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by Muhammed Ali̇ Alan (Bloomington, IN)

Abstract. Weighted pluripotential theory is a rapidly developing area; and Callag-
han [Ann. Polon. Math. 90 (2007)] recently introduced θ-incomplete polynomials in Cn
for n > 1. In this paper we combine these two theories by defining weighted θ-incomplete
pluripotential theory. We define weighted θ-incomplete extremal functions and obtain a
Siciak–Zahariuta type equality in terms of θ-incomplete polynomials. Finally we prove that
the extremal functions can be recovered using orthonormal polynomials and we demon-
strate a result on strong asymptotics of Bergman functions in the spirit of Berman [Indiana
Univ. Math. J. 58 (2009)].

1. Introduction. The theory of θ-incomplete polynomials in Cn for
n > 1 was recently developed by Callaghan [9]. It has many applications
in approximation theory. He also defined interesting extremal functions in
terms of θ-incomplete polynomials and related plurisubharmonic functions.

This paper has three goals. The first one is to further develop the θ-
incomplete pluripotential theory of Callaghan. The second goal is to com-
bine this theory with weighted pluripotential theory and get a unified the-
ory by defining weighted θ-incomplete pluripotential theory in Cn. If θ = 0,
we get weighted pluripotential theory, and for the weight w = 1, we get
θ-incomplete pluripotential theory. Finally we show that extremal functions
in these settings can be recovered asymptotically using orthonormal poly-
nomials.

In this section we recall some definitions and major results of weighted
pluripotential theory and we recall Berman’s paper [2] which is a special case
of weighted pluripotential theory. Our initial goal was to study Berman’s re-
cent work on globally defined weights within the framework of θ-incomplete
pluripotential theory. We were able to prove many results for admissible
weights defined on closed subsets of Cn.
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In the second section we recall some important results of θ-incomplete
pluripotential theory. We improve a result of Callaghan and we extend a
result of Bloom and Shiffman [7] to the θ-incomplete extremal function VK,θ
associated to a compact set K for 0 ≤ θ < 1.

In the third section we work on closed subsets of Cn. We define the
weighted θ-incomplete extremal function VK,Q,θ for a closed set K and an
admissible weight function w and we give various properties of this extremal
function. We also show that VK,Q,θ can be obtained via taking the supremum
of θ-incomplete polynomials whose weighted norm is less than or equal to 1
on K, generalizing the analogous result for VK,θ (unweighted case) from
the previous section. In particular we state analogous results in the case of
global weights.

In the last section we recall the Bernstein–Markov property relating the
sup norms and L2(µ) norms of polynomials on a compact set K with meas-
ure µ. We define a version of the Bernstein–Markov property for θ-incom-
plete polynomials in the weighted setting. Then we prove results on asymp-
totics of orthonormal polynomials to extremal functions in the θ-incomplete
and weighted setting. Finally in Theorem 4.8, we prove a result on strong
asymptotics of Bergman functions analogous to the main theorem in [2].

1.1. Weighted pluripotential theory. We give some basic definitions
from weighted pluripotential theory. A good reference is Saff and Totik’s
book [14] for n = 1 and Thomas Bloom’s Appendix B of [14] for n > 1.

Let K be a nonpluripolar closed subset of Cn. An upper semicontinuous
function w : K → [0,∞) is called an admissible weight function on K if

(i) the set {z ∈ K | w(z) > 0} is not pluripolar,
(ii) if K is unbounded, then |z|w(z)→ 0 as |z| → ∞, z ∈ K.

We define Q = Qw = − logw, and we will use Q and w interchangeably.
The weighted pluricomplex extremal function of K with respect to Q is

defined as

(1.1) VK,Q(z) := sup{u(z) | u ∈ L, u ≤ Q on K},
where the Lelong class L is defined as

(1.2) L := {u | u is plurisubharmonic on Cn, u(z) ≤ log+ |z|+ C},
where C depends on u.

We recall that the upper semicontinuous regularization of a function v
is defined by v∗(z) := lim supw→z v(w) and it is well known that the upper
semicontinuous regularization of VK,Q is plurisubharmonic and in L+ where

L+ := {u ∈ L | log+ |z|+ C ≤ u(z)},
where C depends on u. By Lemma 2.3 of Bloom’s Appendix B of [14], the
support, Sw, of (ddcV ∗K,Q)n is a subset of S∗w := {z ∈ K | V ∗K,Q(z) ≥ Q(z)}.
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Here ddcv = 2i∂∂̄v and (ddcv)n is the complex Monge–Ampère operator
defined by (ddcv)n = ddcv∧ · · · ∧ddcv for plurisubharmonic functions which
are C2. For the cases considered in this paper see [12, 10] for the details of
the definition.

A set E is called pluripolar if E ⊂ {z ∈ Cn | u(z) = −∞} for some
plurisubharmonic function u. If a property holds everywhere except on a
pluripolar set we will say it holds quasi everywhere.

1.2. A special case of weighted pluripotential theory. We re-
call some definitions from Berman’s paper [2], where the weight is defined
globally in Cn. Let φ be a lower semicontinuous function, and φ(z) ≥
(1+ε) log |z| for z � 1 for some fixed ε > 0. The weighted extremal function
is defined as

(1.3) Vφ(z) := sup{u(z) | u ∈ L and u ≤ φ on Cn}.
We define

S∗φ := {z ∈ Cn | V ∗φ (z) ≥ φ(z)}, Sφ := supp((ddcV ∗φ )n).

This is a special case of weighted pluripotential theory with K = Cn and
Q = φ. Hence Sφ ⊂ S∗φ.

Berman [2] studied the case where φ ∈ C1,1(Cn). In this case we define

Dφ = {z ∈ Cn | Vφ(z) = φ(z)},(1.4)
P = {z ∈ Cn | ddcφ(z) exists and is positive}.(1.5)

We remark that Dφ is a compact set and Sφ ⊂ Dφ. By Proposition 2.1 of
[2], if φ ∈ C1,1(Cn), then Vφ ∈ C1,1(Cn) and (ddcVφ)n = (ddcφ)n on Dφ ∩ P
almost everywhere as (n, n) forms with L∞ coefficients.

Example 1.1. Let φ(z) = |z|2. Then

(1.6) Vφ(z) =

{
|z|2 if |z| ≤ 1/

√
2,

log |z|+ 1
2 −

1
2 log 1

2 if |z| ≥ 1/
√

2.

Clearly the plurisubharmonic function, V , on the right hand side is less
than or equal to φ, hence V ≤ Vφ. On the other hand the support of the
Monge–Ampère measure of V is the closed ball of radius 1/

√
2 centered at

the origin. Since any competitor, u, for the extremal function is less than or
equal to |z|2 on this closed ball, by the domination principle (see Appendix
B of [14] or Theorem 2.1 below) u ≤ V on Cn. Therefore Vφ ≤ V and hence
equality holds.

