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Weighted 6-incomplete pluripotential theory

by MUHAMMED ALi ALAN (Bloomington, IN)

Abstract. Weighted pluripotential theory is a rapidly developing area; and Callag-
han [Ann. Polon. Math. 90 (2007)] recently introduced #-incomplete polynomials in C"
for n > 1. In this paper we combine these two theories by defining weighted #-incomplete
pluripotential theory. We define weighted 6-incomplete extremal functions and obtain a
Siciak—Zahariuta type equality in terms of #-incomplete polynomials. Finally we prove that
the extremal functions can be recovered using orthonormal polynomials and we demon-
strate a result on strong asymptotics of Bergman functions in the spirit of Berman [Indiana
Univ. Math. J. 58 (2009)].

1. Introduction. The theory of #-incomplete polynomials in C" for
n > 1 was recently developed by Callaghan [9]. It has many applications
in approximation theory. He also defined interesting extremal functions in
terms of #-incomplete polynomials and related plurisubharmonic functions.

This paper has three goals. The first one is to further develop the 6-
incomplete pluripotential theory of Callaghan. The second goal is to com-
bine this theory with weighted pluripotential theory and get a unified the-
ory by defining weighted #-incomplete pluripotential theory in C™. If § = 0,
we get weighted pluripotential theory, and for the weight w = 1, we get
f-incomplete pluripotential theory. Finally we show that extremal functions
in these settings can be recovered asymptotically using orthonormal poly-
nomials.

In this section we recall some definitions and major results of weighted
pluripotential theory and we recall Berman’s paper [2] which is a special case
of weighted pluripotential theory. Our initial goal was to study Berman’s re-
cent work on globally defined weights within the framework of #-incomplete
pluripotential theory. We were able to prove many results for admissible
weights defined on closed subsets of C™.

2010 Mathematics Subject Classification: Primary 32U35.
Key words and phrases: weighted pluripotential theory, 8-incomplete pluripotential theory,
weighted Bergman kernels.

DOI: 10.4064/ap99-2-1 [107] © Instytut Matematyczny PAN, 2010



108 M. A. Alan

In the second section we recall some important results of #-incomplete
pluripotential theory. We improve a result of Callaghan and we extend a
result of Bloom and Shiffman [7] to the #-incomplete extremal function Vi g
associated to a compact set K for 0 <60 < 1.

In the third section we work on closed subsets of C". We define the
weighted f-incomplete extremal function Vi g g for a closed set K and an
admissible weight function w and we give various properties of this extremal
function. We also show that Vi g ¢ can be obtained via taking the supremum
of #-incomplete polynomials whose weighted norm is less than or equal to 1
on K, generalizing the analogous result for Vi g (unweighted case) from
the previous section. In particular we state analogous results in the case of
global weights.

In the last section we recall the Bernstein—Markov property relating the
sup norms and L?(x) norms of polynomials on a compact set K with meas-
ure u. We define a version of the Bernstein—-Markov property for #-incom-
plete polynomials in the weighted setting. Then we prove results on asymp-
totics of orthonormal polynomials to extremal functions in the #-incomplete
and weighted setting. Finally in Theorem we prove a result on strong
asymptotics of Bergman functions analogous to the main theorem in [2].

1.1. Weighted pluripotential theory. We give some basic definitions
from weighted pluripotential theory. A good reference is Saff and Totik’s
book [14] for n = 1 and Thomas Bloom’s Appendix B of [14] for n > 1.

Let K be a nonpluripolar closed subset of C". An upper semicontinuous
function w : K — [0, 00) is called an admissible weight function on K if

(i) the set {z € K | w(z) > 0} is not pluripolar,

(i) if K is unbounded, then |z|w(z) — 0 as |z| — o0, z € K.

We define Q = @, = — logw, and we will use Q and w interchangeably.

The weighted pluricomplex extremal function of K with respect to @ is
defined as

(1.1) Vi g(z) :=sup{u(z) |ue L, u < Q on K},
where the Lelong class L is defined as
(1.2) L := {u | u is plurisubharmonic on C", u(z) < log™ |z| + C},

where C' depends on u.

We recall that the upper semicontinuous regularization of a function v
is defined by v*(z) := limsup,,_,, v(w) and it is well known that the upper
semicontinuous regularization of Vi ¢ is plurisubharmonic and in Lt where

LT :={uecL|log"|z|+C <u(z)},

where C' depends on u. By Lemma 2.3 of Bloom’s Appendix B of [14], the
support, Sy, of (dd°Vy )" is a subset of Sy, := {2z € K | V¢ 5(2) = Q(2)}.
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Here dd‘v = 2i00v and (dd®v)" is the complex Monge-Ampere operator
defined by (ddv)™ = ddv A - - - Addv for plurisubharmonic functions which
are C2. For the cases considered in this paper see [12, [10] for the details of
the definition.

A set E is called pluripolar if E C {z € C" | u(z) = —oo} for some
plurisubharmonic function u. If a property holds everywhere except on a
pluripolar set we will say it holds quasi everywhere.

1.2. A special case of weighted pluripotential theory. We re-
call some definitions from Berman’s paper [2], where the weight is defined
globally in C™. Let ¢ be a lower semicontinuous function, and ¢(z) >
(14¢)log|z| for z > 1 for some fixed € > 0. The weighted extremal function
is defined as
(1.3) Vs(2) :=sup{u(z) |u € L and u < ¢ on C"}.

We define

S ={2€C" |V (2) > ¢(2)}, Sp:=supp((dd°V;)").
This is a special case of weighted pluripotential theory with K = C™ and
Q@ = ¢. Hence Sy C S7.

Berman [2] studied the case where ¢ € C1:1(C"). In this case we define

(14 Dy = {z € C" [ Vy(2) = 6(2)},

(1.5) P ={z¢e C"|dd°¢(z) exists and is positive}.

We remark that Dy is a compact set and Sy C Dy. By Proposition 2.1 of
2], if ¢ € CH1(C™), then V; € CH(C™) and (ddVy)"™ = (dd°p)™ on DgN P
almost everywhere as (n,n) forms with L coefficients.

