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Controllability results for first and second order evolution
inclusions with nonlocal conditions

by L. GORNIEWICZ (Torun), S. K. NTOUYAS (Ioannina)
and D. O’REGAN (Galway)

Abstract. We prove controllability results for first and second order semilinear dif-
ferential inclusions in Banach spaces with nonlocal conditions.

1. Introduction. In this paper, we give some controllability results for
first and second order semilinear differential inclusions in a real Banach
space, with nonlocal conditions.

In Section 3 we study controllability for first order semilinear nonlocal
initial value problems of the form

(1.1) y'(t) € Ay(t) + F(t,y(t)) + Bu(t), te J:=]0,b],
(1.2) y(0) + F(y) = vo,

where F': J x E — P(F) is a multivalued map (P(E) is the family of all
nonempty subsets of E), A: D(A) C E — E is the infinitesimal generator
of a semigroup {T'(t) : t > 0}, yo € E, f: C(J,E) — E is continuous and F
a real separable Banach space with norm | - |. Also the control function wu(-)
is in L?(J,U), where U is a Banach space. Finally, B is a bounded linear
operator from U to E.

A special case of the nonlocal condition is studied in Section 4. In Sec-
tion 5 we consider the problem (1.1)—(1.2) where A: D(A) C E — E is a
nondensely defined closed linear operator.

In Section 6 we study controllability for initial value problems of the form

(1.3) Y1) € Ay(t) + F(t,y(t)) + Bu(t), teJ,
(1.4) y(0) + f(y) =y, ¥'(0)+ fily) =,
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where A is the infinitesimal generator of a family of cosine operators {C(t) :
t > 0}, n € E and F,yp, f,B,u are as in problem (1.1)—(1.2) and f; :
C(J, E) — E is continuous.

The study of nonlocal conditions for evolution equations was initiated
by Byszewski. We refer the reader to [5] and the references therein for a
motivation. The nonlocal conditions can be applied in physics and are more
natural than the classical initial condition y(0) = yo. For example, f(y) may

be given by
P
= Z Ciy(tz)
i=1

where ¢;,7 =1,...,p, are given constants and 0 < t; <--- <1, <b.
Recently in [11] we studied existence results for the problems (1.1)—(1.2)
and (1.3)—-(1.4) where B = 0, by assuming the existence of maximal solutions
to appropriate problems. Controllability results for these problems (with
fi = 0) were given in [3]. However, the results in [3] are incorrect since
the constants My on page 39 and M, on page 103 depend on the solution.
Here we correct these results using fixed point methods, in particular the
nonlinear alternative for single-valued and Kakutani maps, Kakutani’s fixed
point theorem and a selection theorem for lower semicontinuous maps.

2. Preliminaries. In this section, we introduce notations, definitions,
and preliminary facts that are used throughout this paper.
Let X be a subset of a metric linear space. We consider the following

subsets of P(X)={Y C X : Y # 0}:

Pa(X) ={Y € P(X) : Y closed},
Pr(X) ={Y € P(X) : Y bounded},
Pe(X)={Y € P(X) : Y convex},
Pep(X) ={Y € P(X) : Y compact},
Prp(X) = Pe(X) 1 Pep (X) etc.

A multivalued map G : X — P(X) is convez-valued (resp. closed-valued) if
G(x) is convex (resp. closed) for all z € X. G is bounded on bounded sets if
G(B) := e G(x) is bounded in X for all B € Py,(X).

G is called upper semicontinuous (u.s.c.) on X if for each zy € X the
set G(zp) is a nonempty, closed subset of X, and for each open subset U of
X containing G(z¢), there exists an open neighborhood V of xy such that
G(V)CU.

G is said to be completely continuous if G(B) is relatively compact for
every B € P,(X). If G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has closed graph (i.e. x, — xy,
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Yn — Ys, Yn € G(y) imply y, € G(x4)). G has a fized point if there is x € X
such that © € G(x). The fixed point set of the multivalued operator G will
be denoted by Fix G.

A multivalued map N : J — P (E) is said to be measurable if for every
y € E, the function t — d(y, N(t)) = inf{|ly — z| : z € N(t)} is measurable.
For more details on multivalued maps see the books of Aubin and Cellina [2],
Deimling [8], Gorniewicz [10] and Hu and Papageorgiou [15].

Let E be a Banach space and B(FE) be the Banach space of bounded
linear operators on E.

DEFINITION 2.1. A Cy semigroup or a semigroup of class (Cp) is a one-
parameter family {T'(¢) : ¢ > 0} C B(FE) satisfying the conditions:
(i) T(t)oT(s) =T(t+s) for t,s >0,
(ii) T(0) = I (the identity operator in E),
(iii) the map t — T'(t)x is strongly continuous for each x € E, i.e.
%in&T(t)x =z, Vrelk.
The semigroup is uniformly continuous if

lim (1) ~ 1] = 0.

We note that if a semigroup 7'(¢) is of class (Cy), then we have the growth
condition [|T(t)||pr) < MePt for 0 < t < oo, with some constants M > 0
and # € R. If, in particular, M = 1 and 8 = 0, i.e. [|T(t)||pg) < 1 for t >0,
then T'(t) is called a contraction Cy semigroup.

DEFINITION 2.2. Let T(t) be a Cy semigroup on E. The infinitesimal
generator A of T'(t) is the linear operator defined by

T(h)x —
A(z) = }llir% W for x € D(A),

where

D(A) = {ac €E: }Lir%% exists in E}

PROPOSITION 2.1. The infinitesimal generator A is a closed linear and
densely defined operator in E. If x € D(A), then T(t)z is a C*-map and

%T(t)x =A(T(t)z) =T(t)A(x) on[0,00).
It is well known ([18]) that an operator A generates a Cj semigroup if
(i) D(A) = E,

(ii) the Hille-Yosida condition holds, that is, there exist M > 0 and
w € R such that (w,00) C p(A), sup{(A —w)"|(A] —A)7"|: A > w,
ne N} <M,

where o(A) is the resolvent set of A and I is the identity operator.
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We say that a family {C(¢) : t € R} C B(E) is a strongly continuous
cosine family if
(i) €(0) =1,
(ii) C(t+s)+C(t—s)=2C(t)C(s) for all s,t € R,
(iii) the map t — C(t)x is strongly continuous for each x € F.
The strongly continuous sine family {S(t) : t € R}, associated to a given
strongly continuous cosine family {C(t) : t € R}, is defined by
t
(2.1) Stz =\C(s)rds, z€E, teR
0
The infinitesimal generator A : E — E of a cosine family {C(t) : t € R} is
defined by

Alz) = —

t=0

For more details on strongly continuous cosine and sine families, we refer the
reader to the books of Goldstein [12], Heikkila and Lakshmikantham [14] and
Fattorini [9], and the papers [20] and [21].

PROPOSITION 2.2 (|20]). Let C(t), t € R, be a strongly continuous cosine
family in E. Then:

(i) there exist constants My > 1 and w > 0 such that ||C(t)|| < Mye“!!
for allt € R;
(ii) [IS(t) — S(t2)|| < My|§,} el ds| for all 1,15 € R.
DEFINITION 2.3. A multivalued map F': J X E — P ¢p(E) is said to be
L'- Carathéodory if:
(i) t — F(t,u) is measurable for each u € E;

(ii) w — F(t,u) is upper semicontinuous on E for almost all ¢ € J;
(iii) for each ¢ > 0, there exists h, € L'(J,R) such that

| F'(t, w)||: = sup{|v| : v € F(t,u)} < hy(t)
for all |u| < ¢ and for a.e. t € J.

The considerations of this paper are based on the following alternatives
([13]).

THEOREM 2.1 (Nonlinear alternative for single-valued maps). Let E be
a Banach space, C' a closed, convex subset of E, U an open subset of C' and
0 € U. Suppose that F : U — C is a continuous, compact map (that is, F(U)
is a relatively compact subset of C'). Then either

(i) F has a fized point in U, or
(ii) there are u € OU (the boundary of U in C) and X\ € (0,1) with
u = AF(u).
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THEOREM 2.2 (Nonlinear alternative for Kakutani maps). Let E be a
Banach space, C' a closed convex subset of E, U an open subset of C' and
0 € U. Suppose that F : U — Pecp(C) is an upper semicontinuous compact
map. Then either

(i) F has a fized point in U, or
(i) there are w € OU and X € (0,1) with u € AF(u).

