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Generalized problem of starlikeness
for products of close-to-star functions

by Jacek Dziok (Rzeszów)

Abstract. We consider functions of the type F (z) = z
∏n
j=1[fj(z)/z]

aj , where aj are
real numbers and fj are βj-strongly close-to-starlike functions of order αj . We look for
conditions on the center and radius of the disk D(a, r) = {z : |z−a| < r}, |a| < r ≤ 1− |a|,
ensuring that F (D(a, r)) is a domain starlike with respect to the origin.

1. Introduction. Let Ã denote the class of functions which are analytic
in D = D(0, 1), where

D(a, r) = {z : |z − a| < r},
and let A denote the class of functions f ∈ Ã of the form

(1) f(z) = z +

∞∑
n=2

anz
n (z ∈ D).

A function f ∈ A is said to be starlike of order α, 0 ≤ α < 1, in
D(r) := D(0, r) if

Re

(
zf ′(z)

f(z)

)
> α (z ∈ D(r) \ f−1(0)).

A function f ∈ A is said to be convex of order α, 0 ≤ α < 1, in D if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ D \ (f ′)−1(0)).

We denote by Sc(α) the class of all functions f ∈ A which are convex of order
α in D, and by S∗(α) the class of all functions f ∈ A which are starlike of
order α in D.

Let H be a subclass of A. We define the radius of starlikeness of H by

R∗(H) = inf
f∈H

(sup{r ∈ (0, 1] : f is starlike of order 0 in D(r)}).
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We denote by P(β), 0 < β ≤ 1, the class of functions h ∈ Ã such that
h(0) = 1 and

h(D) ⊂ Πβ := {w ∈ C \ {0} : |Arg w| < βπ/2},
where Arg w denotes the principal argument of the complex number w (i.e.
from the interval (−π, π]). The class P := P(1) is the well known class of
Carathéodory functions.

We say that a function f ∈ A belongs to the class CS∗(α, β) if there exists
a function g ∈ S∗(α) such that f/g ∈ P(β). The class CS∗ := CS∗(0, 1) is
the well-known class of close-to-star functions with argument 0.

Let a, c,m,M,N be positive real numbers and let b ∈ [−m,m].
Silverman [8] introduced the class of functions F given by the formula

F (z) = z
n∏
j=1

(fj(z)/z)
aj

k∏
j=1

(g′j(z))
bj ,

where fj ∈ S∗(α), gj ∈ Sc(β), and aj , bj are positive real numbers satisfying
n∑
j=1

aj = a,

k∑
j=1

bj = b.

Dimkov [2] studied the class of functions F given by

F (z) = z

n∏
j=1

(fj(z)/z)
aj (fj ∈ S∗(αj), j = 1, . . . , n),

where aj (j = 1, . . . , n) are complex numbers satisfying
n∑
j=1

(1− αj)|aj | ≤M.

Let n be a positive integer and let

α = (α1, . . . , αn), β = (β1, . . . , βn),a = (a1, . . . , an) ∈ Rn

be fixed vectors, with 0 ≤ αj < 1, 0 < βj ≤ 1 (j = 1, . . . , n).
Motivated by Silverman’s and Dimkov’s definitions, we define the class

Hn(a, α, β) of functions F given by the formula

(2) F (z) = z

n∏
j=1

(fj(z)/z)
aj (fj ∈ CS∗(αj , βj), j = 1, . . . , n).

We denote by Gn(m, b, c) the union of all classes Hn(a, α, β) for which

(3)
n∑
j=1

(1− αj)|aj | = m,
n∑
j=1

(1− αj)aj = b,
n∑
j=1

βj |aj | = c.
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Finally, set

(4) Gn(M,N) :=
⋃

c∈[0,N ]
m∈[0,M ]

⋃
b∈[−m,m]

Gn(m, b, c).

It is clear that Gn(M,N) contains all functions F given by (2) for which
n∑
j=1

(1− αj)|aj | ≤M,

n∑
j=1

βj |aj | ≤ N.