2. θ-Incomplete pluripotential theory. We recall the basic notions
of θ-incomplete pluripotential theory from [9]. We fix 0 ≤ θ ≤ 1. A θ-
incomplete polynomial in Cn is a polynomial of the form
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(2.1) P (z) =
N∑

|α|=dNθe

cαz
α,

where dxe is the least integer greater than or equal to x.
The set of all θ-incomplete polynomials of the form (2.1) will be denoted

by πN,θ. We remark that when θ = 0, πN,θ is the set of all polynomials
of degree at most N ; and when θ = 1, πN,θ is the set of homogeneous
polynomials of degree N .

Related classes of plurisubharmonic functions are defined as follows (see
[9] for details):

Lθ = {u ∈ L | u(z) ≤ θ log |z|+ C for |z| < 1},
L+
θ = {u ∈ Lθ | max(θ log |z|, log |z|) + C ≤ u(z) for all z ∈ Cn},

where C depends on u.
We remark that if P ∈ πN,θ then N−1 log |P | ∈ Lθ. Another observation

is that if θ1 ≥ θ2, then Lθ2 ⊂ Lθ1 .
The next theorem gives a domination principle for Lθ classes.

Theorem 2.1 ([9, Theorem 3.15]). Let 0 ≤ θ < 1. If u ∈ Lθ and v ∈ L+
θ

and if u ≤ v almost everywhere with respect to (ddcv)n, then u ≤ v on Cn.

We remark that, for 0 < θ < 1, we have u(0) = v(0) = −∞ and the
origin is a distinguished point as it is charged by (ddcv)n.

Callaghan [9] defined the following extremal function for a set E ⊂ Cn:

(2.2) VE,θ(z) := sup{u(z) | u ∈ Lθ and u ≤ 0 on E}.
We will call it the θ-incomplete extremal function of E. Its upper semicon-
tinuous regularization,V ∗E,θ, is in L+

θ if E is bounded and nonpluripolar by
Lemma 3.7 of [9]. Also if K is a regular compact set in Cn, then V ∗K,θ = VK,θ.
Hence it is continuous except at z = 0. Recall that regular means that the ex-
tremal function of K, VK := VK,0, is continuous. We remark that (ddcV ∗E,θ)

n

is supported in E ∪ {0} if θ > 0.
We define the following functions for a compact set K. For N ≥ 1 we let

ΦK,θ,N (z) = sup {|f(z)| | f ∈ πN,θ, ‖f‖K ≤ 1},
ΦK,θ = sup

N
(ΦK,θ,N )1/N .(2.3)

The next proposition shows that the supremum in (2.3) is actually a limit.

Proposition 2.2. With the above notation we have

sup
N

1
N

logΦK,θ,N = lim
N→∞

1
N

logΦK,θ,N .

Hence, by [9] we have limN→∞N
−1 logΦK,θ,N = VK,θ.
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Proof. First of all, we have ΦK,θ,JΦK,θ,I≤ΦK,θ,J+I for all integers I, J≥0.
For if P (z) =

∑J
|α|=dθJe aαz

α and Q(z) =
∑I

α=dθIe bαz
α, then PQ(z) =∑J+I

α=dθJe+dθIe cαz
α is in πJ+I,θ, since dθJe+ dθIe ≥ dθ(J + I)e.

By taking logarithms, we get

(2.4) logΦK,θ,J + logΦK,θ,I ≤ logΦK,θ,J+I .

Therefore, by Theorem 4.9.19 of [1], the limit limN→∞N
−1 logΦK,θ,N exists

and equals supN N−1 logΦK,θ,N .

In the next section we will extend this result to the weighted case. This
proposition also fixes a gap in the proof of Theorem 8.2 in [8] and we will
use it in the proof of Theorem 4.3.

Let K be a compact set in Cn. For 0 ≤ θ ≤ 1, we define the following
θ-incomplete hulls:

(2.5) K̂θ,Ω = {z ∈ Ω | |PN (z)| ≤ ‖PN‖K where PN ∈ πN,θ}.

Again if Ω = Cn, then we will drop Ω and write K̂θ. Using Theorem 4.4
of [9], we have the following theorem.

Theorem 2.3. Let K ⊂ Cn and 0 ≤ θ ≤ 1. Then VK,θ = V bK,θ.
It is clear that for θ > 0, the origin always belongs to K̂θ for any set K,

so K̂θ is often larger than the usual polynomially convex hull K̂ := K̂0. It
is also easy to see that K̂θ = {z ∈ Cn | VK,θ ≤ 0}.

The following theorem extends a result of Bloom and Shiffman [7] to the
θ-incomplete case.

Theorem 2.4. Let 0 < θ ≤ 1 and K be a regular compact set in Cn.
Then

1
N

logΦK,θ,N → VK,θ

uniformly on compact subsets of Cn \ {0}.

Proof. Let ε > 0. We will show that for every a ∈ Cn \ {0} there exist
δ = δ(a) > 0 and N0 := N0(a) ≥ 1 such that

1 ≤ Φ(z)

Φ
1/N
N (z)

≤ eε if |z − a| < δ

for all N ≥ N0, where Φ := ΦK,θ, ΦN := ΦK,N,θ. Since any compact subset
of Cn \ {0} can be covered by finitely many balls of the form B(a, δ(a)), we
are done.

Without loss of generality we may assume that a1 6= 0 where a =
(a1, . . . , an). We define p1(z) := z1/c0 such that ‖p1‖K ≤ 1. Hence, Φr(z) ≥
|pdθre1 (z)| in Cn for all r ≥ 1.
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By Proposition 2.2, we choose M ≥ 1 such that Φ(a)/Φ1/M
M (a) ≤ eε/4.

Next we take δ>0 small enough that Φ(z)/Φ(a)≤eε/4 and Φ1/M
M (a)/Φ1/M

M (z)
≤ eε/4 if |z − a| < δ. These are possible since Φ and Φ

1/M
M are continuous

and nonzero on Cn \ {0}.
Let N ≥ M . There exist k, r such that N = kM + r where k and r

depend on M , and r < M .
Now we have

1 ≤ Φ(z)

Φ
1/N
N (z)

≤ Φ(z)
(ΦkM (z))1/N

1

Φ
1/N
r (z)

=
Φ(z)

(Φ1/M
M (z))kM/N

1

Φ
1/N
r (z)

,

which equals
Φ(z)

Φ
1/M
M (z)

(Φ1/M
M (z))r/N

Φ
1/N
r (z)

,

which is less than or equal to

Φ(z)
Φ(a)

Φ(a)

Φ
1/M
M (a)

Φ
1/M
M (a)

Φ
1/M
M (z)

(Φ(z))r/N

Φ
1/N
r (z)

,

for all z ∈ Cn \ {0}. Thus, for z ∈ B(a, δ) and N ≥ N0 we have

Φ(z)
Φ(a)

Φ(a)

Φ
1/M
M (a)

Φ
1/M
M (a)

Φ
1/M
M (z)

(Φ(z))r/N

Φ
1/N
r (z)

< eε,

where N0 is chosen so large that (m1/m0)M/N < eε/4 for N > N0. Here
m1 := ‖Φ‖B(a,δ) and m0 := min(m1, inf{|p1(z)| | z ∈ B(a, δ)}).