3. Controllability for first order semilinear differential inclusions
with nonlocal conditions. We give controllability results for the problem
(1.1)-(1.2) when the right hand side has convex or nonconvex values. We
assume first that F': J x £ — P(FE) is compact- and convex-valued.

Let us start by defining what we mean by a mild solution of problem
(1.1)-(1.2).

DEFINITION 3.1. A function y € C(J,E) is said to be a mild solution
of (1.1)~(1.2) if y(0) + f(y) = yo and there exists v € L!(J, E) such that
v(t) € F(t,y(t)) a.e. on J, and

t
y(t) = T(t)lyo — f(y)] + | T(t = 5)[Bus) + v(s)] ds.
0

DEFINITION 3.2. The system (1.1)—(1.2) is said to be nonlocally con-
trollable on the interval J if for every yg,y1 € E there exists a control
u € L?(J,U) such that there exists a mild solution y(t) of (1.1)—(1.2) satis-
fying y(b) + f(y) = v1-

THEOREM 3.1. Let F': J x E — Pccp(E). Suppose that:

(3.1.1) F is L'-Carathéodory;

(3.1.2) B is a continuous operator from U to E and the linear operator W :
L?(J,U) — E, defined by

b
Wu = ST(b — s)Bu(s) ds,
0
has a bounded inverse W1 : E — L%(J,U) such that | B|]| < My and
|WL|| < My for some positive constants My, Ma;

(3.1.3) f : C(J,E) — E is continuous and completely continuous (i.e. f
takes bounded subsets in C(J, E) into relatively compact sets in E)
and there ezists a constant G > 0 such that |f(y)] < G for all
y € C(J,B);

(3.14) A : D(A) C E — E is the infinitesimal generator of a strongly
continuous semigroup T'(t), t > 0, such that for everyt > 0, T(t) is a
compact (completely continuous) operator and there exists a constant

M >0 such that | T(t)| pp) < M for all t > 0;
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(3.1.5) there exists a continuous nondecreasing function 1 : [0, 00) — (0, 00)
and p € L*(J,Ry) such that

[F(Ew < p)¢(ul)  for (tu) e JX E
and there exists a constant M, > 0 with
M.,
C1+ (Ca + M)y(M.) §g p(s) ds

> 1,

where

Cr = M(|yo| + G) + bMM1M2(|y1| + G—I—M|y0’ —I—MG),
Co = bM?* M My;

(3.1.6) given e > 0, for any bounded subset D of C(J, E) there exists a § > 0
with |(T'(h) — 1) f(y)| < e for all y € D and h € |0, d].

Then the problem (1.1)—(1.2) is nonlocally controllable on J.
Proof. Using hypothesis (3.1.2), for any y € C(J, E) define the control

b
uy(t) = W [y = f(y) = TO)wo — () = | T = s)o(s) ds| (¢),
0

where
v € Sy i={v e LYJ,E):v(t) € F(t,y(t)) for ae. t € J}.
We will show that the operator N : C(J, E) — P(C(J, E)) defined by

N(y) = {h € C(J.B) : h(t) = T(})lyo — f(y)
+ (Tt — 5)[Buy(s) +v(s)] ds : v € SF,y}
0

has a fixed point, by proving that N is a completely continuous multivalued
map, u.s.c. with convex values. The proof will be given in several steps.

STEP 1. N(y) is convez for each y € C(J, E).
This is obvious, since F' has convex values.
STEP 2. N maps bounded sets into bounded sets.

Indeed, it is enough to show that there exists a positive constant ¢ such
that for each h € N(y) with y € B, = {y € C(J, E) : ||y|| = supsey|y(?t)]
< g} one has ||h|| < ¢. If h € N(y), then there exists v € S, such that for
each t € J we have
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t

B(t) = T()lyo — F(y)] + | Tt — 5)[Buy(s) + v(s)) ds.
0
Observe that
b
Juy(8)] < Mo |[y1| + G + Mlyo| + MG + M | |o(s)| ds}
< Ma[lya| + G+ Mlyo| + MG + MH[;quLl] =: Ho;

here h, is chosen as in Definition 2.3. Thus for each ¢t € J we get
t
|A(t)| < Mlyo| + MG + bMM, Hy + M {|v(s)| ds
0
< Myo| + MG + bM M Ho + M||hg||pr =: ¢.

Hence for each h € N(B,) we have ||h| < ¢.
STEP 3. N sends bounded sets into equicontinuous sets.

We consider By as in Step 2 and let h € N(y) for y € B,. Let € > 0 and
71,72 € J with 79 > 7. We consider two cases.

CASE 1. If 71 > ¢ then
[h(72) = h(m1)| < |[T'(72) = T(71)]lyo — f(»)]]

+ § [[T(m — ) = T(11 — s)][Buy(s) + v(s)]| ds
0

+ | [T(r2 = 5) = T(71 — 3)][Buy(s) + v(s)]| ds

+ | 1T(r2 = 5)[Buy(s) + v(s)]| ds

<|[T(r2) = T(m)lyol + M|T (2 — 71+ €) = T(e)ll B |f (By)]

T1—E€

+ M|T(rs =11 +¢) = T(E)llpe) | [MiHo+ hy(s)] ds
0
T1 T2

+2M | [MyHo+ he(s)]ds + M | [MyHy + hy(s)] ds,
T1—€ T

where we have used the semigroup identities
T(ro—s)=T(e—m1+e)l(11—s—¢), T(r—s)=T(n—s—¢e)T(e),
T(ro)=T(ro — 11 +¢)T (11 —€), T(r)=T(n —e)T(e).
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CASE 2. Let mp <e. For 19 — 1 < € we get
[h(72) = h(m1)| < |[T'(72) = T(71)][lyo — f(»)]]

T2

+ | [T(r2 — )[Buy(s) + v(s)]| ds
0

+ | [ T(r1 = )[Buy(s) + v(s)]| ds
0

<|[T(r2) = T(m)]yol + M|T (2 — 1) f(y) = f(y)]

2¢e 5
+ M \[MyHy + hg(s)] ds + M | [MyHo + hg(s)] ds.
0 0

Now equicontinuity follows since (i) T'(t), t > 0, is a strongly continuous
semigroup, (ii) (3.1.6) holds and (iii) 7'(¢) is compact for ¢ > 0 (so T'(t) is
continuous in the uniform operator topology for ¢ > 0).

Fix 0<t<band 0 <e <t Forye By and v € Sgy we define

he(t) =T (t)lyo — f(y)] + YT(t — 5)[Buy(s) + v(s)] ds
=T)[yo — f)]+T(e) TT(t — s —¢)[Buy(s) +v(s)] ds.
Note that :
{TT@ — 5= &)[Buy(s) + v(s)] ds : y € By and v € Spy |
is a bounded set since
EET@ — s — &)[Buy(s) + v(s)] ds‘ < Mtgg[Mlﬂo + hy(s)] ds.

Now since T'(t) is a compact operator for ¢ > 0, the set Y:(t) = {h(t) : y €
B, and v € Sy} is relatively compact in E for every 0 < ¢ < t. Moreover
for h = hg we have
t
|h(t) = he(t)] < M | [MyHo + hy(s)] ds.

t—e
Therefore, the set Y (t) = {h(t) : y € By and v € Sg,} is totally bounded.
Hence Y (¢) is relatively compact in E.

As a consequence of Steps 2, 3 and the Arzela—Ascoli theorem we conclude
that N : C(J, E) — P(C(J, E)) is completely continuous.

STEP 4. N has closed graph.
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This step was proved in [3]. For completeness we include the proof. Let
Yn — Ys, hp € N(y,) and h, — h,. We shall prove that h, € N(y.). Now
hpn € N(yn) means that there exists v, € Sp,, such that

t

ho(t) = T(#)lyo — f(yn)] + | T(t — 5)[Buy, (5) + va(s)]ds, teJ,
0

where
b

0y, (6) = W[y = F(ga) = TO) (g0 — Fun) = {70 = s)on(s) ds] (1)
0

We must prove that there exists v, € Sg,, such that

ha(t) = T()yo — f(yo)] + | T(t = 5)[Buy, +v.(s)]ds, te€J,
0
where
b

uy, (t) = W \y1 = f(ye) = T(O)(yo — f(y)) = § T(b = s)vi(s) ds | (¢).
0

Set
Uy (t) = Wy = f(y) = T(0)(yo — F)().