Aleksandrov [1] stated and solved the following problem.

Problem 1. Let H be the class of all functions f ∈ A that are univalent
in D, and let ∆ ⊂ D be a domain starlike with respect to an inner point ω
with smooth boundary given by the formula

z(t) = ω + r(t)eit (0 ≤ t ≤ 2π).

Find conditions on r(t) ensuring that for each f ∈ H the image domain f(∆)
is starlike with respect to f(ω).

Świtoniak et al. [9, 10] and Dimkov and Dziok [3] (see also [4]) have
investigated a similar problem for generalized starlikeness.

Problem 2. Let H ⊂A. Determine the set B∗(H) of all pairs (a, r) ∈
D × R such that |a| < r ≤ 1 − |a| and every function f ∈ H maps the disk
D(a, r) onto a domain starlike with respect to the origin. The set B∗(H) is
called the set of generalized starlikeness of the class H.

We note that

(5) R∗(H) = sup{r : (0, r) ∈ B∗(H)}.
In this paper we determine the sets of generalized starlikeness of the

classes Hn(a, α, β), Gn(m, b, c), Gn(M,N) and CS∗(α, β). Moreover, we ob-
tain the radii of starlikeness of these classes.

2. Main results. We begin by listing some lemmas which will be useful
later on.

Lemma 1 ([10]). A function f ∈A maps the disk D(a, r), |a|<r≤1− |a|,
onto a domain starlike with respect to the origin if and only if

(6) Re
eiθf ′(a+ reiθ)

f(a+ reiθ)
≥ 0 (0 ≤ θ ≤ 2π).

For a function f ∈ S∗(α) it is easy to verify that∣∣∣∣zf ′(z)f(z)
− α− (1− α)1 + |z|

2

1− |z|2

∣∣∣∣ ≤ 2(1− α)|z|
1− |z|2

(z ∈ D).

Thus, after some calculations we get the following lemma.
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Lemma 2. Let f ∈ S∗(α), a, θ ∈ R, z ∈ D0 := Dr{0}. Then

Re

[
aeiθ

(
f ′(z)

f(z)
− 1

z

)]
≥ Re

2(1− α)|z|2aeiθ

(1− |z|2)z
− 2(1− α)|a|

1− |z|2
.

Lemma 3 ([6]). If h ∈ P(β), then∣∣∣∣h′(z)h(z)

∣∣∣∣ ≤ 2β

1− |z|2
(z ∈ D).

Theorem 1. Let m, b, c be defined by (3) and set

B′ =

(a, r) ∈ C× R :

(0 ≤ r ≤ r1 ∧ |a| < r) ∨
(r1 < r < r2 ∧ |a| ≤ ϕ(r)) ∨
(r2 ≤ r < q ∧ |a| ≤ q − r)

 ,(7)

B′′ = {(a, r) ∈ C× R : |a| < r ≤ q − |a|},(8)

where

r1 =
1

4(m+ c)
,(9)

r2 =
m+ c

(m+ c+
√
(m+ c)2 − 2b+ 1)2

,(10)

q =
1

m+ c+
√

(m+ c)2 − 2b+ 1
,(11)

ϕ(r) =

√
r2 −

(1− 2
√
r(m+ c))2

2b− 1
.(12)

Moreover, set

(13) B =

{B′ for b > 1/2,
B′′ for b ≤ 1/2.

If (a, r) ∈ B, then every function F ∈ Hn(a, α, β) maps the disk D(a, r) onto
a domain starlike with respect to the origin. The result is sharp for b ≤ 1/2,
and for b > 1/2 the set B cannot be larger than B′′. This means that

B′ ⊂ B∗(Hn(a, α, β)) ⊂ B′′ (b > 1/2),(14)
B∗(Hn(a, α, β)) = B′′ (b ≤ 1/2).(15)

Proof. Let F ∈ Hn(a, α, β) and z = a+ reiθ ∈ D. The functions

gj,s(z) = e−isfj(e
isz) (z ∈ D; j = 1, . . . , n, s ∈ R)

belong to CS∗(αj , βj) together with the functions fj . Thus, by (2), the func-
tions

Gs(z) = e−isF (eisz) (z ∈ D; s ∈ R),
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belong to Hn(a, α, β) together with F . Consequently,
(16)

(a, r) ∈ B∗(Hn(a, α, β)) ⇔ (|a|, r) ∈ B∗(Hn(a, α, β)) (a ∈ D, r ≥ 0).