EXAMPLE 1.1. Let ¢(2) = |2|?. Then

v, (2) 2|2 if |2] < 1/v2,

Z) =

? log|z|+ 1 —3log3 if [2] >1/V2.

Clearly the plurisubharmonic function, V', on the right hand side is less
than or equal to ¢, hence V' < V. On the other hand the support of the
Monge-Ampere measure of V' is the closed ball of radius 1/ V2 centered at
the origin. Since any competitor, u, for the extremal function is less than or
equal to |z|? on this closed ball, by the domination principle (see Appendix
B of [14] or Theorem [2.1/ below) u < V on C". Therefore Vg <V and hence
equality holds.

(1.6)

2. f-Incomplete pluripotential theory. We recall the basic notions
of f-incomplete pluripotential theory from [9]. We fix 0 < 6 < 1. A 0-
incomplete polynomial in C™ is a polynomial of the form
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(2.1) P(z) = Z Caz®,

|la|=[NO]
where [z] is the least integer greater than or equal to x.

The set of all f-incomplete polynomials of the form will be denoted
by mn6. We remark that when 6 = 0, my g is the set of all polynomials
of degree at most N; and when 6 = 1, mnyg is the set of homogeneous
polynomials of degree N.

Related classes of plurisubharmonic functions are defined as follows (see
[9] for details):

Ly ={ue L |u(z) <Ologl|z| + C for |z] < 1},
Ly = {u € Ly | max(flog|z|,log |z|) + C < u(z) for all z € C"},
where C' depends on u.

We remark that if P € 7y then N~1log|P| € Ly. Another observation
is that if 6; > 605, then Lg, C Ly, .

The next theorem gives a domination principle for Ly classes.

THEOREM 2.1 ([9, Theorem 3.15]). Let0 <60 < 1. Ifu€ Ly andv € L}
and if u < v almost everywhere with respect to (dd°v)™, then u < v on C™.

We remark that, for 0 < § < 1, we have u(0) = v(0) = —oo and the
origin is a distinguished point as it is charged by (dd“v)".

Callaghan [9] defined the following extremal function for a set £ C C™:
(2.2) VEo(2) :=sup{u(z) | u € Ly and u < 0 on E}.

We will call it the 0-incomplete extremal function of E. Its upper semicon-
tinuous regularization, VE gs 1s in L('; if F is bounded and nonpluripolar by
Lemma 3.7 of [9]. Also if K is a regular compact set in C™, then Vico = Vi
Hence it is continuous except at z = 0. Recall that regular means that the ex-
tremal function of K, Vi := Vi g, is continuous. We remark that (ddCVE*ﬂ)”

is supported in E U {0} if 6 > 0.
We define the following functions for a compact set K. For N > 1 we let

Pron(z) =sup{|f(2)|| fenng [|fllxk <1},
(2.3) Py p= sup (Do) V.

The next proposition shows that the supremum in ([2.3) is actually a limit.

PROPOSITION 2.2. With the above notation we have

1 1
— log @ =1 — log ® .
Sljifp N 0g¥PK 9N Ngnoo N OgPK 9N

Hence, by [9] we have limy_.oc N1 log @k g N = Vi .
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Proof. First of all, we have @k g Pk 9.1 <Pk 9,741 for all integers I, J > 0.
For if P(z) = Zl{l\ﬂ@ﬂ anz® and Q(z) = Zizﬂm boz®, then PQ(z) =
S e ron Ca?® i in Ty pg, since [0] + [61] > [6(] +I)].

By taking logarithms, we get
(2.4) log @K,gﬂj + log @K,G,I < log @K’Q’J_A'_I.

Therefore, by Theorem 4.9.19 of [I], the limit limy_,o, N1 log P N exists
and equals supy N~ !log ProN.- m

In the next section we will extend this result to the weighted case. This
proposition also fixes a gap in the proof of Theorem 8.2 in [§] and we will
use it in the proof of Theorem

Let K be a compact set in C". For 0 < 6 < 1, we define the following
f-incomplete hulls:

(2.5) Koo ={z€ 2] |Px(2)| < ||Px|lx where Py € mng}.

Again if 2 = C", then we will drop {2 and write I?g. Using Theorem 4.4
of [9], we have the following theorem.

THEOREM 2.3. Let K CC" and 0 <0 < 1. Then Vkg = Vf(g.

It is clear that for 8 > 0, the origin always belongs to I?g for any set K,
SO f?g is often larger than the usual polynomially convex hull K = IA(O. It
is also easy to see that Ky = {z € C"| Vg < 0}.

The following theorem extends a result of Bloom and Shiffman [7] to the
f-incomplete case.

THEOREM 2.4. Let 0 < 6 < 1 and K be a regular compact set in C".
Then

%log Pron — Vie

uniformly on compact subsets of C" \ {0}.

Proof. Let ¢ > 0. We will show that for every a € C™ \ {0} there exist
d =0(a) > 0 and Ny := Ny(a) > 1 such that
?(2)
= 1/N
25" (2)
for all N > Ny, where @ := P 9, PN 1= Pk ng. Since any compact subset

of C™\ {0} can be covered by finitely many balls of the form B(a,d(a)), we
are done.

Without loss of generality we may assume that a; # 0 where a =
(a1,...,an). We define p;(2) := z1/co such that ||p1]|x < 1. Hence, @,(z) >
|p£0ﬂ(z)| in C" for all » > 1.

IN

e if|z—al<é
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By Proposition we choose M > 1 such that @(a)/fﬁjl\//IM(a) < /4,
Next we take § >0 small enough that &(z)/®(a) <e*/* and @}V/[M (a)/@}v/[M(z)

< e/ if |z — a| < 6. These are possible since & and @MM are continuous
and nonzero on C" \ {0}.

Let N > M. There exist k,r such that N = kM + r where k and r
depend on M, and r < M.