Since f and W' are continuous, @y, (t) — %y~ (t) for t € J.
We have

[ (hn =Tl = 1001 - [t - 5)Ba, (5 a5)
0

. (h* —T(t)[yo — f(ys)] —

O e

T(t — s)Bi, (s) ds) H =0
as n — oo. Consider the operator I" : L'(J, E) — C(J, E) defined by
t b
(Po)(t) = | T(t — s) [Bw—l (S T(b - 7)o(r) dT) (s) + U(s)} ds.
0 0

Clearly, I" is linear and continuous. Indeed,
|Tv|| < bM (M My Mo+ 1)||v]| 1.
It follows that I" o Sp has closed graph ([17]). Moreover,

t

ha(t) = T(D)lyo — £ (yn)] = | T(t = $)By, (s) ds € I'(Spy,)-
0
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Since y, — ys«, it follows that
t

ha(t) = T()[yo — f(y)] + | T(t = 8)[Buy, (s) + va(s)]ds, t e,
for some v, € Sk, - ’

STEP 5. There ezists an open set U C C(J,E) with y ¢ ANy for \ €
(0,1) and y € OU.
Let A € (0,1) and assume y € AN(y). Then there exists v € Sp, such

that
t

y(t) = AT ()yo — F ()] + M T(t = 9)[Buy(s) + v(s)|ds, te.T.
0
This implies by our assumptions that for each ¢ € J we have
t

p(s)e(lyll) ds + M | |Buy(s)| ds
0

ly(®)| < M(lyol + G) + M

< M(lyo| + G) + M\ p(s)¥(llyll) ds

O ey O ey

b

+ MM Mab (|| + G+ Mol + MG + M [ p(s) () ds )
0

b t
< C1 + Cotp(llyl) { p(s) ds + My (|lyl) § p(s) ds.
0 0
Consequently,
Iy -

b —
C1 + (Ca+ M)p([lyl) §o p(s) ds
Then by (3.1.5), there exists M, such that |ly|| # M,. Set
U={ycC(LE): |yl <M.y}
From the choice of U there is no y € 90U such that y € AN(y) for some
A € (0,1). As a consequence of Theorem 2.2 we deduce that N has a fixed
point and therefore the problem (1.1)—(1.2) is nonlocally controllable. =
REMARK 3.1. If ¢(u) = Au® + B where A >0, B >0, 0 < a < 1 then
clearly (3.1.5) holds since
x
m - = > > 0.
a:ligoC’—i—Dac“ oo forany C>0,D >0
For at most linear growth of F' we have the following
THEOREM 3.2. Assume that conditions (3.1.1)—(3.1.4) and (3.1.6) hold.
In addition suppose that:
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(3.2.1) there exist p € L'(J,R) and positive constants Ay and By such that
| F(t,u)|| < p(t)[Ai|lu| + B1]  for (t,u) € J x E;

(3.2.2) AjCoeMMUP()ds { )= MM Gp)ds g < 1 Oy = bM2M; Mo,

O ey O

Then the problem (1.1)—(1.2) is nonlocally controllable on J.

Proof. Let A € (0,1) and assume y € AN(y) where N is as in Theorem
3.1. For each t € J we have

b ¢
ly(t)] < Cr + Ca \p(s)[Aly(s)| + Ba ds + M | p(s)[A1]y(s)| + Bi] ds.
0 0

Let v(t) = SEp(s)[Ally(s)\ + Bi]ds. Then v(0) = 0 and
v'(t) = p()[A1ly(t)| + Bi] < p(t){A1[C1 + Cav(b) + Mu(t)] + Bi}
< p(t) A1 Mo(t) + p(t) A1Cov(b) + p(t)(A1C1 + Br).
Multiply both sides by e—A1M §op(s)ds ¢4 get
(v(t)efAlMSép(s)dS)/ < A102v(b)p(t)€fA1M%p(s) ds
+p(t)(A1Cy + By)e~ MM lop()ds,

Integrating from 0 to b we get
U(b)e—AlMSSP(s)ds < A102v(b)§p(t)eA1M_§6p(5) ds gy
’ b
(A0 + By) [ p(r)e M or)
or 0

() < —(AC1t By fip(tye MMrO% dt
v
= e_AlMSgp(s) ds _ A0y Sg p(t)e_AlMSép(S) ds It
Thus ||v|| < Ko, so |ly|| < C1 + (Ca+ M)Ky = K;. Set M, = K1 + 1 and
now apply the nonlinear alternative as in Theorem 3.1.

REMARK 3.2. Suppose ||F(t,u)|| < Alu|*+ B for A > 0,B > 0 and
0 < a < 1. Now since 0 < a < 1 we may choose A; as small as we wish (in

particular, so that (3.2.2) is satisfied) and Bj large enough so that Az*+ B <
Az + By for x > 0.

In the next theorems we weaken the boundedness assumption on the
function f.

THEOREM 3.3. Suppose (3.1.1), (3.1.2), (3.1.4) and (3.1.6) hold. In ad-
dition assume that:

= K().
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(3.3.1) f:C(J,E) — E is continuous and completely continuous and there
exists a continuous nondecreasing function 1 : [0, 00) — [0, 00) with

FWl <vllyl) forye C(LE), lmsup 2D — o

g—oo 4
(3.3.2) there exists a continuous function p € L1[0,b] and a continuous non-

decreasing function g : [0,00) — [0,00) such that

IF@ )l <pt)g(lyl), ted yek,

and
b

, 1
limsup = g(q) | p(s) ds = 3,
g—oo G

where o + 3 < 1.
Then the problem (1.1)—(1.2) is nonlocally controllable on J.
Proof. We show that there exists a positive integer ng > 1 such that
N(B,,) C By,.

Suppose that N(B,,,) € By, for all ng > 1. Then there exist y, € C(J, E)
and h,, € N(y,) such that |ly,|| < n and ||hy|| > n. Then for every n > 1,

t
n < |hall < Mlyo| + Mt([lynll) + M | p(s)g(n) ds

0
+ MM Mab (|| + llgall) + Mlgol + M (lyn)
b

+M S p(s)g(n) ds) .

0
Divide both sides by n to obtain

Mol | Mis(lvnl) | Mg
0

1< p(s)g(n) ds

n n n

+ l[MMlMgb(ryn F(wall) + Mol + 2yl
b
M{p(slg(m ds)|
0
L,

M|yo

b

(MM Mb (| +6(n) + Mio] + M(n) + M §pls)g(n) ds) |
0
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Now take the lim sup using (3.3.1) and (3.3.2), to conclude that 1 < a + 3,
which is not true. Therefore there exists ng € N such that N(By,) C By,.

The proofs of the other steps are similar to those in Theorem 3.1. We
omit the details. m

THEOREM 3.4. Suppose (3.1.1), (3.1.2), (3.1.4) and (3.1.6) hold. In ad-
dition assume that:

(3.4.1) f:C(J,E) — E is continuous and completely continuous and there
exists a continuous nondecreasing function 1 : [0, 00) — [0, 00) with

IfW)l < olyl)  fory e CJ, E);

(3.4.2) there exist a continuous nondecreasing function g : [0,00) — (0, 00)
and p € L*(J,Ry) such that

IE®u)ll < p)g(lul)  for (t,u) € Jx E
and there ezists a constant M, > 0 with
M/
Of 4 [M + Co(1+ MY(M) + (Co + M)g(M2) §y pls) ds
where
C1 = Myo| + bM M My (|y1| + Mlyol), ~ Co = bM M My.
Then the problem (1.1)—(1.2) is nonlocally controllable on J.

> 1,

Proof. Define N as in the proof of Theorem 3.1. As there, we can prove
that N is completely continuous. Let A € (0,1) and assume y € AN(y). Then
for t € J we have

t
y(t) = AT(D)lyo — f(y)] + A\ T(t = 9)[Buy () + v(s)] ds.
0
This implies that for each t € J,
¢

ly(0)] < Mlyol + M (llyll) + M { p(s)g(lly]) ds
0

+ MM M5 (|31 + v (llyll) + Mlyol + M (lyl)

b

+ M p(s)g(lly(s)]]) ds
0

< C1+ Mp([lyl) + Co(1 + M)y(|lyll)
b t

+ Cog(llyl) Y p(s) ds + My(llyl) § p(s) ds.
0 0
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Consequently,
sl .
C1+ (M + Co(1+ M) ([lyl) + (Co + M)g(llyl) § p(s) ds
Then by (3.4.2), there exists M, such that ||y|| # M. Set
U={yeC(JE):|lyll <M}

From the choice of U there is no y € OU such that y = AN(y) for some
A € (0,1). As a consequence of Theorem 2.2, N has a fixed point y in U,
and therefore the problem (1.1)—(1.2) is nonlocally controllable. =

Next, we study the case where F' is not necessarily convex-valued. Our
approach here is based on Theorem 2.1 combined with a selection theorem
due to Bressan and Colombo [4] for lower semicontinuous multivalued oper-
ators with decomposable values.

