Generalized problem of starlikeness for products of close-to-star functions

by Jacek Dziok (Rzeszów)

Abstract. We consider functions of the type $F(z)=z \prod_{j=1}^{n}\left[f_{j}(z) / z\right]^{a_{j}}$, where a_{j} are real numbers and f_{j} are β_{j}-strongly close-to-starlike functions of order α_{j}. We look for conditions on the center and radius of the disk $\mathcal{D}(a, r)=\{z:|z-a|<r\},|a|<r \leq 1-|a|$, ensuring that $F(\mathcal{D}(a, r))$ is a domain starlike with respect to the origin.

1. Introduction. Let $\widetilde{\mathcal{A}}$ denote the class of functions which are analytic in $\mathcal{D}=\mathcal{D}(0,1)$, where

$$
\mathcal{D}(a, r)=\{z:|z-a|<r\}
$$

and let \mathcal{A} denote the class of functions $f \in \widetilde{\mathcal{A}}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathcal{D}) . \tag{1}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha, 0 \leq \alpha<1$, in $\mathcal{D}(r):=\mathcal{D}(0, r)$ if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad\left(z \in \mathcal{D}(r) \backslash f^{-1}(0)\right) .
$$

A function $f \in \mathcal{A}$ is said to be convex of order $\alpha, 0 \leq \alpha<1$, in \mathcal{D} if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad\left(z \in \mathcal{D} \backslash\left(f^{\prime}\right)^{-1}(0)\right)
$$

We denote by $\mathcal{S}^{c}(\alpha)$ the class of all functions $f \in \mathcal{A}$ which are convex of order α in \mathcal{D}, and by $\mathcal{S}^{*}(\alpha)$ the class of all functions $f \in \mathcal{A}$ which are starlike of order α in \mathcal{D}.

Let \mathcal{H} be a subclass of \mathcal{A}. We define the radius of starlikeness of \mathcal{H} by

$$
R^{*}(\mathcal{H})=\inf _{f \in \mathcal{H}}(\sup \{r \in(0,1]: f \text { is starlike of order } 0 \text { in } \mathcal{D}(r)\}) .
$$

[^0]We denote by $\mathcal{P}(\beta), 0<\beta \leq 1$, the class of functions $h \in \widetilde{\mathcal{A}}$ such that $h(0)=1$ and

$$
h(\mathcal{D}) \subset \Pi_{\beta}:=\{w \in \mathbb{C} \backslash\{0\}:|\operatorname{Arg} w|<\beta \pi / 2\}
$$

where $\operatorname{Arg} w$ denotes the principal argument of the complex number w (i.e. from the interval $(-\pi, \pi])$. The class $\mathcal{P}:=\mathcal{P}(1)$ is the well known class of Carathéodory functions.

We say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{C} \mathcal{S}^{*}(\alpha, \beta)$ if there exists a function $g \in \mathcal{S}^{*}(\alpha)$ such that $f / g \in \mathcal{P}(\beta)$. The class $\mathcal{C S} \mathcal{S}^{*}:=\mathcal{C} \mathcal{S}^{*}(0,1)$ is the well-known class of close-to-star functions with argument 0.

Let a, c, m, M, N be positive real numbers and let $b \in[-m, m]$.
Silverman [8] introduced the class of functions F given by the formula

$$
F(z)=z \prod_{j=1}^{n}\left(f_{j}(z) / z\right)^{a_{j}} \prod_{j=1}^{k}\left(g_{j}^{\prime}(z)\right)^{b_{j}}
$$

where $f_{j} \in \mathcal{S}^{*}(\alpha), g_{j} \in \mathcal{S}^{c}(\beta)$, and a_{j}, b_{j} are positive real numbers satisfying

$$
\sum_{j=1}^{n} a_{j}=a, \quad \sum_{j=1}^{k} b_{j}=b
$$

Dimkov [2] studied the class of functions F given by

$$
F(z)=z \prod_{j=1}^{n}\left(f_{j}(z) / z\right)^{a_{j}} \quad\left(f_{j} \in \mathcal{S}^{*}\left(\alpha_{j}\right), j=1, \ldots, n\right)
$$

where $a_{j}(j=1, \ldots, n)$ are complex numbers satisfying

$$
\sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right| \leq M
$$

Let n be a positive integer and let

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}
$$

be fixed vectors, with $0 \leq \alpha_{j}<1,0<\beta_{j} \leq 1(j=1, \ldots, n)$.
Motivated by Silverman's and Dimkov's definitions, we define the class $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$ of functions F given by the formula

$$
\begin{equation*}
F(z)=z \prod_{j=1}^{n}\left(f_{j}(z) / z\right)^{a_{j}} \quad\left(f_{j} \in \mathcal{C} \mathcal{S}^{*}\left(\alpha_{j}, \beta_{j}\right), j=1, \ldots, n\right) \tag{2}
\end{equation*}
$$