Therefore, without loss of generality we may assume that a is a nonnegative
real number. Since fj ∈ CS∗(αj , βj), there exist gj ∈ S∗(αj) and hj ∈ P(βj)
such that

fj(z)

gj(z)
= hj(z) (z ∈ D),

or equivalently

(17) fj(z) = gj(z)hj(z) (z ∈ D).
From (2) we obtain

F ′(z)

F (z)
=

1

z
+

n∑
j=1

aj

(
f ′j(z)

fj(z)
− 1

z

)
(z ∈ D0).

Thus, using (17) we have

Re
eiθF ′(z)

F (z)
= Re

eiθ

z
+

n∑
j=1

Re

(
aje

iθ

(
g′j(z)

gj(z)
− 1

z

))

+
n∑
j=1

Re

(
aje

iθ h
′
j(z)

hj(z)

)
(z ∈ D0).

By Lemmas 2 and 3 we obtain

Re
eiθF ′(z)

F (z)
≥ Re

eiθ

z
+

2|z|2

1− |z|2
n∑
j=1

(1− αj)aj Re
eiθ

z

− 2

1− |z|2
n∑
j=1

(1− αj)|aj | −
2

1− |z|2
n∑
j=1

βj |aj | (z ∈ D0).

Using (3) and setting z = a+ reiθ in the above inequality yields

Re
eiθF ′(a+ reiθ)

F (a+ reiθ)
≥ Re

eiθ

a+ reiθ

+
2

1− |a+ reiθ|2

(
Re

beiθ|a+ reiθ|2

a+ reiθ
−m− c

)
.

We have to require that the right-hand side above be nonnegative, that is,

(18) Re
1

r + ae−iθ
+

2

1− |r + ae−iθ|2

(
Re

b|r + ae−iθ|2

r + ae−iθ
−m− c

)
≥ 0.

If we put
r + ae−iθ = x+ yi,
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then we obtain
x

x2 + y2
+ 2

bx−m− c
1− x2 − y2

≥ 0.

Thus, using the equality

(19) (x− r)2 + y2 = a2

we obtain

w(x) = 2r(2b− 1)x2 −
(
(2b− 1)(r2 − a2) + 4r(m+ c)− 1

)
x(20)

+ 2(m+ c)(r2 − a2) ≥ 0.

The discriminant ∆ of w(x) is given by

∆ =
(
(2b− 1)(r2 − a2) + 4r(m+ c)− 1

)2(21)

− 16r(2b− 1)(m+ c)(r2 − a2) =: A1A2,

where

A1 =
[
1 + 2

√
r(m+ c)

]2
+ (1− 2b)(r2 − a2),(22)

A2 =
[
1− 2

√
r(m+ c)

]2
+ (1− 2b)(r2 − a2).(23)

Let

(24) D = {(a, r) ∈ R2 : 0 ≤ a < r ≤ 1− a}.
First, we discuss the case b > 1/2. If we put

(25) x0 =
(2b− 1)(r2 − a2) + 4r(m+ c)− 1

4r(2b− 1)
,

then the inequality (20) is satisfied for every x ∈ [r − a, r + a] if one of the
following conditions is fulfilled:

1◦ ∆ ≤ 0,
2◦ ∆ > 0, w(r − a) ≥ 0 and x0 ≤ r − a,
3◦ ∆ > 0, w(r + a) ≥ 0 and x0 ≥ r + a.