THEOREM 3.5. Suppose that:
(3.5.1) F:JxE — Pp(E) and
(a) (t,u) — F(t,u) is L @ B-measurable;
(b) u +— F(t,u) is lower semicontinuous for a.e. t € J;
(3.5.2) for each ¢ > 0, there exists h, € L'(J,R) such that
|F(t,u)|| < ho(t) forae teJ andu e E with |u| < p.

In addition suppose (3.1.2)-(3.1.6) are satisfied. Then the initial value prob-
lem (1.1)—(1.2) has at least one solution.

Proof. Assumptions (3.5.1) and (3.5.2) imply that F' is lower semicon-
tinuous. Then there exists ([4]) a continuous map p : C(J,E) — L'(J, E)
such that p(y) € Sk, for all y € C(J, E).

Consider the problem

(3.1) y'(t) — Ay(t) — Bu(t) = p(y)(t), teJ,
(3:2) y(0) + F(y) = vo-
It is obvious that if y € C'(J, E) is a solution of the problem (3.1)—(3.2), then
y is a solution to (1.1)-(1.2).
We transform the problem (3.1)-(3.2) into a fixed point problem by con-
sidering the operator N : C'(J, E) — C(J, E) defined by
t
N = Tl — 7)) + | Tt — ) [Buy(s) + p(y)(5)] ds.
0
We prove that N : C(J, E) — C(J, E) is continuous.
Let y, — y in C(J, E). Then there is an integer ¢ such that ||y,| < ¢ for
all n € N and ||y|| < ¢. Then
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IN(yn)(t) — N(y)(t)] t
< M|f(yn) — F)| + MMy |uy, (s) — uy(s)| ds

0
+ M | [p(yn)(s) = p(y)(s)| ds
0
< M| f(yn) = f(9)| + MMM §[(1+ M)|f () = £ ()
0
b b
+ M { [plyn)(r) = p(y) () dr | ds + M  Ip(ya) (5) = ply)(3)] ds.
0 0

Then by the dominated convergence theorem

[N (yn) = NI < M|f(yn) — f(y)| +0M M1 M2(1 + M)|f(yn) — f(y)]
+ bM> My My ||p(yn) — p(W) |22 + M|[p(yn) — p(y)|| 21 — 0.

Thus N is continuous. Also the argument in Theorem 3.1 shows that N is
completely continuous and that there is no y € QU (U as defined in Theo-
rem 3.1) such that y = AN (y) for some A € (0,1).

As a consequence of Theorem 2.1, N has a fixed point y which is a solu-
tion to problem (3.1)—(3.2), and hence the problem (1.1)—(1.2) is nonlocally
controllable. m

THEOREM 3.6. Assume that (3.1.2), (3.1.4), (3.1.6), (3.4.1), (3.4.2)
(3.5.1) and (3.5.2) are satisfied. Then the problem (1.1)—(1.2) is nonlocally
controllable on J.

3

4. A special case. In this section we consider a special case of the
nonlocal condition, i.e. we consider the following problem:

(4.1) y'(t) € Ay(t) + F(t,y(t)) + Bu(t), te J:=]0,b],
p
(4.2) y(0) + > exylte) = vo,
k=1

where A, F,yo, B,u are as in (1.1)~(1.2) and 0 < t; < --- <t, < b, p € N,
70, k=1,...,p.

As remarked by Byszewski [6] if ¢, # 0, k = 1,...,p, the results can be
applied to kinematics to determine the evolution ¢ — y(t) of the location of a
physical object for which we do not know the positions y(0), y(t1), ..., y(tp),
but instead we know that the nonlocal condition (4.2) holds. Consequently,
to describe some physical phenomena, the nonlocal condition can be more
useful than the standard initial condition y(0) = yo. From (4.2) it is clear
that when ¢, =0, kK =1,...,p, we have the classical initial condition.
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A controllability result for the problem (4.1)-(4.2) was given in [3]. How-

ever, the result in [3] is incorrect since the constant M on page 74 depends
on the solution. Here we prove controllability results for (4.1)—(4.2) using
Theorem 2.2.

In the following we assume that the following condition is satisfied:

(B1) The inverse operator

O = <I+ zp:ckT(tk))l

k=1
exists and © € B(E).
Notice that © exists if M Y% _; ek < 1.
DEFINITION 4.1. A function y € C(J, E) is said to be a mild solution of

(4.1)-(4.2) if y(0) + >-F_, cxy(tr) = yo and there exists v € L!(J, E) such
that v(t) € F(t,y(t)) a.e. on J, and

y(t) =T(t)Oyo — > _ kT ()0 | Tt — s)v(s) ds
k=1 0

t
+\T(t - 5)[Bu(s) + v(s)] ds.
0
DEFINITION 4.2. The system (4.1)-(4.2) is said to be nonlocally con-
trollable on the interval J if for every yg,y1 € FE there exists a control
u € L?(J,U) such that there exists a mild solution y(t) of (4.1)—(4.2) satis-

fying y(b) + >2_y cwy(tr) = y1.
THEOREM 4.1. Let F' : J X E — P p(E). Assume that (B1), (3.1.1)
(3.1.2) and (3.1.4) hold. In addition suppose that:

3

(4.1.1) there exists a continuous nondecreasing function 1 : [0,00) — (0, 00)
and p € L'(J,R}) such that

[F@ )| <p)v(lu])  for (t,u) € J x E
and there exists a constant M, > 0 with
(1 - K z=1 ’Ck|)M**
Ko + Ka(Me) " p(t) dt + M(1+ K1)p(M...) §g p(s) ds

where
K1 =bMM;Ms, Ky = M|O| vl + K2(ly1| + MO p(r)lyol),

> 1,

p
Ks = (14 K1)M?||0||5p) Z ek
=1
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and
P
K, Z lex| < 1;
k=1
(4.1.2) given € > 0, there exists a 6 > 0 with ||T'(h) — I||ggy < € for all
h €0, 4].

Then the nonlocal problem (4.1)-(4.2) is nonlocally controllable on J.

Proof. Using hypothesis (3.1.2), for y € C(J, E) define the control
tg
uy(t) = [yl chy ty) — T (b)Oyo + chT )0 | T(t, — s)v(s) ds
k=1 0
b

— {70 - s)u(s) ds} (1),
0

where v € Spy. We will show that the operator N : C(J, E) — P(C(J, E))
defined by

N(y) := {h € O(J,E) : h(t) = T(t)Oyo — chT g (tr — s)v(s) ds

+§7(t — )[Buy(s) + v(s))ds : v € Sy }
0

has a fixed point. This fixed point is then a solution of the system (4.1)-(4.2).
Note that y; — > F_; cxy(tr) € (Ny)(b).
We shall show that N is completely continuous with bounded, closed,

convex values and it is upper semicontinuous. The proof mimicks the proof
of Theorem 3.1.

STEP 1. N(y) is convez for each y € C(J, E).
This is obvious, since F' has convex values.
STEP 2. N maps bounded sets into bounded sets.