Now we have

| < d(2) < d(2) 1 _ d(2) 1
Ty T @YY N ) @y ()N 2 (o)

which equals

)

o(z) (@) ()N
oM () oV (z)
which is less than or equal to
o(z) D(a) 03" (a) (B(2))N
2(a) 1M (a) 21 (z) &N (z)
for all z € C™\ {0}. Thus, for z € B(a,d) and N > Ny we have
o(z) D(a) 3" (a) (B(2))N
2(a) M (a) 23 (2) 2N (2)

where Ny is chosen so large that (my/mg)™/N < e/* for N > Ny. Here
m1 = ||2| (a,s) and mg := min(mq,inf{|p1(2)| | z € B(a,d)}). =

)

g
9

Note that for 8 = 0, an analogous proof holds for all a € C™. Hence, it
gives uniform convergence on all compact subsets of C™, which is the original
result of Bloom and Shiffman.

3. Weighted f#-incomplete pluripotential theory. In this section,
we define and develop two weighted versions of #-incomplete pluripotential
theory. The first one is the #-incomplete version of the weighted pluripoten-
tial theory on closed subsets of C" and the second one is the #-incomplete
version of the special case of weighted pluripotential theory studied in [2].
As in the 8 = 0 case, the second version is a special case of the first.

Let K be a closed set in C" and w be an admissible weight on K. We
define

(3.1) Vi.00(2) :=sup{u(z) |u € Ly, u < Q on K}.

We remark that Vikgoe, < Vkge, if 61 > 02. The 6 = 0 case gives
the classical weighted pluripotential theory. Following Siciak [I5], it can be
shown that Vi g9 = Vi g 4, 80 that Vi g ¢ is continuous on C" \ {0}, for K
locally regular and @ continuous. Recall that K locally regular means for
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all @ € K, K N B(a,r) is regular for all » > 0, where B(a,r) := {z € C" |
|z —al <r}.

Comparing the defining families, we get the following obvious inequali-
ties.

PROPOSITION 3.1. Let K1 C Ky and let w be a function defined on Ko
which is an admissible weight on both K1 and Ko. Then Vi, 0.0 > Vi,.Q,6-

Using (ii) in the definition of admissibility from Section we show
that Vi g ¢ coincides with the weighted f-incomplete extremal function of a
compact subset of K.

LEMMA 3.2. Let K be a closed unbounded set in C"* and w be an admis-
sible weight function on K. Then Vi, g9 = Vi g for some p > 0 where
K,={z€K ||z < p}.

Proof. Since Vl’ngﬁ € L, there exist C' and p such that

Vi, Q.0(2) < V}p,Qﬂ(z) <loglz|+C for |z| > p.
Now by the second condition of admissibility we may choose p large enough

that
Q(z) —log|z| >C+1 for ze K\ K,.

If u € Ly and u < Q on K, so that u < Vi, ¢, by the above inequalities
we get u < (Q on K. Hence we get Vk,.0.0 < Vi ,@e- The other inequality is
given by Proposition [3.1] which gives the equality. m

PROPOSITION 3.3. Let K be a closed subset of C™ and let w be an ad-
missible weight function on K. Then V}}’Qﬂ € Lg'.

Proof. The case 6 = 0 is classical and well known. For 0 < 8 < 1 we will
follow the proof of Lemma 3.7 of [9].

Since Vi g < Vic g and Vg g € LT, we have Vicos € L

Next we show that Vi 55 € Lg. Let M :=sup.cp(o,1) Vi (%) and u be
in the defining class for Vi g . Then 671 (u — M) < 0 on B(0,1). Hence it
is a competitor for the pluricomplex Green function of the unit ball B(0, 1)
with logarithmic pole at the origin. The pluricomplex Green function of a
bounded domain {2 with logarithmic pole at a € §2 is defined by

(3.2)  gn(z,a):=sup{u(z) | u € PSH(£2), u < 0 and
u(z) —log|z —al < C as z — a},
and gp(0.1y(2,0) = log|z|. Hence 0~ ' (u— M) < log|z| on the unit ball. Since
u is arbitrary, we get Vi 5 »(2) < 0log |z|+M on B(0,1). Thus Vg 5 € Ly.
By Lemma we may assume K C B(0,R) for some R. Let A :=
SUP.cB(0,R) (flog |z| — Q(2)). Then
u(z) = max(flog |z|,log |z]) — A
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is a competitor for the extremal function Vi g g and u € L, which implies

We define the following sets:

Sk =12 € K| Vg go(2) > Q(2)},
Sk.Q.o = supp((dd°VE g o))

LEMMA 3.4. Let K be closed in C"™ and let w be an admissible weight on

Proof. The classical case, i.e., when 8 = 0, is Lemma 2.3 of Appendix B
of [I4]. Therefore, we assume 0 < 6 < 1. Let 29 be a point in K \ {0} such
that V3 ) o(20) < Q(z0) — € for some positive . We will show that Vi 5 4 is
maximal in a neighborhood of z, i.e (dd° Vi.gp)" =0 there.

Since @ is lower semicontinuous, the set {z €K | Q(z) > Q(z0) —e/2}
is open relative to K. Similarly, {z € C" | Vi 5 4(2) < V g4(20) +¢/2} is
open. Thus we may find a ball of radius r around zy such that

sup V] inf Q(z
2€B(z0,r) KQQ( ) 2€B(z0,m)NK ( )
and 0 & B(zp,r).

By Theorem 1.3 of Appendix B in [14], we can find a plurisubharmonic
function u with u > Vi o g on B(zo,7), u =V 5 g on C"\ B(20,7), and u
maximal on B(zo, 7). Then u < Vi 4 because

u(z) < sup V, < inf Q(z) for all z € B(zp,1).
( ) 2€B(z0,r) K7Q76( ) z€B(z0,r)NK ( ) ( )
Since B(zp,r) N {0}, we have u € Ly. Hence u = Vi g6+ Therefore, Vi 5 o
is maximal in a neighborhood of zy. Hence zg is not in Sk g¢. =

A special case is when the admissible weights are globally defined. Let
¢ : C" — R be an admissible weight function. Generalizing the case of [2],
we define weighted #-incomplete extremal functions by

(3.3) Vs0(2) =sup{u(z) |u € Ly and u < ¢} for 0 <6 < 1.

Observe that Vgﬁ = V¢ if ¢ is continuous, for in this case Vgﬂ < ¢ on
C™ so that V;’g < Vs9. We also remark that 6 = 0 gives V3o = Vg, and
Voo, < Ve, if 01 > 6o since Ly, C Ly,.