Note that for θ = 0, an analogous proof holds for all a ∈ Cn. Hence, it
gives uniform convergence on all compact subsets of Cn, which is the original
result of Bloom and Shiffman.

3. Weighted θ-incomplete pluripotential theory. In this section,
we define and develop two weighted versions of θ-incomplete pluripotential
theory. The first one is the θ-incomplete version of the weighted pluripoten-
tial theory on closed subsets of Cn and the second one is the θ-incomplete
version of the special case of weighted pluripotential theory studied in [2].
As in the θ = 0 case, the second version is a special case of the first.

Let K be a closed set in Cn and w be an admissible weight on K. We
define

(3.1) VK,Q,θ(z) := sup{u(z) | u ∈ Lθ, u ≤ Q on K}.
We remark that VK,Q,θ1 ≤ VK,Q,θ2 if θ1 > θ2. The θ = 0 case gives

the classical weighted pluripotential theory. Following Siciak [15], it can be
shown that VK,Q,θ = V ∗K,Q,θ, so that VK,Q,θ is continuous on Cn \ {0}, for K
locally regular and Q continuous. Recall that K locally regular means for
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all a ∈ K, K ∩ B(a, r) is regular for all r > 0, where B(a, r) := {z ∈ Cn |
|z − a| < r}.

Comparing the defining families, we get the following obvious inequali-
ties.

Proposition 3.1. Let K1 ⊂ K2 and let w be a function defined on K2

which is an admissible weight on both K1 and K2. Then VK1,Q,θ ≥ VK2,Q,θ.

Using (ii) in the definition of admissibility from Section 1.1, we show
that VK,Q,θ coincides with the weighted θ-incomplete extremal function of a
compact subset of K.

Lemma 3.2. Let K be a closed unbounded set in Cn and w be an admis-
sible weight function on K. Then VKρ,Q,θ = VK,Q,θ for some ρ > 0 where
Kρ = {z ∈ K | |z| ≤ ρ}.

Proof. Since V ∗Kρ,Q,θ ∈ L, there exist C and ρ such that

VKρ,Q,θ(z) ≤ V ∗Kρ,Q,θ(z) ≤ log |z|+ C for |z| > ρ.

Now by the second condition of admissibility we may choose ρ large enough
that

Q(z)− log |z| ≥ C + 1 for z ∈ K \Kρ.

If u ∈ Lθ and u ≤ Q on Kρ, so that u ≤ VKρ,Q,θ, by the above inequalities
we get u ≤ Q on K. Hence we get VKρ,Q,θ ≤ VK,Q,θ. The other inequality is
given by Proposition 3.1, which gives the equality.

Proposition 3.3. Let K be a closed subset of Cn and let w be an ad-
missible weight function on K. Then V ∗K,Q,θ ∈ L

+
θ .

Proof. The case θ = 0 is classical and well known. For 0 < θ ≤ 1 we will
follow the proof of Lemma 3.7 of [9].

Since V ∗K,Q,θ ≤ V ∗K,Q and V ∗K,Q ∈ L+, we have V ∗K,Q,θ ∈ L.
Next we show that V ∗K,Q,θ ∈ Lθ. Let M := supz∈B(0,1) V

∗
K,Q,θ(z) and u be

in the defining class for VK,Q,θ. Then θ−1(u −M) ≤ 0 on B(0, 1). Hence it
is a competitor for the pluricomplex Green function of the unit ball B(0, 1)
with logarithmic pole at the origin. The pluricomplex Green function of a
bounded domain Ω with logarithmic pole at a ∈ Ω is defined by

(3.2) gΩ(z, a) := sup{u(z) | u ∈ PSH(Ω), u ≤ 0 and
u(z)− log |z − a| ≤ C as z → a},

and gB(0,1)(z, 0) = log |z|. Hence θ−1(u−M) ≤ log |z| on the unit ball. Since
u is arbitrary, we get V ∗K,Q,θ(z) ≤ θ log |z|+M on B(0, 1). Thus V ∗K,Q,θ ∈ Lθ.

By Lemma 3.2, we may assume K ⊂ B(0, R) for some R. Let A :=
supz∈B(0,R)(θ log |z| −Q(z)). Then

u(z) = max(θ log |z|, log |z|)−A
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is a competitor for the extremal function VK,Q,θ and u ∈ L+
θ , which implies

that V ∗K,Q,θ ∈ L
+
θ .

We define the following sets:

S∗K,Q,θ := {z ∈ K | V ∗K,Q,θ(z) ≥ Q(z)},
SK,Q,θ := supp((ddcV ∗K,Q,θ)

n).

Lemma 3.4. Let K be closed in Cn and let w be an admissible weight on
K. Then SK,Q,θ ⊂ S∗K,Q,θ ∪ {0} if 0 < θ ≤ 1 and SK,Q,θ ⊂ S∗K,Q,θ if θ = 0.

Proof. The classical case, i.e., when θ = 0, is Lemma 2.3 of Appendix B
of [14]. Therefore, we assume 0 < θ ≤ 1. Let z0 be a point in K \ {0} such
that V ∗K,Q,θ(z0) < Q(z0)− ε for some positive ε. We will show that V ∗K,Q,θ is
maximal in a neighborhood of z0, i.e (ddcV ∗K,Q,θ)

n = 0 there.
Since Q is lower semicontinuous, the set {z ∈ K | Q(z) > Q(z0)− ε/2}

is open relative to K. Similarly, {z ∈ Cn | V ∗K,Q,θ(z) < V ∗K,Q,θ(z0) + ε/2} is
open. Thus we may find a ball of radius r around z0 such that

sup
z∈B(z0,r)

V ∗K,Q,θ(z) < inf
z∈B(z0,r)∩K

Q(z)

and 0 6∈ B(z0, r).
By Theorem 1.3 of Appendix B in [14], we can find a plurisubharmonic

function u with u ≥ V ∗K,Q,θ on B(z0, r), u = V ∗K,Q,θ on Cn \ B(z0, r), and u
maximal on B(z0, r). Then u ≤ V ∗K,Q,θ because

u(z) ≤ sup
z∈B(z0,r)

V ∗K,Q,θ(z) < inf
z∈B(z0,r)∩K

Q(z) for all z ∈ B(z0, r).

Since B(z0, r) ∩ {0}, we have u ∈ Lθ. Hence u ≡ V ∗K,Q,θ. Therefore, V ∗K,Q,θ
is maximal in a neighborhood of z0. Hence z0 is not in SK,Q,θ.