Indeed, if h € N(y) and y € By, then there exists v € Sg,, such that for
each t € J,

h(t) =T(H)Oyo — Y axTt)O | T(ty — s)v(s) ds
= 0

+\T(t — 5)[Buy(s) + v(s)] ds.
0
Observe that
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p
g (8)] < Mo [l + D lewl ly(ta)| + MO 5 ol
k=1

tr b

p
+ ekl M1l (i § hgls)ds + M §hq(s) ds|
k=1 0 0

p
< M5 (Il + D lexla + M| 5z ol
k=1
tr

3 M€ s, § hals)ds + Mg l] o=
k=1 0
with hg as in Definition 2.3. Thus for each t € J,

4 tr
Ih(t)] < MOl p(mlyol + M?|O] () Z |ck| S hq(s) ds

+ bM M Hy + M|\ hyl| 1.
STEP 3. N sends bounded sets into equicontinuous sets.
Let h € N(y) for y € By. Let € > 0 and 71,73 € J with 75 > 7.
CASE 1. If 74 > ¢ then

[7(72) = h(m)| < [[T'(72) = T(11)]Oyol

D tr
+ MO gy IT(72) = T(r0)ll By D _ lexl | v(s)| ds
k=1 0

T1—€

+ | T = 5) = T(r1 — 9)][Buy(s) + v(s)]| ds
0

+ | NT(m = 5) = T(r1 — 9)][Buy(s) + v(s)]| ds

T1—€
T2

+ T (r2 = 9)[Buy(s) + v(s)]| ds

T1

< |[T'(r2) = T(1)]Oyol

+ MO g T(2) = T(m1)ll (& Z|Ck| S

T1—€
+ M| T(ry— 11 +¢) = T(E)lpm) | [MiHy+ hg(s)]ds

0
T1 T2

+2M | [MyHy + ho(s)] ds + M [MyHy + hy(s)] ds.

T1—¢€ T1
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CASE 2. Let mp <e. For 19 — 1 < € we get
|h(72) = h(m1)| < |[T'(72) — T(71)]Oo|

+ M|[@llpw)IT(2) = T(11) | BE ZI%!S

T

+  IT(72 = 9)ll ) [MLH1 + hy(s)] ds
0

[N

1

+ 17 (r2 = 8)| p(my (M1 Hy + hy(s)] ds
0
<|[T(72) = T(m1)|Oyol

+ M?|O| ) IT(r2 — 11) — I|| 3 Z’Ck\s

2e
+ M {[MyHy + h(s)] ds + MS [MyHy + hy(s)] ds.
0 0

Now equicontinuity follows as in Theorem 3.1, with (4.1.2) replacing (3.1.6).
Fix 0<t<band 0 <e <t Forye By and v € Sgy we define

p k
he(t) = T(H)Oyo — Y _ axT(t)O | T(ty — s)v(s) ds
= 0
+ | Tt = 9)[Buy(s) + v(s)] ds
0

=T(t)Oyo — > cxT(t)O g T(t, — s)v(s) ds
0

+T'(e) g T(t — s —¢)[Buy(s) + v(s)] ds.
0

Note that

tk ti

(@ | 7t = s)0(s) ds( < MOl | hqls) ds.

0 0

Also
t—e
{ S T(t—s—e)[Buy(s) +v(s)ds:y € Byand v € Sp,y}
0
is a bounded set since
t—e t—e

‘ | T(t = s — &)[Buy(s) + v(s)] ds‘ < M | [MiH + hy(s)) ds.
0 0
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Now since T'(t) is compact for ¢ > 0, the set Y:(t) = {ho(t) : y € B, and
vESFy} is relatively compact in E for every 0<e <t. Moreover for h = hyg,

t
|h(t) — he(t)| < M | [MyHy + hy(s)] ds.
t—e
Therefore, Y (t) = {h(t) : y € By and v € Spy} is totally bounded and hence
Y'(t) is relatively compact in E.
As a consequence of Steps 2, 3 and the Arzela—Ascoli theorem we conclude
that N : C(J, E) — P(C(J, E)) is completely continuous.
STEP 4. N has closed graph.

This step was proved in [3]. For completeness we include the proof. Let
Yn — Ysx, hn € N(yn) and hy, — h,. There exists v, € Sf,, such that

ha(t) = T(H)Oyo — Y cxT()O | T(ty — s)vn(s) ds
k=1 0

+\T(t — 5)[Buy, (s) + va(s)lds, t€J,
0

where u,(t) is as defined at the beginning of the proof. We must prove that
there exists vy € Sfy, such that

ha(t) = T(t)Oyo — Y cxT(1)O | Tty — s)va(s) ds
k=1 0

+\T(t — 5)[Buy, (s) + va(s)]ds, teJ.

0
Set
D D 173
Gy =W! [yl N ewy(te) — T1)Oyo + > exT(1)O | T(ty — s)v(s) ds|.
k=1 k=1 0

Since f and W' are continuous, @y, (t) — %, (t) for t € J.
We have

[
0
_ (h* —T(t)Oyo — §T(t — 5)B,. (s) ds) H 0 asn— oo
0

Consider the operator I' : LY(J, E) — C(J, E) defined by
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(To)(t) = T(t = s)v(s)ds = Y exT()O | T(ty, — s)v(s) ds
0 k=1 0
t b

+ {7t - s)BW ! (g T(b - 7)o(r) dT) (s) ds.
0 0
Clearly, I" is linear and continuous. Indeed,

P
Iroll < M(1+ Ml sy D lexl + bMM My ) o]l .
It follows that I" o Sp has closed grap’;l:(l[lﬂ). Moreover,
t
hn(t) — T(t)Oyo — \ Tt — 5)Biy, (s) € I'(Sky,).
Since y, — v, it follows that '

D tr
ha(t) = T()Oyo — Y _ exT(1)O | Tty — s)va(s)ds
k=1 0
+\T(t — 5)[Buy, (s) + va(s)]ds, teJ,

0
for some v, € Sk, -

STEP 5. There ezists an open set U C C(J,E) with y ¢ ANy for X €
(0,1) and y € OU.

Let A € (0,1) and assume y € AN(y). Then for ¢ € J we have

y(t) = AT (£)Oyo — A exT()O | T(t — s)v(s) ds
k=1 0

t
+ )\ST(t — 5)[Buy(s) + v(s)] ds.
0
This implies that for each ¢t € J,

p tg
ly(t)] < MO el + MO Y lexl | p(s)b(llyl) ds
k=1 0

p
+OMM Mo |lys| + Y lewl lyll+ MOz ol

k=1
p tg b
+ > el MOl gy | p(s)v(llyl) ds + M | p(s)e(]lyll) dS]
k=1 0 0

t

+ M\ p(s)e(lyll) ds
0
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< Ko+ (1+ Ki)M?|0| gz Z|Ck’1/} lyll) S p(s) ds

b

p
+ K1) lewllyll + M1+ E)w(llyl) § o(s) ds.
k=1 0

Consequently,
(- Ky 5% lexDlol .
b —
Kz + Ky ([lyl) § p(¢) dt + M(L+ K1)b(lyl) §p(s) ds
Then by (4.1.1), there exists M, such that |y|| # M. Set

U={yeC(JE): |yl <M.}

and apply Theorem 2.2 to conclude the proof. =
If we have at most linear growth then we have the following

THEOREM 4.2. Assume that (3.1.1), (3.1.2), (3.1.4), (B1) and (4.1.2)
hold. In addition suppose that:

(4.2.1) there exists p € L'(J,R}) and positive constants A; and By such
that

I1E@w)| <p®)[Arlul + Bi] - for (t,u) € J x E;
b
(4.2.2) AjKye MM IPE) s [ ()= AM Iop)ds gy < 1,
0 P
K1 = MO pmlyol, K2 = M?||O| 5 Z |ck|-
k=1
Then the problem (4.1)—(4.2) is nonlocally controllable on J.

Proof. Let A € (0,1) and assume y = AN(y) where N is as in Theo-
rem 4.1. For each ¢t € J we have

ly(O)] < K1+ K2y lex| § p(s)[Avly(s)| + Bl ds+M | p(s)[A1ly(s) |+ B1] ds.
k=1 0 0

Let v(t) = SEp(s)[A1|y(5)| + Bi]ds. Then v(0) = 0 and

V(t) < p(t)ArK2 Y [exlv(te) + p(t) ALMu(t) + p(t)[A1 Ky + By
k=1

(DA Ks 3 lexlo(®) + p(t) AL Mo(t) + p()[ A1 K + Bi].
k=1
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Multiply both sides by e~41M o P(s)ds ¢4 et
P
(U(t)e—AlMSép(s) 45) < p(t) A1 Ko Z |ck!v(b)e—A1M§gp(s) ds
k=1
+ p(t)[A1 K1 + Bl]e_AlMSéP(S) ds

Integrate from 0 to b to obtain
b
o(b)e =AM < 41 Kyu(b) D fex| [ plt)e= 1M ar() s gy
k=1 0
b t
+ [AlKl + Bl] Sp(t)e_AlMso p(s)ds dt,
0

hS]

or

b _ t
o) < (A + B fp(e)e 1M oot K
= e—AlMSg p(s)ds _ A1 Ky £:1 ’Ck‘ 88 p(t)efAlM% p(s) ds
Thus ||v|| < K, so |ly|| < K1+ (K2 > 4_; |ex| +M)K' = K{. Set M, = K{+1
and apply the nonlinear alternative as in Theorem 4.1. =

For the lower semicontinuous case we state without proof the following
results.