We define the following sets:

Dyg:={2zecC"| VJ’H(Z') > ¢(z)} and Syg:= supp((dchgﬂ)").

If 0 = 0, we will write Dy g = Dy and Sy = Sg. If ¢ is continuous, then
Vs,6 is continuous and we have

Dyp={z€C"[Vs0(2) = &(2)}.
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If ¢ is a globally defined admissible weight function, then we define K :=
Dy and Q := ¢|g. Clearly, Vq;’:e < @ quasi everywhere in K so Vq;"ﬁ <
*

Vk.qo

Conversely, on K, Vk s < @ = ¢ = Vyg quasi everywhere. Since
(dd°V )" is supported on K U {0}, by Theorem [2.1l we have Vi o o < V).
Hence V[’QQ 0= Vge- This shows that we may reduce the global weighted
situation to the compact case by considering the sets Dy g.

As a consequence of the above definitions, Lemma and earlier results
of this section we have the following corollary.

COROLLARY 3.5. Let ¢ be a globally defined admissible weight. Then:

(i) Sgp = supp((ddCV(;‘,e)”) C DgoU{0} if § >0, and Supp((ddCVg)")
C Dy for 6 =0,
(ii) Dy1 CDgg, CDgg, CDgyo= Dy when 01 > 0o,
(iil) Vg is in L for 0 <6 <1,
(iv) ifu € Ly and u < ¢ on Dyg then u < V.

The next lemma shows the monotonicity of the extremal functions under
increasing and decreasing 6.

LEMMA 3.6. Let K C C" be a closed set and let w be an admissible
weight on K. For 0 < 0y < 1, VI?Q g increases to V;;Q g, quasi everywhere
as 0\, 0y, and Vf;Q o decreases to Vng 0, @S 6 /0.

Proof. The last statement is clear, thus we consider 6 \, 6y. Clearly, we
have monotonicity of the V Q.6 Since Vi 0,0 18 bounded above by Vg 4 4,
Vi Q.0 increases to a functlon v, whose upper semicontinuous regularlzatlon

v* is plurisubharmonic and again bounded above by V Q0"

Since V¢ g € L, we have Vi g.0(2) = max(flog |z|,log |z|) + My where
My is a constant depending on 6. As 0 \, 0y, we get v* € L;O since v* <
V. .0, Also by monotonicity, (dd°Vy g )" — (dd“v*)" weak™.

We write S := supp((dd®v*)™) \ {0} and S" := {z € K | v*(2) > Q(2)}.
By lower semicontinuity of @, and upper semicontinuity of v*, the set S’ is
closed. Next we will show that v* > @ on S by showing that S C S’.

Since (dd°Vy o o)" — (dd“v*)", we have S C Uy-q, Sk,0.0 \ {0} By
Lemma

U Ska0\ {0} € | Sicqo\ (0} € {z € K | v(2) > Q()} € &

0>0p 0>0¢

Since " is closed, it follows that (s~ Sk,Q.6, \{10} C S”. Therefore, S C 5.
Since VI?,Q,QO < @ quasi everywhere on K and (dd“v*)"™ does not charge
pluripolar sets except the origin, we have Vi 5o < v* almost everywhere
with respect to (dd°v*)™ on the support of (dd“v*)"™. Here we recall that
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if & > 0, then Vi ,, (0) = v*(0) = —oo. Therefore, by the domination
principle (Theorem , Vg, SV on C"™, so that VEQe, = v

COROLLARY 3.7. Let ¢ be a globally defined admissible weight. Let 0 <
Op < 1. Then VJ,G increases to V(;QO quasi everywhere as 0\, 0y, and Vd’;e
decreases to Vgeo as 0 /" 6.

The following example illustrates the above corollary.

EXAMPLE 3.8. Let ¢(z) = |2|?. Then for 0 < # < 1 we have

0 0 0
910g]z\+§—§log§ if |2| < +/0/2,
Voo(z) =9 |22 o if /0/2<|z| <+/1/2,

If0 =1, we get

1 1 1
Voo(2) = Vou(2) = logz| + 5 — S log 5.
We had given Vo earlier in (|1.6]).

Note that we have Dyg = B(0,1/v/2) \ B(0,+/6/2), which increases to
B(0,1/4/2) \ {0} as 6 decreases to 0.

We define the following notions. Let K C C" be compact and w be an
admissible weight on K. We define

(34) 2N go(=) = sup{|P)[V | [w Pyl < 1 where Py € my ),
3.5 P =sup PN o = lim O ;.
(3.5) K.Qo =8 Prqe = jm Prqp
We can see that the supremum is actually a limit by following the proof
of Proposition

THEOREM 3.9. Let 0 < 6 < 1. Let K C C™ be a compact set and w be a
continuous admissible weight on K. Then Vi g9 =log Pk g 6-

Proof. Let Py € my g satisfy |w Py ||k < 1. Then

1

Nlog|PN(z)| <Q(z) onK.
Hence we get
(36) log QSK,Q,@ < VK7Q’9.

The rest of the proof essentially follows the proof of Callaghan [9]. We
will modify the last step using a result of Brelot—Cartan instead of the
Hartogs lemma.
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We fix ¢ > 0 such that 8 + ¢ < 1. Let u € Ly and v < Q on K. By
Theorem 2.9 of Appendix B of [14], we have

1
u(z) = ]lféloﬁ]l%ix log | P;(2)],

where the sequence N; is decreasing and each Py ; is a polynomial of degree
at most N;. Here ¢; is a finite number depending on j.
As in [9], we write

N; [N;6]
_ E @
) = Cak,j% 5 E :Cak,] ’
|| =0 |ar|=0

where |z | is the largest integer less than or equal to x.
We remark that P, ; — Pl; jisa f-incomplete polynomial. By Callaghan’s
asymptotic estimates, we get

1 /
u(z) = lim — max log|Py(2) - Pf,(2)]

Jj—00 Nj 1<k<t;

pointwise on C™.
By Theorem 3.4.3(c) of [I3], for e; > 0, there exists j; such that for
7 > 71 we have