We denote by $\mathcal{G}^{n}(m, b, c)$ the union of all classes $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$ for which

$$
\begin{equation*}
\sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right|=m, \quad \sum_{j=1}^{n}\left(1-\alpha_{j}\right) a_{j}=b, \quad \sum_{j=1}^{n} \beta_{j}\left|a_{j}\right|=c \tag{3}
\end{equation*}
$$

Finally, set

$$
\begin{equation*}
\mathcal{G}^{n}(M, N):=\bigcup_{\substack{c \in[0, N] \\ m \in[0, M]}} \bigcup_{b \in[-m, m]} \mathcal{G}^{n}(m, b, c) . \tag{4}
\end{equation*}
$$

It is clear that $\mathcal{G}^{n}(M, N)$ contains all functions F given by (2) for which

$$
\sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right| \leq M, \quad \sum_{j=1}^{n} \beta_{j}\left|a_{j}\right| \leq N
$$

Aleksandrov [1] stated and solved the following problem.
Problem 1. Let \mathcal{H} be the class of all functions $f \in \mathcal{A}$ that are univalent in \mathcal{D}, and let $\Delta \subset \mathcal{D}$ be a domain starlike with respect to an inner point ω with smooth boundary given by the formula

$$
z(t)=\omega+r(t) e^{i t} \quad(0 \leq t \leq 2 \pi)
$$

Find conditions on $r(t)$ ensuring that for each $f \in \mathcal{H}$ the image domain $f(\Delta)$ is starlike with respect to $f(\omega)$.

Świtoniak et al. [9, 10] and Dimkov and Dziok [3] (see also 44) have investigated a similar problem for generalized starlikeness.

Problem 2. Let $\mathcal{H} \subset \mathcal{A}$. Determine the set $B^{*}(\mathcal{H})$ of all pairs $(a, r) \in$ $\mathcal{D} \times \mathbb{R}$ such that $|a|<r \leq 1-|a|$ and every function $f \in \mathcal{H}$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The set $B^{*}(\mathcal{H})$ is called the set of generalized starlikeness of the class \mathcal{H}.

We note that

$$
\begin{equation*}
R^{*}(\mathcal{H})=\sup \left\{r:(0, r) \in B^{*}(\mathcal{H})\right\} . \tag{5}
\end{equation*}
$$

In this paper we determine the sets of generalized starlikeness of the classes $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta), \mathcal{G}^{n}(m, b, c), \mathcal{G}^{n}(M, N)$ and $\mathcal{C} \mathcal{S}^{*}(\alpha, \beta)$. Moreover, we obtain the radii of starlikeness of these classes.
2. Main results. We begin by listing some lemmas which will be useful later on.

Lemma 1 ([10]). A function $f \in \mathcal{A}$ maps the disk $\mathcal{D}(a, r),|a|<r \leq 1-|a|$, onto a domain starlike with respect to the origin if and only if

$$
\begin{equation*}
\operatorname{Re} \frac{e^{i \theta} f^{\prime}\left(a+r e^{i \theta}\right)}{f\left(a+r e^{i \theta}\right)} \geq 0 \quad(0 \leq \theta \leq 2 \pi) \tag{6}
\end{equation*}
$$

For a function $f \in \mathcal{S}^{*}(\alpha)$ it is easy to verify that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\alpha-(1-\alpha) \frac{1+|z|^{2}}{1-|z|^{2}}\right| \leq \frac{2(1-\alpha)|z|}{1-|z|^{2}} \quad(z \in \mathcal{D})
$$

Thus, after some calculations we get the following lemma.

Lemma 2. Let $f \in \mathcal{S}^{*}(\alpha), a, \theta \in \mathbb{R}, z \in \mathcal{D}_{0}:=\mathcal{D} \backslash\{0\}$. Then

$$
\operatorname{Re}\left[a e^{i \theta}\left(\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right)\right] \geq \operatorname{Re} \frac{2(1-\alpha)|z|^{2} a e^{i \theta}}{\left(1-|z|^{2}\right) z}-\frac{2(1-\alpha)|a|}{1-|z|^{2}} .
$$

Lemma 3 ([6]). If $h \in \mathcal{P}(\beta)$, then

$$
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{2 \beta}{1-|z|^{2}} \quad(z \in \mathcal{D})
$$