Case 1◦. Since A1 > 0, by (21) the condition ∆ ≤ 0 is equivalent to
A2 ≤ 0. Then

B1 :={(a, r) ∈ D : ∆ ≤ 0}={(a, r) ∈ D : A2 ≤ 0}={(a, r) ∈ D : a≤ϕ(r)},
where ϕ is defined by (12). Let

γ = {(a, r) ∈ D : a = ϕ(r)}.
Then γ is a curve which is tangent to the straight lines a = r and a = q − r
at the points

(26) S1 = (r1, r1) and S2 = (q − r2, r2),
where r1, r2, q are defined by (9), (10), (11), respectively. Moreover γ cuts
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the straight line a = 0 at the points

r3 =
(√

m+ c+
√
2b− 1 +

√
m+ c

)−2
,

r4 =
(√

m+ c−
√
2b− 1 +

√
m+ c

)−2
.

Since
0 < r3 < r1 < r2 < r4 < q,

we have
γ = {(a, r) ∈ R2 : r3 ≤ r ≤ r4, a = ϕ(r)},

and consequently

(27) B1 = {(a, r) ∈ R2 : r3 ≤ r ≤ r4, 0 ≤ a ≤ ϕ(r)},
where ϕ is defined by (12) (see Fig. 1).

Case 2◦. Let

B2 := {(a, r) ∈ D : ∆ > 0 ∧ w(r − a) ≥ 0 ∧ x0 ≤ r − a}.
It is easy to verify that

w(r − a) = (r − a)
(
(2b− 1)(r − a)2 − 2(m+ c)(r − a) + 1

)
= (2b− 1)(r − a)(r − a− q′)(r − a− q),

where q is defined by (11) and

(28) q′ =
(
m+ c−

√
(m+ c)2 − 2b+ 1

)−1
.

Since

(29) 0 < q < 1 < q′ (1/2 < b ≤ m, (a, r) ∈ D),

we see that
(r − a)(r − a− q′) < 0 ((a, r) ∈ D).
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Thus, w(r − a) ≥ 0 if a ≥ r − q. The inequality x0 ≤ r − a may be written
in the form

(30) (2b− 1)a2 + 3(2b− 1)r2 − 4(m+ c)r − 4(2b− 1)ar + 1 ≥ 0.

The hyperbola h1 which is the boundary of the set of all pairs (a, r) ∈ R2

satisfying (30) cuts the boundary of D at the point S1 defined by (26) and
at (r5, 0), where

(31) r5 =
(
2(m+ c) +

√
4(m+ c)2 − 3(2b− 1)

)−1
.

It is easy to verify that
r3 < r5 < r4 < q.

Thus

(32) B2 =

{
(a, r) ∈ R2 :

(0 ≤ r ≤ r3 ∧ 0 ≤ a < r) ∨
(r3 < r < r1 ∧ ϕ(r) < a < r)

}
,

where ϕ is defined by (12) (see Fig. 2).

Case 3◦. Let

B3 := {(a, r) ∈ D : ∆ > 0 ∧ w(r + a) ≥ 0 ∧ x0 ≥ r + a}

and let q and q′ be defined by (11) and (28), respectively. Then

w(r + a) = (r + a)[(2b− 1)(r + a)2 − 2(m+ c)(r + a) + 1]

= (2b− 1)(r + a)(r + a− q′)(r + a− q).

Moreover, by (29) we have

(r + a)(r + a− q′) < 0 ((a, r) ∈ D).
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Thus, we conclude that w(r+ a) ≥ 0 if a ≤ q− r. The inequality x0 ≥ r+ a
may be written in the form

(33) (2b− 1)a2 + 3(2b− 1)r2 − 4(m+ c)r + 4(2b− 1)ar + 1 ≤ 0.