1 /
N log [Py j(2) = Py j(2)| <Q@+e1 on K,

since @ is continuous. Now we have

1
u(z) = lim — max log|Pi;(2) — Pl (2)] < log@r00() + 1

j—oo Nj 1<k<t;
for any e; and therefore u(z) < log @ ¢ ¢(z). Hence
Vi.Qo+e(2) <log @i ge(2).
By Lemma 3.0 as ¢ — 0 we get
(3.7) Vik.00(2) <logPk ge(2).
Combining with , we get the desired result. =
Note that if 8 = 0, we recover
(3.8) Vikg =logPr g where Pg o :=Pkqo-

COROLLARY 3.10. Let 0 <0 < 1. Let ¢ be a globally defined continuous
admussible weight. Then Vg = log @49, where

(3.9)  ®Yy(2) = sup{|P(2)|"™ | |le N Pyl|p,, < 1 where Py € mn o},
(3.10) Dy = sxp@ﬁe.
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COROLLARY 3.11. Let 0 < 0 < 1. Let ¢ be a globally defined continuous
admissible weight. Then Vg = log @y g, where

(3.11)  Yy(2) == sup{IP()Y | [N Pyllcn < 1 where Py € 7o},
(3.12) 5¢,’9 = sgfp@?ﬁg.

Proof. Tt is sufficient to show that for any Py € g, |le V¢ Pyllcn < 1
if and only if |e=N?Py||p o0 < 1. The “only if” direction is trivial. For the
other direction, let Py € mn and He_N‘ﬁPNHDM < 1. We will show that
le™N?Py|lcn < 1. We have e=N®()|Py(2)] < 1 for 2 € Dyy so we get
N~1log |Pn(2)| < ¢(2) on Dy g. Hence, N~ log|Pn(z)]| is a competitor for
the extremal function Vg, and so N~1log|Py(2)| < Vyg(2) < ¢(2) for all
z € C". Therefore, e*N‘z’(Z)PN(z) <lforall zeC". n

4. Asymptotics. Let K be a compact set in C" and p be a Borel
probability measure with support in K. We say that the pair (K, ) has the
Bernstein—-Markov property if for any € > 0, there exists C' > 0 such that

(4.1) 1Pllze < Ce™N [Pl 2y

for all polynomials P of degree at most N. Equivalently, there exists My > 0
with M}V/ N 1 as N — oo such that for all polynomials P of degree at
most IV,

(4.2) |Pllx < Mn||P|lr2¢-

We remark that if K is a regular compact set, then (K, (dd“Vik)") has
the Bernstein-Markov property. See [16] for details.

We fix 0 < 0 < 1. If these inequalities are satisfied for all P € my g for
all N > 0, then we say the pair (K, ) has the Bernstein-Markov property
for 0-incomplete polynomials.

Let u be a measure such that (K, x) has the Bernstein—-Markov property
for f-incomplete polynomials. Let {P;} be an orthonormal basis of 7wy g with
respect to the inner product (f,g) := § fgdu. We define the Nth Bergman
function Ky g(z,w) := Z?(:A{’e) Pj(z) Pj(w), where d(IN,#) is the dimension
of w N,§-

The following two lemmas are generalizations of results of Bloom and
Shiffman [7].

LEmMMA 4.1. If (K, ) has the Bernstein—Markov property for 0-incom-
plete polynomials, then for all € > 0, there exists C > 0 such that

(Pro.n(2))?
d(N,0)
for all z € C™.

(4.3) < Kng(z,2) < CeN (B v (2))2d(N, 0)
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Proof. To show the first inequality, we take P € mny and ||P|x < 1.
Then

IP(2)] = || Koz w) P(w) dp(w)| < § 1Koz w0) dp(w)
K K

(Kn0(z,2)"? (K p(w, w) 2 dpa(w)

IN
= e—

Kng(z,2) (Ko (w, w) 2| 11

K p(z,2) 211 L2 1K w0 (w, w) | 22,0
= (Knp(z,2))/?d(N,0)"/2.

Taking the supremum over all P as above, we have

Drcon(2) < (Kng(z,2)/2d(N,0)'/2,

which gives the first inequality.
For the second inequality, let {P;} be an orthonormal basis of 7y p. Then
by the Bernstein-Markov property we have ||P;|x < Ce*™, hence

|P](Z)’ S H]DjHKQK,G,N(Z) S CBEN@K’Q,N(Z) fOI‘ all j

Thus, we have

IN

IN

Kno(z, 2) Z |P;(2)2 < d(N,0)C%*N (D g v (2))2.

Hence, we get the Second 1nequahty. "

LEMMA 4.2. Let 0 < 6 < 1. Let K be a reqular compact set in C".
If (K, ) has the Bernstein—Markov property for 6-incomplete polynomials,
then

1
ﬁlOgKNe(Z Z) - VKG( )

uniformly on compact subsets of C™\ {0}.

Proof. We remark that d(N,6) < d(N) :=d(N,0) and d(N) = (V") <
(N +n)".

Taking logarithms in (4.3]), we obtain

Kn,0(2,2)
logd(N,0) _ log(@ ) _ log(CeNa(n, )

N - N - N
By the above observation, we get
Knog(z,2) > log C n
: < + e+ —log(N + n).
@ron@P) = N eyl

Since ¢ is arbitrary, we have N 1log(Kn(2,2)/(Pko.n(2))?) — 0, which
gives the desired result by Theorem .

1
—%log(N—i-n) < Nlog<
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Let K be a compact set with an admissible weight w on K. Let u be a
Borel probability measure on K. We say the triple (K, u, w) has the weighted

Bernstein—Markov property if there exist My > 0 with M le/ N, 1 such that
for any polynomial Py of degree N,
(4.4) lw™ Pyl < My ||w™ Pyl 2

We remark that if K is locally regular and @ is continuous then by Corol-
lary 3.1 of [5], (K, (dd°Vk,g)", w) has the weighted Bernstein-Markov prop-
erty. Also, (Dg, (dd°Vy)™, e~?) has the weighted Bernstein-Markov property
if ¢ is continuous by Theorem 4.5 of [4].

THEOREM 4.3. Let K be a compact set with a continuous admissible
weight w on K. Let p be a probability measure on K such that (K, u,w) has
the weighted Bernstein—Markov property. Then

(4.5) lim sup ’Bk7N(Z)|1/N:eVK,Q(Z)7
N—00 =1, d(N)

where {Bkw}z(:l is an orthonormal basis for the polynomials with degree
at most N with respect to the measure w* pu.