Theorem 1. Let m, b, c be defined by (3) and set

$$
\mathcal{B}^{\prime}=\left\{\begin{array}{ll}
& \left(0 \leq r \leq r_{1} \wedge|a|<r\right) \vee \tag{7}\\
(a, r) \in \mathbb{C} \times \mathbb{R}: & \left(r_{1}<r<r_{2} \wedge|a| \leq \varphi(r)\right) \vee \\
& \left(r_{2} \leq r<q \wedge|a| \leq q-r\right)
\end{array}\right\}
$$

$$
\begin{equation*}
\mathcal{B}^{\prime \prime}=\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q-|a|\}, \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& r_{1}=\frac{1}{4(m+c)}, \tag{9}\\
& r_{2}=\frac{m+c}{\left(m+c+\sqrt{(m+c)^{2}-2 b+1}\right)^{2}} \tag{10}
\end{align*}
$$

$$
\begin{align*}
q & =\frac{1}{m+c+\sqrt{(m+c)^{2}-2 b+1}} \tag{11}\\
\varphi(r) & =\sqrt{r^{2}-\frac{(1-2 \sqrt{r(m+c)})^{2}}{2 b-1}} \tag{12}
\end{align*}
$$

Moreover, set

$$
\mathcal{B}= \begin{cases}\mathcal{B}^{\prime} & \text { for } b>1 / 2, \tag{13}\\ \mathcal{B}^{\prime \prime} & \text { for } b \leq 1 / 2\end{cases}
$$

If $(a, r) \in \mathcal{B}$, then every function $F \in \mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The result is sharp for $b \leq 1 / 2$, and for $b>1 / 2$ the set \mathcal{B} cannot be larger than $\mathcal{B}^{\prime \prime}$. This means that

$$
\begin{align*}
\mathcal{B}^{\prime} \subset B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \subset \mathcal{B}^{\prime \prime} & (b>1 / 2), \tag{14}\\
B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right)=\mathcal{B}^{\prime \prime} & (b \leq 1 / 2) . \tag{15}
\end{align*}
$$

Proof. Let $F \in \mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$ and $z=a+r e^{i \theta} \in \mathcal{D}$. The functions

$$
g_{j, s}(z)=e^{-i s} f_{j}\left(e^{i s} z\right) \quad(z \in \mathcal{D} ; j=1, \ldots, n, s \in \mathbb{R})
$$

belong to $\mathcal{C} \mathcal{S}^{*}\left(\alpha_{j}, \beta_{j}\right)$ together with the functions f_{j}. Thus, by 22 , the functions

$$
G_{s}(z)=e^{-i s} F\left(e^{i s} z\right) \quad(z \in \mathcal{D} ; s \in \mathbb{R}),
$$

belong to $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$ together with F. Consequently,

$$
\begin{equation*}
(a, r) \in B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \Leftrightarrow(|a|, r) \in B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \quad(a \in \mathcal{D}, r \geq 0) \tag{16}
\end{equation*}
$$

Therefore, without loss of generality we may assume that a is a nonnegative real number. Since $f_{j} \in \mathcal{C} \mathcal{S}^{*}\left(\alpha_{j}, \beta_{j}\right)$, there exist $g_{j} \in \mathcal{S}^{*}\left(\alpha_{j}\right)$ and $h_{j} \in \mathcal{P}\left(\beta_{j}\right)$ such that

$$
\frac{f_{j}(z)}{g_{j}(z)}=h_{j}(z) \quad(z \in \mathcal{D})
$$

or equivalently

$$
\begin{equation*}
f_{j}(z)=g_{j}(z) h_{j}(z) \quad(z \in \mathcal{D}) \tag{17}
\end{equation*}
$$

From (2) we obtain

$$
\frac{F^{\prime}(z)}{F(z)}=\frac{1}{z}+\sum_{j=1}^{n} a_{j}\left(\frac{f_{j}^{\prime}(z)}{f_{j}(z)}-\frac{1}{z}\right) \quad\left(z \in \mathcal{D}_{0}\right)
$$

Thus, using (17) we have

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)}= & \operatorname{Re} \frac{e^{i \theta}}{z}+\sum_{j=1}^{n} \operatorname{Re}\left(a_{j} e^{i \theta}\left(\frac{g_{j}^{\prime}(z)}{g_{j}(z)}-\frac{1}{z}\right)\right) \\
& +\sum_{j=1}^{n} \operatorname{Re}\left(a_{j} e^{i \theta} \frac{h_{j}^{\prime}(z)}{h_{j}(z)}\right) \quad\left(z \in \mathcal{D}_{0}\right)
\end{aligned}
$$

By Lemmas 2 and 3 we obtain

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)} \geq & \operatorname{Re} \frac{e^{i \theta}}{z}+\frac{2|z|^{2}}{1-|z|^{2}} \sum_{j=1}^{n}\left(1-\alpha_{j}\right) a_{j} \operatorname{Re} \frac{e^{i \theta}}{z} \\
& -\frac{2}{1-|z|^{2}} \sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right|-\frac{2}{1-|z|^{2}} \sum_{j=1}^{n} \beta_{j}\left|a_{j}\right| \quad\left(z \in \mathcal{D}_{0}\right)
\end{aligned}
$$