A special case is when the admissible weights are globally defined. Let
φ : Cn → R be an admissible weight function. Generalizing the case of [2],
we define weighted θ-incomplete extremal functions by

(3.3) Vφ,θ(z) = sup{u(z) | u ∈ Lθ and u ≤ φ} for 0 ≤ θ ≤ 1.

Observe that V ∗φ,θ = Vφ,θ if φ is continuous, for in this case V ∗φ,θ ≤ φ on
Cn so that V ∗φ,θ ≤ Vφ,θ. We also remark that θ = 0 gives Vφ,0 = Vφ, and
Vφ,θ1 ≤ Vφ,θ2 if θ1 > θ2 since Lθ1 ⊂ Lθ2 .

We define the following sets:

Dφ,θ := {z ∈ Cn | V ∗φ,θ(z) ≥ φ(z)} and Sφ,θ := supp((ddcV ∗φ,θ)
n).

If θ = 0, we will write Dφ,0 = Dφ and Sφ,0 = Sφ. If φ is continuous, then
Vφ,θ is continuous and we have

Dφ,θ = {z ∈ Cn | Vφ,θ(z) = φ(z)}.
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If φ is a globally defined admissible weight function, then we define K :=
Dφ,θ and Q := φ|K . Clearly, V ∗φ,θ ≤ Q quasi everywhere in K so V ∗φ,θ ≤
V ∗K,Q,θ.

Conversely, on K, VK,Q,θ ≤ Q = φ = Vφ,θ quasi everywhere. Since
(ddcV ∗φ,θ)

n is supported on K ∪ {0}, by Theorem 2.1 we have V ∗K,Q,θ ≤ V ∗φ,θ.
Hence V ∗K,Q,θ = V ∗φ,θ. This shows that we may reduce the global weighted
situation to the compact case by considering the sets Dφ,θ.

As a consequence of the above definitions, Lemma 3.4 and earlier results
of this section we have the following corollary.

Corollary 3.5. Let φ be a globally defined admissible weight. Then:

(i) Sφ,θ = supp((ddcV ∗φ,θ)
n) ⊂ Dφ,θ ∪ {0} if θ > 0, and supp((ddcV ∗φ )n)

⊂ Dφ for θ = 0,
(ii) Dφ,1 ⊂ Dφ,θ1 ⊂ Dφ,θ2 ⊂ Dφ,0 = Dφ when θ1 > θ2,

(iii) Vφ,θ is in L+
θ for 0 ≤ θ ≤ 1,

(iv) if u ∈ Lθ and u ≤ φ on Dφ,θ then u ≤ Vφ,θ.

The next lemma shows the monotonicity of the extremal functions under
increasing and decreasing θ.

Lemma 3.6. Let K ⊂ Cn be a closed set and let w be an admissible
weight on K. For 0 ≤ θ0 < 1, V ∗K,Q,θ increases to V ∗K,Q,θ0 quasi everywhere
as θ ↘ θ0, and V ∗K,Q,θ decreases to V ∗K,Q,θ0 as θ ↗ θ0.

Proof. The last statement is clear, thus we consider θ ↘ θ0. Clearly, we
have monotonicity of the V ∗K,Q,θ. Since V ∗K,Q,θ is bounded above by V ∗K,Q,θ0 ,
V ∗K,Q,θ increases to a function, v, whose upper semicontinuous regularization
v∗ is plurisubharmonic and again bounded above by V ∗K,Q,θ0 .

Since V ∗K,Q,θ ∈ L
+
θ , we have V ∗K,Q,θ(z) ≥ max(θ log |z|, log |z|)+Mθ where

Mθ is a constant depending on θ. As θ ↘ θ0, we get v∗ ∈ L+
θ0

since v∗ ≤
V ∗K,Q,θ0 . Also by monotonicity, (ddcV ∗K,Q,θ)

n → (ddcv∗)n weak∗.
We write S := supp((ddcv∗)n) \ {0} and S′ := {z ∈ K | v∗(z) ≥ Q(z)}.

By lower semicontinuity of Q, and upper semicontinuity of v∗, the set S′ is
closed. Next we will show that v∗ ≥ Q on S by showing that S ⊂ S′.

Since (ddcV ∗K,Q,θ)
n → (ddcv∗)n, we have S ⊂

⋃
θ>θ0

SK,Q,θ \ {0}. By
Lemma 3.4,⋃

θ>θ0

SK,Q,θ \ {0} ⊂
⋃
θ>θ0

S∗K,Q,θ \ {0} ⊂ {z ∈ K | v(z) ≥ Q(z)} ⊂ S′.

Since S′ is closed, it follows that
⋃
θ>θ0

SK,Q,θ0 \{0} ⊂ S′. Therefore, S ⊂ S′.
Since V ∗K,Q,θ0 ≤ Q quasi everywhere on K and (ddcv∗)n does not charge
pluripolar sets except the origin, we have V ∗K,Q,θ0 ≤ v∗ almost everywhere
with respect to (ddcv∗)n on the support of (ddcv∗)n. Here we recall that
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if θ > 0, then V ∗K,Q,θ0(0) = v∗(0) = −∞. Therefore, by the domination
principle (Theorem 2.1), V ∗K,Q,θ0 ≤ v

∗ on Cn, so that V ∗K,Q,θ0 = v∗.

Corollary 3.7. Let φ be a globally defined admissible weight. Let 0 ≤
θ0 < 1. Then V ∗φ,θ increases to V ∗φ,θ0 quasi everywhere as θ ↘ θ0, and V ∗φ,θ
decreases to V ∗φ,θ0 as θ ↗ θ0.

The following example illustrates the above corollary.

Example 3.8. Let φ(z) = |z|2. Then for 0 < θ < 1 we have

Vφ,θ(z) =


θ log |z|+ θ

2
− θ

2
log

θ

2
if |z| <

√
θ/2,

|z|2 if
√
θ/2 ≤ |z| ≤

√
1/2,

log |z|+ 1
2
− 1

2
log

1
2

if |z| ≥
√

1/2.

If θ = 1, we get

Vφ,θ(z) = Vφ,1(z) = log |z|+ 1
2
− 1

2
log

1
2
.

We had given Vφ,0 earlier in (1.6).

Note that we have Dφ,θ = B(0, 1/
√

2) \ B(0,
√
θ/2), which increases to

B(0, 1/
√

2) \ {0} as θ decreases to 0.

We define the following notions. Let K ⊂ Cn be compact and w be an
admissible weight on K. We define

ΦNK,Q,θ(z) := sup{|P (z)|1/N | ‖wNPN‖K ≤ 1 where PN ∈ πN,θ},(3.4)

ΦK,Q,θ := sup
N
ΦNK,Q,θ = lim

N→∞
ΦNK,Q,θ.(3.5)

We can see that the supremum is actually a limit by following the proof
of Proposition 2.2.

Theorem 3.9. Let 0 ≤ θ ≤ 1. Let K ⊂ Cn be a compact set and w be a
continuous admissible weight on K. Then VK,Q,θ = logΦK,Q,θ.