We remark that unlike the unweighted case, where w = 1, each time N
changes, the basis and the L? norms change.

Proof. By the weighted Bernstein-Markov property,
”wNBk,N”K < MNH’U)NBk;,NHLz(#) = My,

SO

!BkN( )|
< .
N My @z) on K
Hence . B (2)
kN2
71 9 < n
o My Vikg(z) onC

Since M}V/N — 1, we have
limsup  sup |Bk7n(z)|1/N < lim sup GVK’Q(Z)M}V/N < eVre(®),
N—oo k=1,..,d(N) N—o0
Now we want to show that

liminf  sup  |Byn(2)|VN > Va2,
N—=0o k=1 . d(N)

Let P be a polynomial of degree at most N such that |w™ P||x < 1. We
write w = e~ 9. Since { B, N}Z(:Ap is an orthonormal basis, we have
d(N)

P(z) = Z <S PBjye 2N@ du) Bjn(2).

j=1 K
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By the triangle inequality,
d(N)

IP()] < Y| § PBive™ 2 du| B (2)]:
j=1 K

By the Cauchy—Schwarz inequality,

(N)
PPy (1P @) (§ 18w e au) | 1B, ()1,
j=1 K

=

Now since |w™N P||x <1 and {By, N}Z(:AP is an orthonormal basis,

d(N)
1P(2)] < ) 1B (2)]-
j=1

This implies that

(4.6) |P(2)] <d(N) sup |Bjn(z)| foranyzeC".
k=1,...,d(N)

We fix z € C". Then

¢V5:@(?) < liminf sup |P(z) YN
N=00 pemy o, [lw™ Pllx<1

<liminfd(N)YN  sup  |B;n(2)|YY.
N—oo k=1,....d(N)
Here, the first inequality follows from (3.8]). Now since d(N )1/ N 1, we get
the result. =

COROLLARY 4.4. Let ¢ be a globally defined continuous admissible weight
and 1 be a Borel probability measure on Dy such that (Dg, 1, e~?) has the
weighted Bernstein—Markov property. Then

(4.7) lim  sup |Bpn(z)|VN =%
N—=0o =1, .. d(N)

Here { By, N}Z(:AP is an orthonormal basis for the polynomials with degree at
most N with respect to the measure e 2N?y,

REMARK 4.5. The proof of Theorem |4.3| shows that if additionally Vi g
is continuous, then the convergence in (4.5) is locally uniform. Thus, the
convergence in (4.7) is locally uniform.

If holds for any Py € 7myg then we say that (K, pu,w) has the
weighted Bernstein—Markov property for 8-incomplete polynomials.

We remark that if a triple (K, u, w) has the weighted Bernstein-Markov
property, then it has the weighted Bernstein—-Markov property for 6-in-
complete polynomials.
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Usmg only the orthonormal basis for my g and using Theorem [3.9]instead
of (3.8) we get the following theorem by the same proof as for Theorem

THEOREM 4.6. Let 0 < 0 < 1. Let K be a compact set with a continuous
admissible weight w on K. Let p be a measure on K such that (K, p,w)
has the weighted Bernstein—Markov property for 0-incomplete polynomials.
Then

im  sup  |BYy(z)/Y = Vo),
N—oop=1 .d(N)

where {Bg N Z(:Aiﬁ) is an orthonormal basis for wn g with respect to the mea-

sure w2N p.

COROLLARY 4.7. Let 0 < 0 < 1. Let ¢ be a globally defined continu-
ous admissible weight. If (Dgy, p, e~?) has the weighted Bernstein—Markov
property then

“8) Jimsup |BY ()N = Vel
5@(N)

where {Bk N}d(N )

sure e 2N¢u.

is an orthonormal basis for mn ¢ with respect to the mea-

Finally, we prove the strong Bergman asymptotics in the weighted 6-
incomplete setting, following [2] closely. We fix 0 < 6 < 1. Let ¢ be a
globally defined admissible weight and ¢(z) > (1 + ¢) log || if |z| > 1. Let

{p1,..., Dd( N,e)} be an orthonormal basis for 7y ¢ with respect to the inner
product (f,g) == (. fge 2 Pw, where wy(2) = (dd®|z[*)™/4™n! on C". We
denote the L? norm by ||pNHN¢ = HpN||me¢ Scn lpn (2)2e 2N w, (2).
We define the Nth #-incomplete Bergman function by

d(N,0)
(4.9) Kn(2) = K5 o2, 2) Z [pj(2)[2e=2V0E),

By the reproducing property of the Bergman functions we have

(4.10) En(z)=  sup  [pn(2)Pe M0/ Ipy|Frg-
pnETN,o\{0}

THEOREM 4.8. Let ¢ € C?(C") with ¢(2) > (1+¢)log |z| for |z| > 1. If
Vso € CLHC™\ {0}), then (dd°Vy )™ is absolutely continuous with respect
to Lebesgue measure on C™\ {0} and det(dd®¢)w, = (ddVy )" on C™\ {0}
as (n,n) forms with LS. (C™) coefficients. For a compact set K, we have a
local bound

(4.11) 2) <C=C(K) forzeK.
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Moreover,
1 1 det(dd®¢) .

4.12 — K —_— B L(cr
(4.12) AN, 0) 5N 7 T2 XPeanP (o in L°(C")
and

1 1 (ddVge)"

4.1 — Kyw, — : k* D P.

(4.13) AN Nw =0 (@n) weak™ on Dy g N

Here det(dd“u) := (ddu)™ /wy, and for a twice continuously differentiable
function u, we have det(dd®u) = 2i det[0%u/0z;0%) jk=1,...n- We remark that
we assume Vg € CLH(C™\ {0}).

We will use the following lemma from measure theory in the proof of the
theorem.

LEMMA 4.9 ([3 Lemma 2.2]). Let (X,u) be a measure space and let
{fn} be a sequence of uniformly bounded, integrable functions on X. If f is
a bounded, integrable function on X with

(1) limpy o0 SX Indp = SX fdu,
(2) imsupy_o [N < f a.e. with respect to p,

then fy converges to f in LY(X, ).