Using (3) and setting $z=a+r e^{i \theta}$ in the above inequality yields

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} F^{\prime}\left(a+r e^{i \theta}\right)}{F\left(a+r e^{i \theta}\right)} \geq & \operatorname{Re} \frac{e^{i \theta}}{a+r e^{i \theta}} \\
& +\frac{2}{1-\left|a+r e^{i \theta}\right|^{2}}\left(\operatorname{Re} \frac{b e^{i \theta}\left|a+r e^{i \theta}\right|^{2}}{a+r e^{i \theta}}-m-c\right)
\end{aligned}
$$

We have to require that the right-hand side above be nonnegative, that is,

$$
\begin{equation*}
\operatorname{Re} \frac{1}{r+a e^{-i \theta}}+\frac{2}{1-\left|r+a e^{-i \theta}\right|^{2}}\left(\operatorname{Re} \frac{b\left|r+a e^{-i \theta}\right|^{2}}{r+a e^{-i \theta}}-m-c\right) \geq 0 \tag{18}
\end{equation*}
$$

If we put

$$
r+a e^{-i \theta}=x+y i
$$

then we obtain

$$
\frac{x}{x^{2}+y^{2}}+2 \frac{b x-m-c}{1-x^{2}-y^{2}} \geq 0
$$

Thus, using the equality

$$
\begin{equation*}
(x-r)^{2}+y^{2}=a^{2} \tag{19}
\end{equation*}
$$

we obtain

$$
\begin{align*}
w(x)= & 2 r(2 b-1) x^{2}-\left((2 b-1)\left(r^{2}-a^{2}\right)+4 r(m+c)-1\right) x \tag{20}\\
& +2(m+c)\left(r^{2}-a^{2}\right) \geq 0
\end{align*}
$$

The discriminant Δ of $w(x)$ is given by

$$
\begin{align*}
\Delta= & \left((2 b-1)\left(r^{2}-a^{2}\right)+4 r(m+c)-1\right)^{2} \tag{21}\\
& -16 r(2 b-1)(m+c)\left(r^{2}-a^{2}\right)=: A_{1} A_{2}
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=[1+2 \sqrt{r(m+c)}]^{2}+(1-2 b)\left(r^{2}-a^{2}\right) \tag{22}\\
& A_{2}=[1-2 \sqrt{r(m+c)}]^{2}+(1-2 b)\left(r^{2}-a^{2}\right) \tag{23}
\end{align*}
$$

Let

$$
\begin{equation*}
D=\left\{(a, r) \in \mathbb{R}^{2}: 0 \leq a<r \leq 1-a\right\} \tag{24}
\end{equation*}
$$

First, we discuss the case $b>1 / 2$. If we put

$$
\begin{equation*}
x_{0}=\frac{(2 b-1)\left(r^{2}-a^{2}\right)+4 r(m+c)-1}{4 r(2 b-1)} \tag{25}
\end{equation*}
$$

then the inequality (20) is satisfied for every $x \in[r-a, r+a]$ if one of the following conditions is fulfilled:

$$
\begin{aligned}
& 1^{\circ} \Delta \leq 0 \\
& 2^{\circ} \Delta>0, w(r-a) \geq 0 \text { and } x_{0} \leq r-a \\
& 3^{\circ} \Delta>0, w(r+a) \geq 0 \text { and } x_{0} \geq r+a
\end{aligned}
$$

Case 1°. Since $A_{1}>0$, by (21) the condition $\Delta \leq 0$ is equivalent to $A_{2} \leq 0$. Then

$$
\mathcal{B}_{1}:=\{(a, r) \in D: \Delta \leq 0\}=\left\{(a, r) \in D: A_{2} \leq 0\right\}=\{(a, r) \in D: a \leq \varphi(r)\}
$$ where φ is defined by 12 . Let

$$
\gamma=\{(a, r) \in \bar{D}: a=\varphi(r)\}
$$

Then γ is a curve which is tangent to the straight lines $a=r$ and $a=q-r$ at the points

$$
\begin{equation*}
S_{1}=\left(r_{1}, r_{1}\right) \quad \text { and } \quad S_{2}=\left(q-r_{2}, r_{2}\right) \tag{26}
\end{equation*}
$$

where r_{1}, r_{2}, q are defined by (9), (10), (11), respectively. Moreover γ cuts

Fig. 1
the straight line $a=0$ at the points

$$
\begin{aligned}
& r_{3}=(\sqrt{m+c+\sqrt{2 b-1}}+\sqrt{m+c})^{-2} \\
& r_{4}=(\sqrt{m+c-\sqrt{2 b-1}}+\sqrt{m+c})^{-2}
\end{aligned}
$$