Proof. Let PN ∈ πN,θ satisfy ‖wNPN‖K ≤ 1. Then

1
N

log |PN (z)| ≤ Q(z) on K.

Hence we get

(3.6) logΦK,Q,θ ≤ VK,Q,θ.

The rest of the proof essentially follows the proof of Callaghan [9]. We
will modify the last step using a result of Brelot–Cartan instead of the
Hartogs lemma.
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We fix ε > 0 such that θ + ε < 1. Let u ∈ Lθ+ε and u ≤ Q on K. By
Theorem 2.9 of Appendix B of [14], we have

u(z) = lim
j→∞

1
Nj

max
1≤k≤tj

log |Pk,j(z)|,

where the sequence Nj is decreasing and each Pk,j is a polynomial of degree
at most Nj . Here tj is a finite number depending on j.

As in [9], we write

Pk,j(z) :=
Nj∑
|α|=0

cα,k,jz
α, P ′k,j(z) :=

bNjθc∑
|α|=0

cα,k,jz
α,

where bxc is the largest integer less than or equal to x.
We remark that Pk,j−P ′k,j is a θ-incomplete polynomial. By Callaghan’s

asymptotic estimates, we get

u(z) = lim
j→∞

1
Nj

max
1≤k≤tj

log |Pk,j(z)− P ′k,j(z)|

pointwise on Cn.
By Theorem 3.4.3(c) of [13], for ε1 > 0, there exists j1 such that for

j ≥ j1 we have
1
Nj

max
1≤k≤tj

log |Pk,j(z)− P ′k,j(z)| ≤ Q+ ε1 on K,

since Q is continuous. Now we have

u(z) = lim
j→∞

1
Nj

max
1≤k≤tj

log |Pk,j(z)− P ′k,j(z)| ≤ logΦK,Q,θ(z) + ε1

for any ε1 and therefore u(z) ≤ logΦK,Q,θ(z). Hence

VK,Q,θ+ε(z) ≤ logΦK,Q,θ(z).

By Lemma 3.6, as ε→ 0 we get

(3.7) VK,Q,θ(z) ≤ logΦK,Q,θ(z).

Combining (3.7) with (3.6), we get the desired result.

Note that if θ = 0, we recover

(3.8) VK,Q = logΦK,Q where ΦK,Q := ΦK,Q,0.

Corollary 3.10. Let 0 ≤ θ < 1. Let φ be a globally defined continuous
admissible weight. Then Vφ,θ = logΦφ,θ, where

ΦNφ,θ(z) := sup{|P (z)|1/N | ‖e−NφPN‖Dφ,θ ≤ 1 where PN ∈ πN,θ},(3.9)

Φφ,θ := sup
N
ΦNφ,θ.(3.10)
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Corollary 3.11. Let 0 ≤ θ < 1. Let φ be a globally defined continuous
admissible weight. Then Vφ,θ = log Φ̃φ,θ, where

Φ̃Nφ,θ(z) := sup{|P (z)|1/N | ‖e−NφPN‖Cn ≤ 1 where PN ∈ πN,θ},(3.11)

Φ̃φ,θ := sup
N
Φ̃Nφ,θ.(3.12)

Proof. It is sufficient to show that for any PN ∈ πN,θ, ‖e−NφPN‖Cn ≤ 1
if and only if ‖e−NφPN‖Dφ,θ ≤ 1. The “only if” direction is trivial. For the
other direction, let PN ∈ πN,θ and ‖e−NφPN‖Dφ,θ ≤ 1. We will show that
‖e−NφPN‖Cn ≤ 1. We have e−Nφ(z)|PN (z)| ≤ 1 for z ∈ Dφ,θ so we get
N−1 log |PN (z)| ≤ φ(z) on Dφ,θ. Hence, N−1 log |PN (z)| is a competitor for
the extremal function Vφ,θ, and so N−1 log |PN (z)| ≤ Vφ,θ(z) ≤ φ(z) for all
z ∈ Cn. Therefore, e−Nφ(z)PN (z) ≤ 1 for all z ∈ Cn.

4. Asymptotics. Let K be a compact set in Cn and µ be a Borel
probability measure with support in K. We say that the pair (K,µ) has the
Bernstein–Markov property if for any ε > 0, there exists C > 0 such that

(4.1) ‖P‖K ≤ CeεN‖P‖L2(µ)

for all polynomials P of degree at most N . Equivalently, there exists MN > 0
with M

1/N
N → 1 as N → ∞ such that for all polynomials P of degree at

most N ,

(4.2) ‖P‖K ≤MN‖P‖L2(µ).

We remark that if K is a regular compact set, then (K, (ddcVK)n) has
the Bernstein–Markov property. See [16] for details.

We fix 0 ≤ θ ≤ 1. If these inequalities are satisfied for all P ∈ πN,θ for
all N ≥ 0, then we say the pair (K,µ) has the Bernstein–Markov property
for θ-incomplete polynomials.

Let µ be a measure such that (K,µ) has the Bernstein–Markov property
for θ-incomplete polynomials. Let {Pj} be an orthonormal basis of πN,θ with
respect to the inner product 〈f, g〉 :=

	
fḡ dµ. We define the Nth Bergman

function KN,θ(z, w) :=
∑d(N,θ)

j=1 Pj(z)Pj(w), where d(N, θ) is the dimension
of πN,θ.

The following two lemmas are generalizations of results of Bloom and
Shiffman [7].

Lemma 4.1. If (K,µ) has the Bernstein–Markov property for θ-incom-
plete polynomials, then for all ε > 0, there exists C > 0 such that

(4.3)
(ΦK,θ,N (z))2

d(N, θ)
≤ KN,θ(z, z) ≤ CeεN (ΦK,θ,N (z))2d(N, θ)

for all z ∈ Cn.
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Proof. To show the first inequality, we take P ∈ πN,θ and ‖P‖K ≤ 1.
Then

|P (z)| =
∣∣∣ �
K

KN,θ(z, w)P (w) dµ(w)
∣∣∣ ≤ �

K

|KN,θ(z, w)| dµ(w)

≤
�

K

(KN,θ(z, z))1/2(KN,θ(w,w))1/2 dµ(w)

≤ (KN,θ(z, z))1/2‖(KN,θ(w,w))1/2‖L1(µ)

≤ (KN,θ(z, z))1/2‖1‖L2(µ)‖KN,θ(w,w)‖L2(µ)

= (KN,θ(z, z))1/2d(N, θ)1/2.

Taking the supremum over all P as above, we have

ΦK,θ,N (z) ≤ (KN,θ(z, z))1/2d(N, θ)1/2,

which gives the first inequality.
For the second inequality, let {Pj} be an orthonormal basis of πN,θ. Then

by the Bernstein–Markov property we have ‖Pj‖K ≤ CeεN , hence

|Pj(z)| ≤ ‖Pj‖KΦK,θ,N (z) ≤ CeεNΦK,θ,N (z) for all j.