Proof of Theorem[{.8 The 6 = 0 case is proven by Berman in [2], so we
assume 0 < 0 < 1.

By assumption, V9 = ¢ on Dyg N P and both are ChHl on Dgo N P.
Therefore, det(dd°¢)wy, = (ddVy9)™ on Dy gN P almost everywhere as (n,n)
forms with L coefficients by the argument in Section 12 of [I1].

First of all, to prove an asymptotic upper bound on (1/d(N,0))Ky(z)

at a point zg = (z?, ..., 29), we can assume that near zg, ¢ is of the form
n
(4.14) 6(z) = S Al — 292 + 0l - =)
j=1

as in [2]. Namely, we assume that ¢(zp) = 0 and the first order partial
derivatives of ¢ vanish at zg.

Following [2], for each zg € C" there exist R > 0 and a constant C' such
that

(4.15) |p(2)| < Clz — 20|>  on B(zo, R),

and for any R > 0, we have

(4.16) lim  sup ‘Nqb(z/\/ﬁ—l— 20) — Z)\j|zj|2‘ =0.
N—00 ,eB(0,R) =

We fix a point zp in C". We take a polynomial py € 7y ¢ satisfying the
extremal property (4.10) at zg. Then
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1 (20) = [P (20)[Pe Vo) P (20) ]
d(N,0) d(N, G)HpNH?W) d(N,0)\cn Ipn (2)[2e=2No(2) Wy, (2)
By positivity of the integrand,
1 Ky ( ) ‘pN(ZO)P ]
a(N.6) = AN, 0) e v PN () Pe 2N, ()

We choose R as in so that we can replace ¢(z) by C|z — 2|? in the
integrand, and thus

1 Ky (z0) < \PN(ZO)’2 )
d(N, ) ~ d(N, Q)S‘Z wol<k/VN PN (2 )[2e=2NClz=20Py, (2)

We apply the subaveraging property to the subharmonic function |py|? on
the ball {|z — 20| < R/V N} with respect to the radial probability mea-

sure (with center zg) e 2NClz=20Py, (2)/ S\z—zo\gR/\/ﬁ e 2NClz—=0ly, (2) to
obtain
1 1
———— Kn(20) <
d(N, 0) d(N, 0) S|Z—Zo\SR/\/N 6*2N0|Z720|2w71(z)
Nn

< - .
d(N,0) SlZ’\SR e—2C1z |2wn(z’)

For the last inequality, we used a change of variable z — 2’ := (z — 29)V/N,
where wy, (2') = N"™wy,(z). Since d(N, 6) < (1—6™)d(N,0), we have d(N, 0) >
(1 — 6™)d(N,0) for all N > Ny for some 6 > 6. Now using the estimate
d(N,0) > (1—6™)d(N,0) = (1— ") ("*N) > (1—-6")N"/n! for all N > Np,
we get

1 n!

——— Kn(z9) < - for all N > Njy.
a0y M A e ) 2

The right hand side of the inequality is uniformly bounded. As zg varies on
the compact set K, we get a constant C(K) giving a local bound for all
N > Ny. By the continuity of (1/d(N,0))Kn(z), and considering

N Hf,a}fNo EEE d(N,0)

we get the local bound (| at each point of K.
For the rest of the proof, we fix zg and start with the inequality
2

Kn(z2),

;K (20) < lpn (20)
d(N, 9) N d(N 9) S|z zo|<R/\F ’pN( )‘26_2N¢(z)wn(z)’

which holds for any R > 0. By using the same change of variable and
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estimates as above, we get
1 n!|pn (20)|
—— Kn(z9) < —
A, 0) ) S TG T o GV 20PN VR v ()
for all N > Ny where 6 > 6. Multiplying the integrand by
e 22721 21712 2 70 Ayl

and taking the infimum of exp[—2|N¢(2'/vV/N) — > i1 AjlZ5?]] on B(0, R)
out of the integral, we get

L Ky(z0) < n!|pn(20)[? exp[2sup/< g IN¢(2'/V/N) — > )\j|z§-|2|]
- il oS )\ 1,72
(1—-67) S\z’\gR lpn (2//V'N + 20)|2e 23 51 Al wn(2)

d(N,0)
for all N > Ny. We apply the subaveraging property to the subharmonic
function |py (2’ /v N + 20)|? with respect to the radial probability measure

2

_ n .02
e 2Xi=1 5l ()

S|z/|§R e 2251 Aj\2}|2wn(zl)
and we get
Lo < M IO/ V) — Sl
T2V N(<0) > ~ n /
d(N,0) (1—6n) S\z’\<R e 2251 Ajlzj\2w”(z/)

for all N > Ny. By (4.16)),
n
exp[Q sup [No(2'/VN) — ZAﬂz}]QH —1 as N — oc.
|2/|<R j=1
Therefore,
n!

(1— én) S\z’\<R 2271 Ajlzg\zwn(z/)'

1
limsup ——= Kn(z9) <
AP G gy KV () <
As R — oo, the Gaussian integral on the right hand side goes to ﬁ

if all A\; > 0 and to 400 otherwise. Since det(dd°¢(zg)) = 4"nlA; -+ A, we
have

) 1 1 det(dd¢¢)
1 — K < - .. on C".
s ) PV S T X T Aeon
Letting 6 — 0, we obtain
1 1 det(dd®
limsup ———— Kn(z) < et(dd°) a.e. on C".

Nl d(N, 0) =100 2
By the extremal property (4.10)) and the local bound (4.11]), we get
1 - z
(4.17) N o (2)Pe*NE) [Ipn[[rg < C = C(Dyp)
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on Dy g for any py € my 9. Next, we will show that
1 _ -

o Kn(z) < Cye 2N(6(2)=Ve0(2) o O™,

Let py € mn 9 be such that HPN”?W = N~". Then by (4.17)) we have

o (2)|2e2V9E) < ¢ on Dy

(4.18)

By taking logarithms, we get

1 1
—1 2 < -
IN og ‘pN(Z)| > ¢(Z) + ON IOgC on D¢>:9
and thus . X
-~ log |PN(Z)’2 < Vgo(2) + =logC on C".