Since

$$
0<r_{3}<r_{1}<r_{2}<r_{4}<q
$$

we have

$$
\gamma=\left\{(a, r) \in \mathbb{R}^{2}: r_{3} \leq r \leq r_{4}, a=\varphi(r)\right\}
$$

and consequently

$$
\begin{equation*}
\mathcal{B}_{1}=\left\{(a, r) \in \mathbb{R}^{2}: r_{3} \leq r \leq r_{4}, 0 \leq a \leq \varphi(r)\right\} \tag{27}
\end{equation*}
$$

where φ is defined by (see Fig. 1).
Case 2°. Let

$$
\mathcal{B}_{2}:=\left\{(a, r) \in D: \Delta>0 \wedge w(r-a) \geq 0 \wedge x_{0} \leq r-a\right\} .
$$

It is easy to verify that

$$
\begin{aligned}
w(r-a) & =(r-a)\left((2 b-1)(r-a)^{2}-2(m+c)(r-a)+1\right) \\
& =(2 b-1)(r-a)\left(r-a-q^{\prime}\right)(r-a-q)
\end{aligned}
$$

where q is defined by (11) and

$$
\begin{equation*}
q^{\prime}=\left(m+c-\sqrt{(m+c)^{2}-2 b+1}\right)^{-1} \tag{28}
\end{equation*}
$$

Since

$$
0<q<1<q^{\prime} \quad(1 / 2<b \leq m,(a, r) \in D)
$$

we see that

$$
(r-a)\left(r-a-q^{\prime}\right)<0 \quad((a, r) \in D)
$$

Thus, $w(r-a) \geq 0$ if $a \geq r-q$. The inequality $x_{0} \leq r-a$ may be written in the form

$$
\begin{equation*}
(2 b-1) a^{2}+3(2 b-1) r^{2}-4(m+c) r-4(2 b-1) a r+1 \geq 0 \tag{30}
\end{equation*}
$$

The hyperbola h_{1} which is the boundary of the set of all pairs $(a, r) \in \mathbb{R}^{2}$ satisfying 30 cuts the boundary of D at the point S_{1} defined by 26) and at $\left(r_{5}, 0\right)$, where

$$
\begin{equation*}
r_{5}=\left(2(m+c)+\sqrt{4(m+c)^{2}-3(2 b-1)}\right)^{-1} \tag{31}
\end{equation*}
$$

It is easy to verify that

$$
r_{3}<r_{5}<r_{4}<q
$$

Fig. 2

Thus

$$
\mathcal{B}_{2}=\left\{(a, r) \in \mathbb{R}^{2}: \begin{array}{l}
\left(0 \leq r \leq r_{3} \wedge 0 \leq a<r\right) \vee \tag{32}\\
\left(r_{3}<r<r_{1} \wedge \varphi(r)<a<r\right)
\end{array}\right\}
$$

where φ is defined by (see Fig. 2).
Case 3°. Let

$$
\mathcal{B}_{3}:=\left\{(a, r) \in D: \Delta>0 \wedge w(r+a) \geq 0 \wedge x_{0} \geq r+a\right\}
$$

and let q and q^{\prime} be defined by (11) and (28), respectively. Then

$$
\begin{aligned}
w(r+a) & =(r+a)\left[(2 b-1)(r+a)^{2}-2(m+c)(r+a)+1\right] \\
& =(2 b-1)(r+a)\left(r+a-q^{\prime}\right)(r+a-q)
\end{aligned}
$$

Moreover, by (29) we have

$$
(r+a)\left(r+a-q^{\prime}\right)<0 \quad((a, r) \in D)
$$

Thus, we conclude that $w(r+a) \geq 0$ if $a \leq q-r$. The inequality $x_{0} \geq r+a$ may be written in the form

$$
\begin{equation*}
(2 b-1) a^{2}+3(2 b-1) r^{2}-4(m+c) r+4(2 b-1) a r+1 \leq 0 \tag{33}
\end{equation*}
$$

The hyperbola h_{2} which is the boundary of the set of all pairs $(a, r) \in \mathbb{R}^{2}$ satisfying (33) cuts the boundary of D at the point S_{2} defined by 26 and at $\left(r_{5}, 0\right)$, where r_{5} is defined by (31). Thus,

$$
\mathcal{B}_{3}=\left\{(a, r) \in \mathbb{R}^{2}: \begin{array}{l}
\left(r_{2}<r<r_{4} \wedge \varphi(r)<a \leq q-r\right) \vee \tag{34}\\
\left(r_{4}<r<q \wedge 0 \leq a \leq q-r\right)
\end{array}\right\}
$$

where φ is defined by $\sqrt{12}$ (see Fig. 2). The union of the sets $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ defined by (27), (32), (34) gives the set

$$
\widetilde{\mathcal{B}^{\prime}}=\left\{(a, r) \in \mathbb{R}^{2}: \begin{array}{l}
\left(0 \leq r \leq r_{1} \wedge 0 \leq a<r\right) \vee \\
\\
\left(r_{1}<r<r_{2} \wedge 0 \leq a \leq \varphi(r)\right) \vee \\
\left(r_{2} \leq r<q \wedge 0 \leq a \leq q-r\right)
\end{array}\right\}
$$