Thus, we have

KN,θ(z, z) =
d(N,θ)∑
j=1

|Pj(z)|2 ≤ d(N, θ)C2e2εN (ΦK,θ,N (z))2.

Hence, we get the second inequality.

Lemma 4.2. Let 0 < θ < 1. Let K be a regular compact set in Cn.
If (K,µ) has the Bernstein–Markov property for θ-incomplete polynomials,
then

1
2N

logKN,θ(z, z)→ VK,θ(z)

uniformly on compact subsets of Cn \ {0}.
Proof. We remark that d(N, θ) ≤ d(N) := d(N, 0) and d(N) =

(
N+n
n

)
≤

(N + n)n.
Taking logarithms in (4.3), we obtain

− log d(N, θ)
N

≤
log
( KN,θ(z,z)

(ΦK,θ,N (z))2

)
N

≤ log(CeεNd(N, θ))
N

.

By the above observation, we get

− n
N

log(N + n) ≤ 1
N

log
(

KN,θ(z, z)
(ΦK,θ,N (z))2

)
≤ logC

N
+ ε+

n

N
log(N + n).

Since ε is arbitrary, we have N−1 log(KN,θ(z, z)/(ΦK,θ,N (z))2) → 0, which
gives the desired result by Theorem 2.4.
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Let K be a compact set with an admissible weight w on K. Let µ be a
Borel probability measure on K. We say the triple (K,µ,w) has the weighted
Bernstein–Markov property if there exist MN > 0 with M1/N

N → 1 such that
for any polynomial PN of degree N ,

(4.4) ‖wNPN‖K ≤MN‖wNPN‖L2(µ).

We remark that if K is locally regular and Q is continuous then by Corol-
lary 3.1 of [5], (K, (ddcVK,Q)n, w) has the weighted Bernstein–Markov prop-
erty. Also, (Dφ, (ddcVφ)n, e−φ) has the weighted Bernstein–Markov property
if φ is continuous by Theorem 4.5 of [4].

Theorem 4.3. Let K be a compact set with a continuous admissible
weight w on K. Let µ be a probability measure on K such that (K,µ,w) has
the weighted Bernstein–Markov property. Then

(4.5) lim
N→∞

sup
k=1,...,d(N)

|Bk,N (z)|1/N = eVK,Q(z),

where {Bk,N}
d(N)
k=1 is an orthonormal basis for the polynomials with degree

at most N with respect to the measure w2Nµ.

We remark that unlike the unweighted case, where w = 1, each time N
changes, the basis and the L2 norms change.

Proof. By the weighted Bernstein–Markov property,

‖wNBk,N‖K ≤MN‖wNBk,N‖L2(µ) = MN ,

so
1
N

log
|Bk,N (z)|
MN

≤ Q(z) on K.

Hence
1
N

log
|Bk,N (z)|
MN

≤ VK,Q(z) on Cn.

Since M1/N
N → 1, we have

lim sup
N→∞

sup
k=1,...,d(N)

|Bk,n(z)|1/N ≤ lim sup
N→∞

eVK,Q(z)M
1/N
N ≤ eVK,Q(z).

Now we want to show that

lim inf
N→∞

sup
k=1,...,d(N)

|Bk,N (z)|1/N ≥ eVK,Q(z).

Let P be a polynomial of degree at most N such that ‖wNP‖K ≤ 1. We
write w = e−Q. Since {Bk,N}

d(N)
k=1 is an orthonormal basis, we have

P (z) =
d(N)∑
j=1

( �
K

PB̄j,Ne
−2NQ dµ

)
Bj,N (z).
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By the triangle inequality,

|P (z)| ≤
d(N)∑
j=1

∣∣∣ �
K

PB̄j,Ne
−2NQ dµ

∣∣∣ |Bj,N (z)|.

By the Cauchy–Schwarz inequality,

|P (z)| ≤
d(N)∑
j=1

∣∣∣( �
K

|P |2e−2NQ dµ
)1/2( �

K

|Bj,N |2e−2NQ dµ
)1/2∣∣∣ |Bj,N (z)|.

Now since ‖wNP‖K ≤ 1 and {Bk,N}
d(N)
k=1 is an orthonormal basis,

|P (z)| ≤
d(N)∑
j=1

|Bj,N (z)|.

This implies that

(4.6) |P (z)| ≤ d(N) sup
k=1,...,d(N)

|Bj,N (z)| for any z ∈ Cn.

We fix z ∈ Cn. Then

eVK,Q(z) ≤ lim inf
N→∞

sup
P∈πN,0, ‖wNP‖K≤1

|P (z)|1/N

≤ lim inf
N→∞

d(N)1/N sup
k=1,...,d(N)

|Bj,N (z)|1/N .

Here, the first inequality follows from (3.8). Now since d(N)1/N → 1, we get
the result.

Corollary 4.4. Let φ be a globally defined continuous admissible weight
and µ be a Borel probability measure on Dφ such that (Dφ, µ, e

−φ) has the
weighted Bernstein–Markov property. Then

(4.7) lim
N→∞

sup
k=1,...,d(N)

|Bk,N (z)|1/N = eVφ(z).

Here {Bk,N}
d(N)
k=1 is an orthonormal basis for the polynomials with degree at

most N with respect to the measure e−2Nφµ.

Remark 4.5. The proof of Theorem 4.3 shows that if additionally VK,Q
is continuous, then the convergence in (4.5) is locally uniform. Thus, the
convergence in (4.7) is locally uniform.

If (4.4) holds for any PN ∈ πN,θ then we say that (K,µ,w) has the
weighted Bernstein–Markov property for θ-incomplete polynomials.

We remark that if a triple (K,µ,w) has the weighted Bernstein–Markov
property, then it has the weighted Bernstein–Markov property for θ-in-
complete polynomials.
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Using only the orthonormal basis for πN,θ and using Theorem 3.9 instead
of (3.8) we get the following theorem by the same proof as for Theorem 4.3.

Theorem 4.6. Let 0 ≤ θ < 1. Let K be a compact set with a continuous
admissible weight w on K. Let µ be a measure on K such that (K,µ,w)
has the weighted Bernstein–Markov property for θ-incomplete polynomials.
Then

lim
N→∞

sup
k=1,...,d(N)

|Bθ
k,N (z)|1/N = eVK,Q,θ(z),

where {Bθ
k,N}

d(N,θ)
k=1 is an orthonormal basis for πN,θ with respect to the mea-

sure w2Nµ.

Corollary 4.7. Let 0 ≤ θ < 1. Let φ be a globally defined continu-
ous admissible weight. If (Dφ, µ, e

−φ) has the weighted Bernstein–Markov
property then

(4.8) lim
N→∞

sup
k=1,...,d(N)

|Bθ
k,N (z)|1/N = eVφ,θ(z),

where {Bθ
k,N}

d(N,θ)
k=1 is an orthonormal basis for πN,θ with respect to the mea-

sure e−2Nφµ.