THEOREM 4.3. Assume that (3.1.2), (3.1.4), (3.5.1), (3.5.2), (B1), (4.1.1)
and (4.1.2) are satisfied. Then the problem (4.1)—(4.2) is nonlocally control-
lable on J.

THEOREM 4.4. Assume that (3.1.2), (3.1.4), (3.5.1), (3.5.2), (B1), (4.1.2),
(4.2.1) and (4.2.2) are satisfied. Then the nonlocal problem (4.1)—(4.2) is
nonlocally controllable on J.

5. Controllability for semilinear evolution inclusions with non-
local conditions and nondense domain. In Theorem 3.1 the operator
A was densely defined. However, as indicated in [7], we sometimes need to
deal with nondensely defined operators. For example, when we look at a
one-dimensional heat equation with Dirichlet conditions on [0,1] and con-
sider A = 0%/0z% in C([0,1],R) in order to measure the solutions in the
sup-norm, then the domain

D(A) = {¢ € C*([0,1],R) : ¢(0) = ¢(1) = 0}
is not dense in C([0, 1], R) with the sup-norm. See [7] for more examples and
remarks concerning nondensely defined operators. We can extend the results

for problem (1.1)-(1.2) to the case where A is nondensely defined. The basic
tool for this study is the theory of integrated semigroups.
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DEFINITION 5.1 ([1]). Let E be a Banach space. An integrated semigroup
is a family (S(t)):>0 of bounded linear operators S(t) on E with the following
properties:

(i) 5(0) = 0;
(ii) ¢+ S(t) is strongly continuous;
(iii) S(s)S(t) = §(S(t+17)— S(r))dr for all ¢,s > 0.

If A is the generator of an integrated semigroup (S(¢))¢>0 which is locally
Lipschitz, then from [1], S(-)z is continuously differentiable if and only if
x € D(A). In particular S’(t)x := (d/dt)S(t)x defines a bounded operator
on the set Ey := {z € E : t — S(t)x is continuously differentiable on [0, 00)}
and (S’(t))¢>0 is a Cp semigroup on D(A). Here and hereafter, we assume
that A satisfies the Hille-Yosida condition.

Let (S(t))s>0 be the integrated semigroup generated by A. We note that,
since A satisfies the Hille-Yosida condition, ||S'(t)|gr) < Me“', t > 0,
where M and w are from the Hille-Yosida condition (see [16]).

We give some results on the existence of solutions of the problem

(5.1) y'(t) = Ay(t) + f(t), t>0,
(5.2) y(0) =y € E,

where A satisfies the Hille-Yosida condition, without being densely defined.

THEOREM 5.1 ([16]). Let f : J — E be a continuous function. Then for
yo € D(A), there exists a unique continuous function y : J — E such that
t
(i) \y(s)ds € D(A) forte J,

0
t

t
(i) y o+ Aly(s)ds+ | f(s)ds, te
0

0
t

(i) |y(®) sMem(|yo|+§e-wsrf<s>|ds), tel.
0

Moreover, y satisfies the following variation of constants formula:

gt
(5.3) y(t) = S'(t ym+ESSt—s (s)ds, t>0.
0
Let By = AR(\, A) := A(AI — A)~!. Then ([16]) for all z € D(A) we have

Bz — x as A — oo. Also from the Hille-Yosida condition (with n = 1) it is
easy to see that limy_ . |Byz| < M|z, since

M

w

1Bl = MM = )7 < 5
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Thus limy .« || Bal| < M. Also if y satisfies (5.3), then
t
(5.4) y(t) = §'(t)yo + lim | S'(t — 5)Bxf(s)ds, t>0.
<0

We are now in a position to define what we mean by an integral solution
of the problem (1.1)—(1.2).

DEFINITION 5.2. We say that y : J — F is an integral solution of (1.1)-
(1.2) if
() y € C(.E),
(ii) S y(s)ds € D(A) for t € J,
(iii) there exists a function v € L(J, E) such that v(t) € F(t,y(t)) a.e
in J and
gt
(0= 50l — S+ 35§50 = )Bu(s) + o) s

From (ii) we know that y(t) € D(A) for all t > 0. Also from (iii) we
deduce that yo — f(y) € D(A). Hence, if yo € D(A) then f(y) € D(A).

THEOREM 5.2. Assume that (3.1.1), (3.1.3) and (3.1.4) hold and in ad-
dition:
(5.2.1) A satisfies the Hille-Yosida condition;
(5.2.2) S'(t) is compact in D(A) whenever t > 0;
(5.2.3) yo € D(A);
(5.2.4) B is a continuous operator from U to E and the linear operator W :
L

2(J,U) — E, defined by

b
Wu = lim SS/(b — s)B\Bu(s) ds,

A—00

has a bounded inverse W1 : E — L%(J,U) such that | B|| < My and
|W=L|| < My for some positive constants My, Ma;

(5.2.5) there exists a continuous nondecreasing function 1 : [0,00) — (0, 00)
and p € L'(J,R}) such that

[E(t w)l| < p(t)y(jul)  for (t,u) € J X E

and there exists a constant M, > 0 with
M,

Zo + M*(1+ Z1) (M) §b p(s) ds

>1,

where
Zy = bM*M1 My, Zo= M*[|yo|+ G|+ Z1[|y1| + G+ M*(|yo| + G)]
and M* = max{e“?, 1};
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(5.2.6) given € > 0, for any bounded subset D of C(J, E) there exists a § > 0
with |[S"(h) — I]f(y)| < € for ally € D and h € [0,4].

Then the problem (1.1)—(1.2) has at least one integral solution on J.

Proof. Using hypothesis (5.2.4), for any y € C(J, E) define the control

b

wy(8) = W |y = f(y) = S'(0)(yo — f(y)) — lim [S'(b— )Byu(s) ds| (1),
0

where v € Spy. We will show that the operator N : C(J, E) — P(C(J, E))
defined by

N@%z%ECME%Mﬂ=9@M—ﬂM

Sl

+ SS(t—s)[Buy(s)—i—v(s)] ds:vGSEy}
0

has a fixed point.
STEP 1. N(y) is convez for each y € C(J, E).
This is obvious, since F' has convex values.
STEP 2. N maps bounded sets into bounded sets.

Indeed, if h € N(y) and y € By, then there exists v € Sg,, such that for
each t € J we have
t
| S(t = 5)[Buy(s) + v(s)] ds.
0

n(t) = SOl F0)] +
Observe that
t

[y (1)) < My 1] + G + Me“"(Jyo| + G) + Me=! [ e=[u(s)] ds|
0
t

< Mo [lyn| + G+ M (Jyo] + G) + M* [ e hy(s) ds] = H*
0
with hg as in Definition 2.3 and M* = eifw>00r M*=1ifw <0.
Then
b
1Al < M*[|yo| + G] + M*\ e™“*hy(s) ds + bM* My My H*.
0

STEP 3. N sends bounded sets into equicontinuous sets.

Let h € N(y) for y € By. Let € > 0 and 71,7 € J with 7 > 7.



Controllability results for evolution inclusions 91

CASE 1. If 7 > ¢ then
|h(12) — h(71)| < |[S"(m2) — S"(70)][yo — f(v)]|

+|lim | (82— 5) = S'(r1 — )] BaBuy(s) + v(s)] ds‘

A—00
0

T1

+ )\li_)nolo S (S (12 — s) — S'(11 — )| Ba[Buy(s) + v(s)] ds‘
+ )\li_)r{.lo S S’ (19 — s)By[Buy(s) + v(s)] ds

< |(S'(72) = S'(71))wol
+ M| (12 — 11 +¢) = S'(e) p(m) | £(By)|

T1—E€
+ M*||S' (ra =71 +2) = (@) ey | e IMIH" + hy(s)]ds
0
T1 T2
+2M* | e MUH* + ho(s)] ds + M* | e *[MH" + hg(s)] ds.
T1—€ T1

CASE 2. Let 1y <e. For 1 — 1 < & we get

|h(72) = h(m)] < [(8"(12) = S"(11))yol + M|S' (72 — 1) f(y) — [ ()]
2¢e
+ M| e My H* + hy(s)] ds

0
€
+M*§e*ws [MyH* + hy(s)] ds.