Thus, by 16) we have

$$
\begin{equation*}
\mathcal{B}^{\prime} \subset B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \quad(1 / 2<b) \tag{35}
\end{equation*}
$$

where \mathcal{B}^{\prime} is defined by (7).
Now, let $b<1 / 2$. Then 20 is satisfied for every $x \in[r-a, r+a]$ if

$$
\begin{equation*}
w(r-a) \geq 0 \quad \text { and } \quad w(r+a) \geq 0 \tag{36}
\end{equation*}
$$

We see that

$$
\begin{aligned}
& w(r+a)=(2 b-1)(r+a)\left(r+a-q^{\prime}\right)(r+a-q) \\
& w(r-a)=(2 b-1)(r-a)\left(r-a-q^{\prime}\right)(r-a-q)
\end{aligned}
$$

where q and q^{\prime} are defined by (11) and (28), respectively. Since

$$
q^{\prime}<0<q<1 \quad(b<1 / 2)
$$

the condition 36 is satisfied if $(a, r) \in D$ and

$$
\begin{equation*}
a \leq q-r . \tag{37}
\end{equation*}
$$

Let $b=1 / 2$. Then, by 20 we obtain

$$
(1-4 r(m+c)) x+2(m+c)\left(r^{2}-a^{2}\right) \geq 0
$$

The above inequality holds for every $x \in[r-a, r+a]$ if $(a, r) \in D$ and

$$
r+a \leq \frac{1}{2(m+c)}
$$

or equivalently (37) holds. Thus, by 16 we have

$$
\begin{equation*}
\mathcal{B}^{\prime \prime} \subset B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \quad(b \leq 1 / 2) \tag{38}
\end{equation*}
$$

where $\mathcal{B}^{\prime \prime}$ is defined by (8). Because the function

$$
\begin{equation*}
F(z)=z \prod_{j=1}^{n}\left(\frac{1}{\left(1+\operatorname{sgn}\left(a_{j}\right) z\right)^{2\left(1-\alpha_{j}\right)}}\left(\frac{1-z}{1+z}\right)^{\beta_{j} \operatorname{sgn}\left(a_{j}\right)}\right)^{a_{j}} \quad(z \in \mathcal{D}) \tag{39}
\end{equation*}
$$

belongs to $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)$, and for $z=a+r, \theta=0, q<a+r<1$ we have

$$
\operatorname{Re} \frac{e^{i \theta} F^{\prime}(z)}{F(z)}=\frac{1-2(m+c)(a+r)+(2 b-1)(a+r)^{2}}{(a+r)\left(1-(a+r)^{2}\right)}<0
$$

Lemma 1 yields

$$
\begin{equation*}
B^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right) \subset \mathcal{B}^{\prime \prime} \tag{40}
\end{equation*}
$$

From (35) and (40) we have (14), while (38) and 40 give 15$)$.
Since the set \mathcal{B} depends only on m, b, c, the following result is an immediate consequence of Theorem 1 .

Theorem 2. Let \mathcal{B} be defined by (13). If $(a, r) \in \mathcal{B}$, then every $F \in$ $\mathcal{G}^{n}(m, b, c)$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The result is sharp for $b \leq 1 / 2$, and for $b>1 / 2$ the set \mathcal{B} cannot be larger than $\mathcal{B}^{\prime \prime}$, where $\mathcal{B}^{\prime \prime}$ is defined by (7). This means that

$$
\begin{array}{ll}
B^{*}\left(\mathcal{G}^{n}(m, b, c)\right) \subset \mathcal{B}^{\prime \prime} & (b>1 / 2) \\
B^{*}\left(\mathcal{G}^{n}(m, b, c)\right)=\mathcal{B} & (b \leq 1 / 2)
\end{array}
$$

The functions described by (39) with (3) are extremal functions.
Theorem 3.

$$
\begin{equation*}
B^{*}\left(\mathcal{G}^{n}(M, N)\right)=\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q-|a|\} \tag{41}
\end{equation*}
$$

where

$$
q=\frac{1}{M+N+\sqrt{(M+N)^{2}+2 M+1}}
$$

Equality is realized by the function F of the form

$$
\begin{equation*}
F(z)=z \frac{(1-z)^{2 M+N}}{(1+z)^{N}} \quad(z \in \mathcal{D}) \tag{42}
\end{equation*}
$$