The hyperbola h2 which is the boundary of the set of all pairs (a, r) ∈ R2

satisfying (33) cuts the boundary of D at the point S2 defined by (26) and
at (r5, 0), where r5 is defined by (31). Thus,

(34) B3 =

{
(a, r) ∈ R2 :

(r2 < r < r4 ∧ ϕ(r) < a ≤ q − r) ∨
(r4 < r < q ∧ 0 ≤ a ≤ q − r)

}
,

where ϕ is defined by (12) (see Fig. 2). The union of the sets B1,B2,B3
defined by (27), (32), (34) gives the set

B̃′ =

(a, r) ∈ R2 :

(0 ≤ r ≤ r1 ∧ 0 ≤ a < r) ∨
(r1 < r < r2 ∧ 0 ≤ a ≤ ϕ(r)) ∨
(r2 ≤ r < q ∧ 0 ≤ a ≤ q − r)

 .

Thus, by (16) we have

(35) B′ ⊂ B∗(Hn(a, α, β)) (1/2 < b),

where B′ is defined by (7).
Now, let b < 1/2. Then (20) is satisfied for every x ∈ [r − a, r + a] if

(36) w(r − a) ≥ 0 and w(r + a) ≥ 0.

We see that

w(r + a) = (2b− 1)(r + a)(r + a− q′)(r + a− q),
w(r − a) = (2b− 1)(r − a)(r − a− q′)(r − a− q),

where q and q′ are defined by (11) and (28), respectively. Since

q′ < 0 < q < 1 (b < 1/2),

the condition (36) is satisfied if (a, r) ∈ D and

(37) a ≤ q − r.
Let b = 1/2. Then, by (20) we obtain

(1− 4r(m+ c))x+ 2(m+ c)(r2 − a2) ≥ 0.

The above inequality holds for every x ∈ [r − a, r + a] if (a, r) ∈ D and

r + a ≤ 1

2(m+ c)
,

or equivalently (37) holds. Thus, by (16) we have

(38) B′′ ⊂ B∗(Hn(a, α, β)) (b ≤ 1/2),



118 J. Dziok

where B′′ is defined by (8). Because the function

(39) F (z) = z
n∏
j=1

(
1

(1 + sgn(aj)z)2(1−αj)

(
1− z
1 + z

)βjsgn(aj))aj
(z ∈ D)

belongs to Hn(a, α, β), and for z = a+ r, θ = 0, q < a+ r < 1 we have

Re
eiθF ′(z)

F (z)
=

1− 2(m+ c)(a+ r) + (2b− 1)(a+ r)

(a+ r)(1− (a+ r)2)

2

< 0,

Lemma 1 yields

(40) B∗(Hn(a, α, β)) ⊂ B′′.
From (35) and (40) we have (14), while (38) and (40) give (15).

Since the set B depends only on m, b, c, the following result is an imme-
diate consequence of Theorem 1.

Theorem 2. Let B be defined by (13). If (a, r) ∈ B, then every F ∈
Gn(m, b, c) maps the disk D(a, r) onto a domain starlike with respect to the
origin. The result is sharp for b ≤ 1/2, and for b > 1/2 the set B cannot be
larger than B′′, where B′′ is defined by (7). This means that

B∗(Gn(m, b, c)) ⊂ B′′ (b > 1/2),

B∗(Gn(m, b, c)) = B (b ≤ 1/2).

The functions described by (39) with (3) are extremal functions.

Theorem 3.

(41) B∗(Gn(M,N)) = {(a, r) ∈ C× R : |a| < r ≤ q − |a|},
where

q =
1

M +N +
√
(M +N)2 + 2M + 1

.

Equality is realized by the function F of the form

(42) F (z) = z
(1− z)2M+N

(1 + z)N
(z ∈ D).