Now equicontinuity follows as in Theorem 3.1 with (5.2.5) replacing (3.1.6).
Fix 0<t<band 0 <e <t Forye B, and v € Sgy we define

t—e

he(t) = '8y — F()] + Jim | /(¢ — 9)Ba[Buy(s) + v(s)] ds

0
= S'(t)lyo — f(y)]

+ S'(¢) /\hm E S'(t — s — e) BA[Buy(s) + v(s)] ds.
0

Note that
t—e

{ lim S S'(t — s — ) BA[Buy(s) + v(s)]ds :y € B; and v € SEy}

A—00
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is a bounded set since
t—e
lim | §(t — s — ) Bx[Buy(s) + v(s)) ds‘

A—00

0
t—e
< M* S e Y [MiH" + hg(s)] ds.
0
Since S’(t) is a compact operator for ¢t > 0, the set Yz(t) = {h:(t) : y € By
and v € Spy} is relatively compact in E for every 0 < ¢ < t. Moreover for
h = ho,
t
() = he(t)| < M | e *[MyH* + hy(s)] ds.
t—e

Therefore, Y (t) = {h(t) : y € By and v € Sp,} is totally bounded and hence
relatively compact in F.

As a consequence of Steps 2, 3 and the Arzela—Ascoli theorem we can
conclude that N : C(J, E) — P(C(J, E)) is completely continuous.

STEP 4. N has closed graph.
Let yn, — Y, hn € N(y,) and h, — h,. Then there exists v, € SFyn
such that

hi(t) =S () [yo — f(yn)] + )\li_)rglo S'(t — s)BA[Buy, (s) + vn(s)]ds, te€J

O ey

We must prove that there exists v, € Sg,y, such that

halt) = S'(8)lyo — f(y)) + Jim | S'(t = ) By[Buy. (s) + v.(s)] ds,  te
0

We have

[ (e - Ol0 — )~ pim szu BBy (5) )

= (he = SOl ~ £~ Jim Ss’@ ~ §)B\Buy, () ds ) || = 0

as n — o0o. Consider the continuous linear operator I : L!(J, E) — C(J, E)
defined by
t

(Fv)(t) = lim [ 5'(t — s)Byu(s) ds.

0
It follows that I" o Sp has closed graph ([17]). Moreover,
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ho(t) — S"(8)[yo — fyn)] — Jim | 5'(t — 5)BrBuy, (s) ds € I'(Sky,)-

—00

Since y, — ys, it follows that
¢

ha(t) — 8" () [yo — f ()] — Jim_ | 5'(t — 5)BxBuy, (s) ds
0

t
= /\lim SS’(t — 5)Byvs(s) ds

for some v, € Spy, .

STEP 5. There exists an open set U C C(J,E) with y ¢ cNy for all
o€ (0,1) and y € OU.

Let o € (0,1) and assume y € o N(y). Then

y(t) =S (t)[yo — f(y)] + o lim \S'(¢t — s)Bx[Buy(s) + v(s)] ds.

O e

A—00
Thus
t t
ly(t)] < Me“"[lyo| + G] + Me* [ e *p(s)y(|lyll) ds + Me“" | |Buy(s)| ds
0 0

t
< M*{|yo| + Gl + M* e “p(s)¢(||yll) ds
0
b

+ bM* M My (yy1| + G+ M*(Jyo| + G) + M* e *p(s)y(|ly])) dS)

0
b b
< Zy+ M\ e p(s)y(|lyll) ds + ZiM* e p(s)e(|lyl]) ds.
0 0
Consequently,
Iyl

<1
Zo+ M*(1+ Z)0 () S p(s) ds —

Then by (5.2.5), there exists M, such that ||y|| # M. Set U = {y € C(J,E) :
llyl| < M.} and conclude as before. m

We also state without proof a result concerning the lower semicontinuous
case for nondensely defined operators.

THEOREM 5.3. Assume that (3.1.3), (3.1.4), (3.5.1), (3.5.2), (5.2.1)~(5.2.6)
are satisfied. Then the problem (1.1)-(1.2) is nonlocally controllable on J.
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6. Controllability for second order semilinear differential inclu-
sions with nonlocal conditions. In this section we study the problem
(1.3)—(1.4).

DEFINITION 6.1. A function y € C(J, E) is said to be a mild solution of
(1.3)—(1.4) if y(0)+ £ (y) = o, ¥’ (0)+ f1(y) = 1 and there exists v € L(J, E)

such that v(t) € F(t,y(t)) a.e. on J and
t

y(t) = C)lyo — F(W)] + S — fr(y)] + | S(t = )[Bu(s) + v(s)] ds.
0

DEFINITION 6.2. The system (1.3)-(1.4) is said to be nonlocally con-
trollable on the interval J if for every yo,n,y1 € E there exists a control
u € L?(J,U) such that there exists a mild solution y(t) of (1.3)—(1.4) satis-
fying y(b) + f(y) = 1.

THEOREM 6.1. Let F': J X E — P op(E). Assume (3.1.1) and the fol-
lowing conditions:

(6.1.1) f,f1 : C(J,E) — E are continuous and completely continuous and
there exist constants G, G1 > 0 such that |f(y)| < G and | f1(y)| < G
forally € C(J, E);

(6.1.2) A : D(A) C E — E is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t € J}, and there exist constants
Ni,Na > 1 such that ||C(t)|pey < N1, |S®t)lpE) < N2 for all
t € R;

(6.1.3) B is a continuous operator from U to E and the linear operator W :
L*(J,U) — E, defined by

b
Wu = SS(b — s)Bu(s) ds,
0
has a bounded inverse W~': E — L2?(J,U) such that |B|| < M; and
|WL|| < My for some positive constants My, Ma;
(6.1.4) for each bounded Q@ C C(J,E), and t € J the set

{C®)ly - )]+ 50— ()]

+ S S(t — s)[Buy(s)+v(s)]ds:v e SF,Q}
0
is relatively compact in E, where y € B and Spg = |U{Sry : y € Q}
and

u,(8) = W |y = £(y) = CO) w0 — £(y) = SB)n = f1(y))
b

_ S S(b—s)v(s) ds] (1), v E SF,y?
0
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(6.1.5) there exists a continuous nondecreasing function 1 : [0, 00) — (0, 00)
and p; € L'(J,Ry) such that

IF(tw)| < p(tyilul)  for (tou) € T x E

and there exists a constant M, > 0 with
M**

Ar+ (Mg + NoY (M) §0 pa(s) ds

>1,

where
A1 = Nilyo| + N1G + Naln| + N2G
+ bNa My Ma[|y1| + G + Nilyo| + N1G + Na|n| + N2G],
Ay = bNZ M My;
(6.1.6) given e > 0, for any bounded subset D of C(J, E) there exists a § > 0
with |[C(12) — C(1)]f(y)]| < e for ally € D and 11,72 € [0, 4].
Then the problem (1.3)—(1.4) is nonlocally controllable on J.
Proof. Using hypothesis (6.1.3), for any y € C(J, E) define the control

uy(t) = W g1 = Fy) = CO) o — FW)) = SO — fi(y)
b
— S — s)v(s)ds|(1),
0
where v € Sg,,. We will show that the operator N : C(J, E) — P(C(J,E))
defined by

N(y) == {h € C(1.B) : h(t) = CO)lwo — FW)] + SO — f(y)]
t
+ S S(t — s)[Buy(s) +v(s)]ds:v e SF,y}
0
has a fixed point.
STEP 1. N(y) is convex for each y € C(J, E).
STEP 2. N maps bounded sets into bounded sets.