Proof. Let M, N be positive real numbers and let $\mathcal{B}^{\prime}=\mathcal{B}^{\prime}(m, b, c), \mathcal{B}^{\prime \prime}=$ $\mathcal{B}^{\prime \prime}(m, b, c), q=q(m, b, c)$ and $\varphi(r)=\varphi(r ; m, b, c)$ be defined by (7), (8), (11) and 12 , respectively. It is easy to verify that

$$
\varphi(r ; m, b, c) \geq q(m, 1 / 2, c)-r
$$

whenever

$$
1 /(2 q(m, 1 / 2, c)) \leq r \leq q(m, 1 / 2, c), \quad 1 / 2<b \leq m
$$

Moreover, the function $q=q(m, b, c)$ is decreasing with respect to m and c, and increasing with respect to b. Thus, from Theorems 1 and 2 we have (see Fig. 3)

Fig. 3

$$
\begin{aligned}
& B^{*}\left(\mathcal{G}^{n}(m, 1 / 2, c)\right)=\mathcal{B}^{\prime \prime}(m, 1 / 2, c) \subset \mathcal{B}^{\prime}(m, b, c) \subset B^{*}\left(\mathcal{G}^{n}(m, b, c)\right) \\
&(m \in[0, M], c \in[0, N], b \in(1 / 2, m])
\end{aligned}
$$

and

$$
\begin{aligned}
& B^{*}\left(\mathcal{G}^{n}(M,-M, N)\right) \subset B^{*}\left(\mathcal{G}^{n}(m, b, c)\right) \subset B^{*}\left(\mathcal{G}^{n}(m, 1 / 2, c)\right) \\
& \quad(m \in[0, M], c \in[0, N], b \in[-m, 1 / 2])
\end{aligned}
$$

Therefore, by (4) we obtain

$$
\begin{equation*}
B^{*}\left(\mathcal{G}^{n}(M, N)\right)=B^{*}\left(\mathcal{G}^{n}(M,-M, N)\right) \tag{43}
\end{equation*}
$$

and by Theorem 2 we get (41). Putting $m=M, b=-M$ in (3) we see that a_{1}, \ldots, a_{n} are negative real numbers. Thus, the extremal function (39) has the form

$$
F(z)=z \prod_{j=1}^{n}\left(\frac{1}{(1-z)^{2\left(1-\alpha_{j}\right)}}\left(\frac{1+z}{1-z}\right)^{\beta_{j}}\right)^{a_{j}} \quad(z \in \mathcal{D})
$$

or equivalently

$$
F(z)=\frac{z}{(1-z)^{-2 \sum_{j=1}^{n}\left(1-\alpha_{j}\right)\left|a_{j}\right|}}\left(\frac{1+z}{1-z}\right)^{-\sum_{j=1}^{n} \beta_{j}\left|a_{j}\right|} \quad(z \in \mathcal{D})
$$

Consequently, using (3) we obtain

$$
F(z)=z \frac{1}{(1-z)^{-2 M}}\left(\frac{1+z}{1-z}\right)^{-N} \quad(z \in \mathcal{D})
$$

which is the function (42), and the proof is complete.
Since $\mathcal{H}^{1}((1),(\alpha),(\beta))=\mathcal{C S}^{*}(\alpha, \beta)$, by Theorem 1 we obtain the following theorem.

Theorem 4. Let $0 \leq \alpha<1,0<\beta \leq 1$ and let

$$
\begin{aligned}
& \mathcal{B}^{\prime}=\left\{\begin{array}{ll}
& \left(0 \leq r \leq r_{1} \wedge|a|<r\right) \vee \\
(a, r) \in \mathbb{C} \times \mathbb{R}: & \left(r_{1}<r<r_{2} \wedge|a| \leq \varphi(r)\right) \vee \\
& \left(r_{2} \leq r<q \wedge|a| \leq q-r\right)
\end{array}\right\}, \\
& \mathcal{B}^{\prime \prime}=\{(a, r) \in \mathbb{C} \times \mathbb{R}:|a|<r \leq q-|a|\},
\end{aligned}
$$

where

$$
\begin{aligned}
r_{1} & =\frac{1}{4(\beta-\alpha+1)}, \\
r_{2} & =\frac{\beta-\alpha+1}{\left(\beta-\alpha+1+\sqrt{(\beta-\alpha)^{2}+2 \beta}\right)^{2}} \\
q & =\frac{1}{\beta-\alpha+1+\sqrt{(\beta-\alpha)^{2}+2 \beta}}, \\
\varphi(r) & =\sqrt{r^{2}-\frac{(1-2 \sqrt{r(\beta-\alpha+1)})^{2}}{1-2 \alpha}},
\end{aligned}
$$