2N 2N
So from the extremal property of Bergman functions (4.10)),
1
o Kn(z2) = sup Ipn (2)2e 72N < e 2N "Vou(2)  on C.

HpN||?V¢:N7n
Since ¢(z) > Vy9(2) on C™\ Dy g, we find that
. 1 n
J\}EDOOWKN(Z) =0 on C \D(b’g.
Using d(N, 6) < (1 —0™)d(N,0), we obtain

1
lim — KN(Z) =0 on C" \ Dqg’@,

N—oo d(N7 9)
giving
_ 1 1 det(dd¢¢) n
. _— < —_— .e. .
(4.19) h]{/n_?;lop AN.0) Kn(z) < i Hn)xp%mp Q) a.e. on C

From (4.18]) and the growth assumption on ¢, for a sufficiently large R, there
is a C' with
1 _
(4.20) N Kn(z) < Clz|72Ne  for |z| > R.
By combining the local bound (4.11)) and above estimate (4.20]), we get a
global bound for (1/d(N,0))Ky. Therefore, Lebesgue’s dominated conver-
gence theorem gives
1
4.21 li — K =0.
(4.21) gz (N, ) N
(C"\D(b’g
Next, we show that

(4.22) lim | ! 1 S det(dd‘¢)

K = .
N d(N,§) "N T T gn Qmn "
D¢790P

D(p’gﬂp
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Indeed, we know that |, Kyw, = d(N,0), and so using (4.21), we have

1

— K .
d(N, ) Nem

. 1 .
Cn D¢ oNP

On the other hand, using the positivity of the integrand and applying (4.19)
on Dy g, we have

1= lim

S 1
N—oo Dy d(Na 9)

1 S det(dd°g)
@2mm

By the first part of this theorem, we can replace det(dd‘¢)w,, by (dd“Vy )",
which has total mass (27)"(1 — 0™) on Dy ¢ N P; hence,

. 1
P )

1 S (dd°Vpe)" _ (2m)"(1—0")

= =1.
7 E T D

This gives (4.22)).
We will use this relation, together with (4.12)), to show that

1 1 det(dd°¢) .

4.2 — K —_— _— L (C™).
(4.23) AN, 0) "N T T XPeor? gy (Y
We set

1 1 det(dd°s)
=———K d fi=—— —_—
I a9 Ky an f =1 —gn XDsunP )

By the upper bound (4.19)), we have limsupy_, . fx < f almost everywhere
and by (£.21) and (£.22),

li = .
Ngnoo Sn wan an fwn

Thus, by Lemma we get (4.23). This implies the weak* convergence in
(4.13]) and completes the proof of the theorem. =

Acknowledgements. I thank Professor Norman Levenberg for his ex-
cellent support and help. The main part of this research was done during
my visit to the University of Laval. I thank Professor Thomas Ransford and
the University of Laval for their hospitality.

I thank the referee for his careful scrutiny. His comments improved the
overall quality of the paper and helped me to prove a stronger version of
Theorem [2.4] and to obtain Remark 4.5

This research was partially supported by Glenn Schober Memorial Travel
Award, Department of Mathematics, Indiana University Bloomington.



128

[1]

M. A. Alan

References

C. A. Berenstein and R. Gay, Complex Variables: An Introduction, Grad. Texts in
Math. 125, Springer, New York, 1991.

R. Berman, Bergman kernels for weighted polynomials and weighted equilibrium
measures of C", Indiana Univ. Math. J. 58 (2009), 1921-1946.

—, Super Toeplitz operators on line bundles, J. Geom. Anal. 16 (2006), 1-22.

R. Berman and S. Boucksom, Capacities and weighted volumes of line bundles,
arXiv:math/0803.1950v1.

T. Bloom, Weighted polynomials and weighted pluripotential theory, Trans. Amer.
Math. Soc. 361 (2009), 2163-2179.

T. Bloom and N. Levenberg, Weighted pluripotential theory in CY, Amer. J. Math.
125 (2003), 57-103.

T. Bloom and B. Shiffman, Zeros of random polynomials on C™, Math. Res. Lett.
14 (2007), 469-479.

J. Callaghan, A Green’s function for 0-incomplete polynomials, Ph.D. thesis, Univ.
of Toronto, 2006.

—, A Green’s function for 0-incomplete polynomials, Ann. Polon. Math. 90 (2007),
21-35.

J.-P. Demailly, Mesures de Monge—Ampére et mesures pluriharmoniques, Math. Z.
194 (1987), 519-564.

—, Potential theory in several complez variables, http: //www-fourier.ujf-grenoble.fr
/"~ demailly /manuscripts/trento2.pdf, 1992.

M. Klimek, Pluripotential Theory, London Math. Soc. Monogr. 6, Oxford Univ.
Press, New York, 1991.

T. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Student
Texts 28, Cambridge Univ. Press, Cambridge, 1995.

E. B. Saff and V. Totik, Logarithmic Potentials with FExternal Fields, Grundlehren
Math. Wiss. 316, Springer, Berlin, 1997, Appendix B by Thomas Bloom.

J. Siciak, Ezxtremal plurisubharmonic functions in C™, Ann. Polon. Math. 39 (1981),
175-211.

A. Zériahi, Capacité, constante de Cebysev et polyndmes orthogonauz associés ¢ un
compact de C™, Bull. Sci. Math. (2) 109 (1985), 325-335.

Muhammed Ali Alan
Department of Mathematics
Indiana University
Bloomington, IN 47405, U.S.A.
E-mail: malan@indiana.edu

Received 27.5.2009
and in final form 11.12.2009 (2023)


http://dx.doi.org/10.1512/iumj.2009.58.3644
http://dx.doi.org/10.1007/s00039-006-0552-0
http://dx.doi.org/10.1090/S0002-9947-08-04607-2
http://dx.doi.org/10.1353/ajm.2003.0002
http://dx.doi.org/10.4064/ap90-1-2
http://dx.doi.org/10.1007/BF01161920

	Introduction
	Weighted pluripotential theory
	A special case of weighted pluripotential theory

	-Incomplete pluripotential theory
	Weighted -incomplete pluripotential theory
	Asymptotics