Finally, we prove the strong Bergman asymptotics in the weighted θ-
incomplete setting, following [2] closely. We fix 0 ≤ θ < 1. Let φ be a
globally defined admissible weight and φ(z) ≥ (1 + ε) log |z| if |z| � 1. Let
{p1, . . . , pd(N,θ)} be an orthonormal basis for πN,θ with respect to the inner
product 〈f, g〉 :=

	
Cn fḡe

−2Nφωn where ωn(z) = (ddc|z|2)n/4nn! on Cn. We
denote the L2 norm by ‖pN‖2Nφ := ‖pN‖2ωn,Nφ =

	
Cn |pN (z)|2e−2Nφ(z)ωn(z).

We define the Nth θ-incomplete Bergman function by

(4.9) KN (z) := Kφ
N,θ(z, z) =

d(N,θ)∑
j=1

|pj(z)|2e−2Nφ(z).

By the reproducing property of the Bergman functions we have

(4.10) KN (z) = sup
pN∈πN,θ\{0}

|pN (z)|2e−2Nφ(z)/‖pN‖2Nφ.

Theorem 4.8. Let φ ∈ C2(Cn) with φ(z) ≥ (1 + ε) log |z| for |z| � 1. If
Vφ,θ ∈ C1,1(Cn \ {0}), then (ddcVφ,θ)n is absolutely continuous with respect
to Lebesgue measure on Cn \ {0} and det(ddcφ)ωn = (ddcVφ,θ)n on Cn \ {0}
as (n, n) forms with L∞loc(Cn) coefficients. For a compact set K, we have a
local bound

(4.11)
1

d(N, θ)
KN (z) ≤ C = C(K) for z ∈ K.
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Moreover,

(4.12)
1

d(N, θ)
KN →

1
1− θn

χDφ,θ∩P
det(ddcφ)

(2π)n
in L1(Cn)

and

(4.13)
1

d(N, θ)
KNωn →

1
1− θn

(ddcVφ,θ)n

(2π)n
weak∗ on Dφ,θ ∩ P.

Here det(ddcu) := (ddcu)n/ωn and for a twice continuously differentiable
function u, we have det(ddcu) = 2idet[∂2u/∂zj∂z̄k]j,k=1,...,n. We remark that
we assume Vφ,θ ∈ C1,1(Cn \ {0}).

We will use the following lemma from measure theory in the proof of the
theorem.

Lemma 4.9 ([3, Lemma 2.2]). Let (X,µ) be a measure space and let
{fN} be a sequence of uniformly bounded, integrable functions on X. If f is
a bounded, integrable function on X with

(1) limN→∞
	
X fN dµ =

	
X f dµ,

(2) lim supN→∞ fN ≤ f a.e. with respect to µ,

then fN converges to f in L1(X,µ).

Proof of Theorem 4.8. The θ = 0 case is proven by Berman in [2], so we
assume 0 < θ < 1.

By assumption, Vφ,θ = φ on Dφ,θ ∩ P and both are C1,1 on Dφ,θ ∩ P .
Therefore, det(ddcφ)ωn = (ddcVφ,θ)n on Dφ,θ∩P almost everywhere as (n, n)
forms with L∞ coefficients by the argument in Section 12 of [11].

First of all, to prove an asymptotic upper bound on (1/d(N, θ))KN (z)
at a point z0 = (z0

1 , . . . , z
0
n), we can assume that near z0, φ is of the form

(4.14) φ(z) =
n∑
j=1

λj |zj − z0
j |2 +O(|z − z0|3)

as in [2]. Namely, we assume that φ(z0) = 0 and the first order partial
derivatives of φ vanish at z0.

Following [2], for each z0 ∈ Cn there exist R > 0 and a constant C such
that

(4.15) |φ(z)| ≤ C|z − z0|2 on B(z0, R),

and for any R > 0, we have

(4.16) lim
N→∞

sup
z∈B(0,R)

∣∣∣Nφ(z/
√
N + z0)−

n∑
j=1

λj |zj |2
∣∣∣ = 0.

We fix a point z0 in Cn. We take a polynomial pN ∈ πN,θ satisfying the
extremal property (4.10) at z0. Then
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1
d(N, θ)

KN (z0) =
|pN (z0)|2e−2Nφ(z0)

d(N, θ)‖pN‖2Nφ
=

|pN (z0)|2

d(N, θ)
	
Cn |pN (z)|2e−2Nφ(z)ωn(z)

.

By positivity of the integrand,

1
d(N, θ)

KN (z0) ≤ |pN (z0)|2

d(N, θ)
	
|z−z0|≤R/

√
N |pN (z)|2e−2Nφ(z)ωn(z)

.

We choose R as in (4.15) so that we can replace φ(z) by C|z − z0|2 in the
integrand, and thus

1
d(N, θ)

KN (z0) ≤ |pN (z0)|2

d(N, θ)
	
|z−z0|≤R/

√
N |pN (z)|2e−2NC|z−z0|2ωn(z)

.

We apply the subaveraging property to the subharmonic function |pN |2 on
the ball {|z − z0| ≤ R/

√
N} with respect to the radial probability mea-

sure (with center z0) e−2NC|z−z0|2ωn(z)/
	
|z−z0|≤R/

√
N e
−2NC|z−z0|2ωn(z) to

obtain
1

d(N, θ)
KN (z0) ≤ 1

d(N, θ)
	
|z−z0|≤R/

√
N e
−2NC|z−z0|2ωn(z)

≤ Nn

d(N, θ)
	
|z′|≤R e

−2C|z′|2ωn(z′)
.

For the last inequality, we used a change of variable z 7→ z′ := (z − z0)
√
N ,

where ωn(z′) = Nnωn(z). Since d(N, θ) � (1−θn)d(N, 0), we have d(N, θ) ≥
(1 − θ̃n)d(N, 0) for all N ≥ N0 for some θ̃ ≥ θ. Now using the estimate
d(N, θ) ≥ (1− θ̃n)d(N, 0) = (1− θ̃n)

(
n+N
n

)
≥ (1− θ̃n)Nn/n! for all N ≥ N0,

we get

1
d(N, θ)

KN (z0) ≤ n!
(1− θ̃n)

	
|z′|≤R e

−2C|z′|2ωn(z′)
for all N ≥ N0.