Moreover, set

$$
\mathcal{B}= \begin{cases}\mathcal{B}^{\prime} & \text { for } \alpha<1 / 2 \\ \mathcal{B}^{\prime \prime} & \text { for } \alpha \geq 1 / 2\end{cases}
$$

If $(a, r) \in \mathcal{B}$, then every function $f \in \mathcal{C S}^{*}(\alpha, \beta)$ maps the disk $\mathcal{D}(a, r)$ onto a domain starlike with respect to the origin. The result is sharp for $\alpha \geq 1 / 2$, and for $\alpha<1 / 2$ the set \mathcal{B} cannot be larger than $\mathcal{B}^{\prime \prime}$. This means that

$$
\begin{aligned}
\mathcal{B}^{\prime} \subset B^{*}\left(\mathcal{C S}^{*}(\alpha, \beta)\right) & \subset \mathcal{B}^{\prime \prime} & & (\alpha<1 / 2) \\
B^{*}\left(\mathcal{C S}^{*}(\alpha, \beta)\right) & =\mathcal{B} & & (\alpha \geq 1 / 2)
\end{aligned}
$$

The function

$$
f(z)=z \frac{(1+z)^{\beta}}{(1-z)^{2-2 \alpha+\beta}} \quad(z \in \mathcal{D})
$$

is an extremal function.
Using (5) and Theorems 114, we obtain the radii of starlikeness of the classes $\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta), \mathcal{G}^{n}(m, b, c), \mathcal{G}^{n}(M, N)$ and $\mathcal{C S}^{*}(\alpha, \beta)$.

Corollary 1. We have

$$
R^{*}\left(\mathcal{H}^{n}(\mathbf{a}, \alpha, \beta)\right)=\frac{1}{m+c+\sqrt{(m+c)^{2}-2 b+1}}
$$

where m, c are defined by (3), and

$$
\begin{aligned}
R^{*}\left(\mathcal{G}^{n}(m, b, c)\right) & =\frac{1}{m+c+\sqrt{(m+c)^{2}-2 b+1}} \\
R^{*}\left(\mathcal{G}^{n}(M, N)\right) & =\frac{1}{M+N+\sqrt{(M+N)^{2}+2 M+1}} \\
R^{*}\left(\mathcal{C S}^{*}(\alpha, \beta)\right) & =\frac{1}{\beta-\alpha+1+\sqrt{(\beta-\alpha)^{2}+2 \beta}}
\end{aligned}
$$

Remark. Putting $\beta=1$ in Corollary 1 we get the radius of starlikeness of the class $\mathcal{C} \mathcal{S}^{*}(\alpha)=\mathcal{C} \mathcal{S}^{*}(\alpha, 1)$ obtained by Ratti [7]. Moreover, putting $\alpha=0$ we get the radius of starlikeness of the class $\mathcal{C} \mathcal{S}^{*}=\mathcal{C S} \mathcal{S}^{*}(0,1)$ obtained by MacGregor [5].

Acknowledgements. The author would like to thank the referee for her/his valuable suggestions and comments.

References

[1] I. A. Aleksandrov, On the star-shaped character of the mappings of a domain by functions regular and univalent in the circle, Izv. Vyssh. Uchebn. Zaved. Mat. 1959, no. 4, 9-15.
[2] G. Dimkov, On products of starlike functions. I, Ann. Polon. Math. 55 (1991), 75-79.
[3] G. Dimkov and J. Dziok, Generalized problem of starlikeness for products of p-valent starlike functions, Serdica Math. J. 24 (1998), 339-344.
[4] J. Dziok, On a starlikeness problem for certain class of multivalent analytic functions, Demonstratio Math. 29 (1996), 621-628.
[5] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.
[6] M. Nunokawa and W. M. Causey, On certain analytic functions with bounded argument, Sci. Rep. Fac. Edu. Gunma Univ. 34 (1985), 1-3.
[7] J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107 (1968), 241-248.
[8] H. Silverman, Products of starlike and convex functions, Ann. Univ. Mariae CurieSkłodowska 29 (1975), 109-116.
[9] J. Stankiewicz and B. Świtoniak, Generalized problems of convexity and starlikeness, in: Complex Analysis and Applications'85 (Varna, 1985), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 670-675.
[10] B. Switoniak, On a starlikeness problem in the class of functions S_{α}^{*}, Folia Sci. Univ. Techn. Resoviensis 14 (1984), 17-27.

Jacek Dziok
Institute of Mathematics
University of Rzeszów
35-310 Rzeszów, Poland
E-mail: jdziok@univ.rzeszow.pl

[^0]: 2010 Mathematics Subject Classification: 30C45, 30C50, 30C55.
 Key words and phrases: analytic functions, close-to-starlike functions, generalized starlikeness, radius of starlikeness.

