we have

(3.21)
f (n) − a

f − a
= eP (z),

where P (z) is a polynomial. On the other hand, from (1.8), (3.21) and
Corollary 1.2 we get

eP (z) ≡ c,(3.22)

eQ(z) ≡ d,(3.23)

where c and d are nonzero complex constants. From (1.8) and (3.23) we get

(3.24)
f (n+k) − a

f (n) − a
= d.

Let

(3.25) f (n)(z) = g(z).

From (3.24) and (3.25) we obtain

(3.26)
g(k) − a

g − a
= d.

From (3.26) we easily deduce that

(3.27) g(k+1) − dg′ = 0.

From (3.27) we obtain the characteristic equation

(3.28) λk+1 − dλ = 0.

Since the general solution of (3.27) has the form

(3.29) f (n)(z) = g(z) =
k
∑

j=1

γje
λjz + b
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with constants γj (1 ≤ j ≤ k), where λ1, . . . , λk are the nonzero solutions of
(3.28), and b is a complex constant, it follows that

(3.30) f(z) =
k
∑

j=1

γj
λnj
eλjz +

bzn

n!
+
n−1
∑

j=0

bjz
j ,

where b0, b1, . . . , bn−1 are complex constants. On the other hand, (3.21) and
(3.22) easily imply

(3.31) f (n) − cf = (1− c)a.

Substituting (3.29) and (3.30) into (3.31) gives

(3.32)
k
∑

j=1

(

1−
c

λnj

)

γje
λjz =

cbzn

n!
+
n−1
∑

j=1

cbjz
j + cb0 + (1− c)a− b.

Since λ1, . . . , λk are k distinct nonzero complex constants satisfying (3.28)
and c 6= 0, from (3.28), (3.32) and Lemma 2.4 we easily deduce (1.10) and

λnj = c (j = 1, . . . , k),(3.33)

bj = b = 0 (1 ≤ j ≤ n− 1).(3.34)

From (3.30), (3.33) and (3.34) we get (1.11). On the other hand, (3.28) and
(3.29) yield

(3.35) f (n+k) =

k
∑

j=1

γjde
λjz.

Substituting (3.29) and (3.35) into (3.24) and applying (3.34) we get
∑k

j=1 γjde
λjz − a

∑k

j=1 γje
λjz − a

≡ d,

which implies that d = 1. Combining (3.28) and (3.33) gives (1.9). From
(1.9)–(1.11) we get the conclusion of Theorem 1.2.
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