Indeed, if h € N(y) and y € By, then there exists v € Sg,, such that for
each t € J,
t

h(t) = C()[yo — FW)] + S®n — fr(y)] + | St — 5)[Buy(s) + v(s)] ds.
0
Observe that

luy (V)] < Ma[ly1| + G + Nilyo| + NG + Na|n| + NoG1 + Na||hgl| 1] := Ha
with A4 as in Definition 2.3. Thus for each ¢ € J we get
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t
|h(t)] < Nilyo| + N1G + Na|n| + NaGy + bNo My Hy + No | [v(s)| ds
0
< Nilyo| + N1G + Na|n| + NoG1 + bNo My Ha + Nollhgl[ 11

STEP 3. N sends bounded sets into equicontinuous sets.
Fix 71,7 € J with 75 > 7. For y € B, using Proposition 2.2 we have

[h(72) = h(1)| < [[C(72) = C(m1)]yo| + [[C(72) = C(m)]f ()]
+1[5(r2) = S(m)Inl + 1[S(r2) = S(r)]f1(w)]]

71

+ {1[S(r2 = 5) = S(r1 = 9)][Buy(s) + v(s)]| ds
0

+ | 1S(72 = 5)[Buy(s) + v(s)]| ds

< [C(m2) = C(m)lyol + [[C(m2) = C()]1f (W)]]

T2
+1[S(r2) = S(r)In| + G1Nz | " da:
T1
T1 T2—S
+ S S e“* dx |Buy(s) + v(s)| ds
0 71T1—s
T2

+ Ny \[MyH; + hy(s)] ds
< |[C(72) = C()]wol + [[C(72) = C(m)]f (W)]|
+[S(72) = S(10)In| + G1 N2 (12 — 1)

71

+ e“’b(Tg — 1) S [M1Hy + hy(s)] ds
0

T2
+ Ny \[MyHy + hy(s)] ds.

T1
_ As a consequence of Steps 2, 3, (6.1.4) and the Arzela—Ascoli theorem,
N is completely continuous.

STEP 4. N has closed graph.

Let yn — ¥, hn € N(yn) and h,, — h,. Then there exists v, € Spy,
such that

hn(t) = C()[yo — f(yn)] + S@) [0 — f1(yn)]

+\S(t — s)[Buy,(s) +vn(s)ds, teJ,

O e
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where uy, (t) is as in (6.1.4). We must prove that there exists v, € Sg,, such
that
t

ha(t) = C(®)[yo — f(y)] + S @) = Fi(y)] + | S(¢ — ) [Buy, (s) + va(s)] ds
0

for t € J. Set
y(t) = Wy = f(y) = CO)(wo — f(y)) = Sb)(n = fi(y))]-

Since f and W' are continuous, i, (t) — Ty~ (t), for t € J.

We have

| (h = C®)lo = £)] = SO — £ (w)]) = | Tt = 9By, () ds)

— (he = T(O)lyo — F()] = SO0 — fily)] = Tt — 9)Buy. (5) ds ) | — 0

O e S O e

as n — oo. Consider the operator I : L'(J, E) — C(J, E) defined by

(I'v)(t) = §S(t — ) [Bw—l (§S(b — )o(r) dr) (s) + v(s)} ds.
0 0

Clearly, I" is linear and continuous. Indeed,
”FUH < bNQ(bNngMQ + 1)”U||L1.

It follows that I" o Sp has closed graph (|17]). Moreover
t

ha(t) = C(D)lyo — f(yn)] = S(B)n — fr(yn)] = \T(t — $)Blay, (s) € T'(Spy,)-
0
Since y, — ¥y, it follows that

ha(t) = C(t)[yo — f(y:)] + S@)[n — fi(y)]
+S (t — s)[Buy,(s) +vi(s)]ds, teJ,
0

for some v, € Sk, -

STEP 5. There exists an open set U C C(J, E) with y ¢ ANy for any
A€ (0,1) and y € OU.

Let A € (0,1) and assume y € AN(y). Then for t € J,
ly(t)| < Nifyol + N1G + Na|n| + N2Gy

t t

+ Na | |Buy(s)| ds + No { p(s)u([ly]) ds
0 0
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< N1|y0| + N1G + N2|77| + NG

+ ONy MM, [\yl| + G+ Nilyo| + NG + Nafy| + NoGy
b t

+ Na\ p(s)e(llyll) dS] + N\ p(s)e(llyll) ds

0 0
b t

< Ay + Aotp(|ly]) § p(s) ds + Notp(|ly|) § p(s) ds.
0 0
Consequently,

M,
Ar + (A2 + N2)([lyll) § p(s) ds
Then by (6.1.5), there exists M, such that |y|| # M. Set
U={yeC(JE): |yl <M}
and finish the proof as before. m
REMARK 6.1. If E is finite-dimensional then (6.1.4) is satisfied. Condi-
tion (6.1.4) is only needed to guarantee that {Ny(t) : y € By} is relatively

compact for each t € J so the Arzela—Ascoli theorem can be applied. Con-
ditions of the type (6.1.4) have been discussed extensively in the literature.

In the next result we give the analogue of Theorem 3.4 for the problem
(1.3)—(1.4). The proof follows closely the ideas of Theorem 3.4 and is omitted.

THEOREM 6.2. Suppose (3.1.1), (3.4.1), (6.1.2), (6.1.3), (6.1.4) and (6.1.6)
hold. In addition assume that:

(6.2.1) f1:C(J,E) — E is continuous and completely continuous and there
exists a continuous nondecreasing function ¢y : [0,00) — [0, 00) with

i)l < ealllyll)  fory € C(J, E);

(6.2.2) there exists a continuous nondecreasing function gy : [0,00) — (0, 00)
and p1 € L'(J,Ry) such that

|E(t,uw)| <pi1(t)gr(u|)  for (t,u) € J X E

and there exists a constant M., > 0 with

M/
> 1,
AL+ [AY + N1 AG)]Y(M],) + NoAgapy (ML) + NoAsgy (M) Sop1( s)ds
where
A} = Nilyo| + Naln| + bNa My Ma[|y1| + Nilyo| + Na|n],
5 = bNo My My,
=1+ 45.

Then the problem (1.3)—(1.4) is nonlocally controllable on J.
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If we have at most linear growth then we have the following

THEOREM 6.3. Assume that (3.1.1), (6.1.1)-(6.1.4) and (6.1.6) hold. In
addition suppose that:

(6.3.1) there emists p € L'(J,R.) and positive constants Ay and By such

that
[F(@t W < p)[Ailul + Bi]  for (t,u) € J x E;
b
(6.3.2) AyApetNalor®)ds { (e AN fop(dsgy < 1, Ay = B NZM, M.
0

Then the problem (1.3)—(1.4) is nonlocally controllable on J.

Proof. Let A € (0,1) and assume y € AN(y) where N is as in Theo-
rem 6.1. For each t € J we have
t

ly(t \<A1+A2§p )[A1ly(s)| + Bi] ds + Na | p(s)[A1]y(s)| + Bi] ds.
0 0

Let v(t) = Sop(s)[Ally(s)\ + Bi]ds. Then v(0) = 0 and
v'(t) = p(t)[Aaly(t)| + Bi]
p(t){A1[A1 + Agv(b) + Nov(t)] + By}
< p(t) A1 Naw(t) + p(t) A1 Agv(b) + p(t) (A1 A1 + By).
Multiply both sides by e~41N2 fop(s)ds ¢4 get
(v(t)e~ A1 N2 §6.p(s) A5y < Ay Agu(b)p(t)e A1V §o.p(s) ds
+ () (A1 Ay + By)e= N2 lop(s)ds

Integrating from 0 to b we get
b
U(b)e—A1N2 SgP(S) ds < AlAQU(b) Sp(t)e_AlNQ Sg p(s)ds dt

0
b

+ (A1 Ay + By) | p(t)e= N2 Torl)ds gy,
0
or )
Ay Ay + By) § p(t)e=AN2Sop(s) ds gy
o(b) < ( 14 1) §o p( )be : K.
e—A1N2 Sop(s)ds _ Ay As Sop(t)e_AlNQ §op(s) ds Jt

Thus ||v]| < K|, so ||y|| < A1 + (A2 + N2)K(j = Kj. Set M, = K| + 1 and
apply the nonlinear alternative as in Theorem 6.1. =

For the lower semicontinuous case we state without proof the following
result.
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THEOREM 6.4. Assume that (3.5.1), (3.5.2), (6.1.1)-(6.1.6) are satisfied.
Then the problem (1.3)—(1.4) is nonlocally controllable on J.

REMARK 6.2. The above method can be used to enlarge the class of sec-
ond order problems, for example to nonlocal quasilinear damped differential
inclusions of the form

(6.1) y"(t) — By'(t) € Ay(t) + F(t,y(t)) + Bu(t), teJ:=[0,b],
(6.2) y(0)+ f(y) =vo, ¥'(0)+ fily) =,

where A, F,yo, f, f1,B,u,n are as in problem (6.1)—(6.2) and B is a bounded
linear operator in FE.
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