Proof. Let M,N be positive real numbers and let B′ = B′(m, b, c), B′′ =
B′′(m, b, c), q = q(m, b, c) and ϕ(r) = ϕ(r;m, b, c) be defined by (7), (8), (11)
and (12), respectively. It is easy to verify that

ϕ(r;m, b, c) ≥ q(m, 1/2, c)− r
whenever

1/(2q(m, 1/2, c)) ≤ r ≤ q(m, 1/2, c), 1/2 < b ≤ m.
Moreover, the function q = q(m, b, c) is decreasing with respect to m and c,
and increasing with respect to b. Thus, from Theorems 1 and 2 we have (see
Fig. 3)
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B∗(Gn(m, 1/2, c)) = B′′(m, 1/2, c) ⊂ B′(m, b, c) ⊂ B∗(Gn(m, b, c))
(m ∈ [0,M ], c ∈ [0, N ], b ∈ (1/2,m])

and

B∗(Gn(M,−M,N)) ⊂ B∗(Gn(m, b, c)) ⊂ B∗(Gn(m, 1/2, c))
(m ∈ [0,M ], c ∈ [0, N ], b ∈ [−m, 1/2]).

Therefore, by (4) we obtain

(43) B∗(Gn(M,N)) = B∗(Gn(M,−M,N))

and by Theorem 2 we get (41). Putting m =M, b = −M in (3) we see that
a1, . . . , an are negative real numbers. Thus, the extremal function (39) has
the form

F (z) = z
n∏
j=1

(
1

(1− z)2(1−αj)

(
1 + z

1− z

)βj)aj
(z ∈ D)

or equivalently

F (z) =
z

(1− z)−2
∑n
j=1(1−αj)|aj |

(
1 + z

1− z

)−∑n
j=1 βj |aj |

(z ∈ D).

Consequently, using (3) we obtain

F (z) = z
1

(1− z)−2M

(
1 + z

1− z

)−N
(z ∈ D),

which is the function (42), and the proof is complete.

Since H1((1), (α), (β)) = CS∗(α, β), by Theorem 1 we obtain the follow-
ing theorem.
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Theorem 4. Let 0 ≤ α < 1, 0 < β ≤ 1 and let

B′ =

(a, r) ∈ C× R :

(0 ≤ r ≤ r1 ∧ |a| < r) ∨
(r1 < r < r2 ∧ |a| ≤ ϕ(r)) ∨
(r2 ≤ r < q ∧ |a| ≤ q − r)

 ,

B′′ = {(a, r) ∈ C× R : |a| < r ≤ q − |a|},

where

r1 =
1

4(β − α+ 1)
,

r2 =
β − α+ 1

(β − α+ 1 +
√

(β − α)2 + 2β)2
,

q =
1

β − α+ 1 +
√

(β − α)2 + 2β
,

ϕ(r) =

√
r2 −

(1− 2
√
r(β − α+ 1))2

1− 2α
.

Moreover, set

B =

{B′ for α < 1/2,
B′′ for α ≥ 1/2.

If (a, r) ∈ B, then every function f ∈ CS∗(α, β) maps the disk D(a, r) onto
a domain starlike with respect to the origin. The result is sharp for α ≥ 1/2,
and for α < 1/2 the set B cannot be larger than B′′. This means that

B′ ⊂ B∗(CS∗(α, β)) ⊂ B′′ (α < 1/2),

B∗(CS∗(α, β)) = B (α ≥ 1/2).

The function

f(z) = z
(1 + z)β

(1− z)2−2α+β
(z ∈ D)

is an extremal function.

Using (5) and Theorems 1–4, we obtain the radii of starlikeness of the
classes Hn(a, α, β), Gn(m, b, c), Gn(M,N) and CS∗(α, β).

Corollary 1. We have

R∗(Hn(a, α, β)) = 1

m+ c+
√
(m+ c)2 − 2b+ 1

,

where m, c are defined by (3), and
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R∗(Gn(m, b, c)) = 1

m+ c+
√

(m+ c)2 − 2b+ 1
,

R∗(Gn(M,N)) =
1

M +N +
√
(M +N)2 + 2M + 1

,

R∗(CS∗(α, β)) = 1

β − α+ 1 +
√

(β − α)2 + 2β
.

Remark. Putting β = 1 in Corollary 1 we get the radius of starlikeness
of the class CS∗(α) = CS∗(α, 1) obtained by Ratti [7]. Moreover, putting
α = 0 we get the radius of starlikeness of the class CS∗ = CS∗(0, 1) obtained
by MacGregor [5].
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