The right hand side of the inequality is uniformly bounded. As z0 varies on
the compact set K, we get a constant C(K) giving a local bound for all
N ≥ N0. By the continuity of (1/d(N, θ))KN (z), and considering

max
N=1,...,N0

sup
z∈K

1
d(N, θ)

KN (z),

we get the local bound (4.11) at each point of K.
For the rest of the proof, we fix z0 and start with the inequality

1
d(N, θ)

KN (z0) ≤ |pN (z0)|2

d(N, θ)
	
|z−z0|≤R/

√
N |pN (z)|2e−2Nφ(z)ωn(z)

,

which holds for any R > 0. By using the same change of variable and
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estimates as above, we get

1
d(N, θ)

KN (z0) ≤ n!|pN (z0)|2

(1− θ̃n)
	
|z′|≤R |pN (z′/

√
N + z0)|2e−2Nφ(z′/

√
N+z0)ωn(z′)

for all N ≥ N0 where θ̃ ≥ θ. Multiplying the integrand by

e−2
Pn
j=1 λj |z′j |2e2

Pn
j=1 λj |z′j |2

and taking the infimum of exp[−2|Nφ(z′/
√
N)−

∑n
j=1 λj |z′j |2|] on B(0, R)

out of the integral, we get

1
d(N, θ)

KN (z0) ≤
n!|pN (z0)|2 exp[2 sup|z′|≤R |Nφ(z′/

√
N)−

∑n
j=1 λj |z′j |2|]

(1− θ̃n)
	
|z′|≤R |pN (z′/

√
N + z0)|2e−2

Pn
j=1 λj |z′j |2ωn(z′)

for all N ≥ N0. We apply the subaveraging property to the subharmonic
function |pN (z′/

√
N + z0)|2 with respect to the radial probability measure

e−2
Pn
j=1 λj |z′j |2ωn(z′)	

|z′|≤R e
−2

Pn
j=1 λj |z′j |2ωn(z′)

and we get

1
d(N, θ)

KN (z0) ≤
n! exp[2 sup|z′|≤R |Nφ(z′/

√
N)−

∑n
j=1 λj |z′j |2|]

(1− θ̃n)
	
|z′|≤R e

−2
Pn
j=1 λj |z′j |2ωn(z′)

for all N ≥ N0. By (4.16),

exp
[
2 sup
|z′|≤R

∣∣∣Nφ(z′/
√
N)−

n∑
j=1

λj |z′j |2
∣∣∣]→ 1 as N →∞.

Therefore,

lim sup
N→∞

1
d(N, θ)

KN (z0) ≤ n!

(1− θ̃n)
	
|z′|≤R e

−2
Pn
j=1 λj |z′j |2ωn(z′)

.

As R → ∞, the Gaussian integral on the right hand side goes to πn

2nλ1···λn
if all λj > 0 and to +∞ otherwise. Since det(ddcφ(z0)) = 4nn!λ1 · · ·λn, we
have

lim sup
N→∞

1
d(N, θ)

KN (z) ≤ 1
1− θ̃n

χP
det(ddcφ)

(2π)n
a.e. on Cn.

Letting θ̃ → θ, we obtain

lim sup
N→∞

1
d(N, θ)

KN (z) ≤ 1
1− θn

χP
det(ddcφ)

(2π)n
a.e. on Cn.

By the extremal property (4.10) and the local bound (4.11), we get

(4.17)
1
Nn
|pN (z)|2e−2Nφ(z)/‖pN‖2Nφ ≤ C := C(Dφ,θ)
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on Dφ,θ for any pN ∈ πN,θ. Next, we will show that

(4.18)
1
Nn

KN (z) ≤ CNe−2N(φ(z)−Vφ,θ(z)) on Cn.

Let pN ∈ πN,θ be such that ‖pN‖2Nφ = N−n. Then by (4.17) we have

|pN (z)|2e−2Nφ(z) ≤ C on Dφ,θ.

By taking logarithms, we get
1

2N
log |pN (z)|2 ≤ φ(z) +

1
2N

logC on Dφ,θ

and thus
1

2N
log |pN (z)|2 ≤ Vφ,θ(z) +

1
2N

logC on Cn.

So from the extremal property of Bergman functions (4.10),
1
Nn

KN (z) = sup
‖pN‖2Nφ=N−n

|pN (z)|2e−2Nφ(z) ≤ Ce−2N(φ(z)−Vφ,θ(z)) on Cn.

Since φ(z) > Vφ,θ(z) on Cn \Dφ,θ, we find that

lim
N→∞

1
Nn

KN (z) = 0 on Cn \Dφ,θ.

Using d(N, θ) � (1− θn)d(N, 0), we obtain

lim
N→∞

1
d(N, θ)

KN (z) = 0 on Cn \Dφ,θ,

giving

(4.19) lim sup
N→∞

1
d(N, θ)

KN (z) ≤ 1
(1− θn)

χDφ,θ∩P
det(ddcφ)

(2π)n
a.e. on Cn.

From (4.18) and the growth assumption on φ, for a sufficiently large R, there
is a C with

(4.20)
1
Nn

KN (z) ≤ C|z|−2Nε for |z| > R.

By combining the local bound (4.11) and above estimate (4.20), we get a
global bound for (1/d(N, θ))KN . Therefore, Lebesgue’s dominated conver-
gence theorem gives

(4.21) lim
N→∞

�

Cn\Dφ,θ

1
d(N, θ)

KNωn = 0.

Next, we show that

(4.22) lim
N→∞

�

Dφ,θ∩P

1
d(N, θ)

KNωn =
1

1− θn
�

Dφ,θ∩P

det(ddcφ)
(2π)n

ωn.
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Indeed, we know that
	
Cn KNωn = d(N, θ), and so using (4.21), we have

1 = lim
N→∞

�

Cn

1
d(N, θ)

KNωn = lim
N→∞

�

Dφ,θ∩P

1
d(N, θ)

KNωn.

On the other hand, using the positivity of the integrand and applying (4.19)
on Dφ,θ, we have

1 = lim
N→∞

�

Dφ,θ

1
d(N, θ)

KNωn ≤
1

1− θn
�

Dφ,θ∩P

det(ddcφ)
(2π)n

ωn.

By the first part of this theorem, we can replace det(ddcφ)ωn by (ddcVφ,θ)n,
which has total mass (2π)n(1− θn) on Dφ,θ ∩ P ; hence,

1 = lim
N→∞

�

Dφ,θ∩P

1
d(N, θ)

KNωn

≤ 1
1− θn

�

Dφ,θ∩P

(ddcVφ,θ)n

(2π)n
=

(2π)n(1− θn)
(2π)n(1− θn)

= 1.

This gives (4.22).
We will use this relation, together with (4.12), to show that

(4.23)
1

d(N, θ)
KN →

1
1− θn

χDφ,θ∩P
det(ddcφ)

(2π)n
in L1(Cn).

We set

fN :=
1

d(N, θ)
KN and f :=

1
1− θn

χDφ,θ∩P
det(ddcφ)

(2π)n
.

By the upper bound (4.19), we have lim supN→∞ fN ≤ f almost everywhere
and by (4.21) and (4.22),

lim
N→∞

�

Cn
fNωn =

�

Cn
fωn.

Thus, by Lemma 4.9, we get (4.23). This implies the weak∗ convergence in
(4.13) and completes the proof of the theorem.
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