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Abstract. By means of Riccati transformation technique, we establish some new
oscillation criteria for third-order nonlinear delay dynamic equations

((x∆∆(t))γ)∆ + p(t)xγ(τ(t)) = 0

on a time scale T; here γ > 0 is a quotient of odd positive integers and p a real-valued
positive rd-continuous function defined on T. Our results not only extend and improve the
results of T. S. Hassan [Math. Comput. Modelling 49 (2009)] but also unify the results
on oscillation of third-order delay differential equations and third-order delay difference
equations.

1. Introduction. The study of dynamic equations on time scales was
introduced by Hilger [20]. Several authors have expounded on various as-
pects of this new theory; see the survey paper by Agarwal et al. [1] and the
references cited therein. A book on the subject of time scales, by Bohner
and Peterson [6], summarizes and organizes much of the time scale calculus;
see also their book [7] for advances in dynamic equations on time scales.

In recent years, there has been a great deal of research activity concerning
the oscillation and nonoscillation of solutions of various equations on time
scales; we refer the reader to the papers [2–5, 8–11, 15–18, 21–28, 30–32].
To the best of our knowledge, there seems to be few oscillation results for
third-order dynamic equations; see, for example, [12–14, 19, 29]. However,
only Hassan’s paper [19] deals with third order delay dynamic equations.

In [19], Hassan considered the third-order nonlinear delay dynamic equa-
tions

(1.1) (c(t)((a(t)x∆(t))∆)γ)∆ + f(t, x(τ(t))) = 0, t ∈ T,
where τ(σ(t)) = σ(τ(t)) is required, and he established some sufficient con-
ditions for oscillation of (1.1).

2010 Mathematics Subject Classification: 34C10, 34K11, 34N05, 39A21.
Key words and phrases: oscillation, third order, delay dynamic equations, time scales.

DOI: 10.4064/ap99-2-3 [143] c© Instytut Matematyczny PAN, 2010



144 Z. L. Han et al.

In 2007, Erbe, Peterson and Saker [13] studied third order dynamic equa-
tions

(1.2) x∆∆∆(t) + p(t)x(t) = 0, t ∈ T,
where p is a positive real-valued rd-continuous function on T.

In this paper, we consider third-order nonlinear delay dynamic equations

(1.3) ((x∆∆(t))γ)∆ + p(t)xγ(τ(t)) = 0, t ∈ T.

We assume that γ > 0 is a quotient of odd positive integers, the func-
tion p is positive, real-valued and rd-continuous, and τ : T → T is an
rd-continuous function such that τ(t) ≤ t and τ(t)→∞ (t→∞).

Clearly, (1.2) is a special case of (1.3). The purpose of this paper is to
establish some new oscillation criteria for (1.3) which guarantee that every
solution x(t) of (1.3) oscillates or converges as t→∞.

As we are interested in oscillatory behavior, we assume throughout this
paper that the given time scale T is unbounded above. We fix t0 ∈ T; it is
convenient to assume t0 > 0. We define the time scale interval [t0,∞)T to
be [t0,∞) ∩ T.

The paper is organized as follows: In Section 2, we establish some new
sufficient conditions which guarantee that every solution of (1.3) is oscilla-
tory or converges to a finite number at ∞. In Section 3, some examples are
considered to illustrate the main results.

2. Main results. In this section we give some new oscillation criteria
for (1.3). In order to prove our main results, we will use the formula

(2.1) ((x(t))γ)∆ = γ

1�

0

[hxσ(t) + (1− h)x(t)]γ−1x∆(t) dh,

where x(t) is delta differentiable and eventually positive or eventually neg-
ative, which is a simple consequence of Keller’s chain rule (see Bohner and
Peterson [6, Theorem 1.90]).

Throughout this paper, we let

d+(t) = max{0, d(t)}, d−(t) = max{0,−d(t)},

α(t) =
(

t

σ(t)

)γ
, γ ≥ 1; α(t) =

t

σ(t)
, γ < 1.

We will need the following auxiliary results.

Lemma 2.1. Assume that x is an eventually positive solution of (1.3).
Then for all t ≥ t0 sufficiently large, either

(i) x(t) > 0, x∆(t) > 0, x∆∆(t) > 0, x∆∆∆(t) < 0, or
(ii) x(t) > 0, x∆(t) < 0, x∆∆(t) > 0, x∆∆∆(t) < 0.
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The proof is similar to that of Erbe et al. [12, Lemma 1], so is omitted.
In [6, Section 1.6] the Taylor monomials {hn(t, s)}∞n=0 are defined recur-

sively by

h0(t, s) = 1, hn+1(t, s) =
t�

s

hn(τ, s)∆τ, t, s ∈ T, n ≥ 1.

It follows [6, Section 1.6] that h1(t, s) = t − s for any time scale, but there
are no simple general formulas for n ≥ 2.

Lemma 2.2 ([13, Lemma 4]). Assume that x satisfies case (i) of Lemma
2.1. Then

(2.2) lim inf
t→∞

tx(t)
h2(t, t0)x∆(t)

≥ 1.

Lemma 2.3. Assume that x is a solution of (1.3) which satisfies case (i)
of Lemma 2.1. If

(2.3)
∞�

t0

p(t)(h2(τ(t), t0))γ∆t =∞,

then

(2.4) x∆(t) ≥ tx∆∆(t), x∆(t)/t is eventually nonincreasing.

Proof. Let x be a solution of (1.3) such that case (i) of Lemma 2.1 holds
for t ≥ t1. Define

X(t) = x∆(t)− tx∆∆(t).

Thus
X∆(t) = −σ(t)x∆∆∆(t) > 0.

We claim that X(t) > 0 eventually. Otherwise, there exists t2 ≥ t1 such that
X(t) < 0 for t ≥ t2. Therefore,(

x∆(t)
t

)∆

= −X(t)
tσ(t)

> 0, t ≥ t2,

which implies that x∆(t)/t is strictly increasing on [t2,∞)T. Pick t3 ≥ t2
such that τ(t) ≥ τ(t3) ≥ t2 for t ≥ t3. Then we have

x∆(τ(t))
τ(t)

≥ x∆(τ(t3))
τ(t3)

= d > 0,

so x∆(τ(t)) ≥ dτ(t) for t ≥ t3. By Lemma 2.2, for any 0 < k < 1, there
exists t4 ≥ t3 such that

x(t)
x∆(t)

≥ kh2(t, t0)
t

, t ≥ t4.
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Hence there exists t5 ≥ t4 such that

x(τ(t)) ≥ kh2(τ(t), t0)
τ(t)

x∆(τ(t))

≥ dkh2(τ(t), t0)
τ(t)

τ(t) = dkh2(τ(t), t0), t ≥ t5.

Integrating both sides of (1.3) from t5 to t, we have

(x∆∆(t))γ − (x∆∆(t5))γ + (dk)γ
t�

t5

p(s)(h2(τ(s), t0))γ∆s ≤ 0,

which yields

(x∆∆(t5))γ ≥ (dk)γ
t�

t5

p(s)(h2(τ(s), t0))γ∆s,

which contradicts (2.3). Hence, X(t) > 0 and x∆(t)/t is eventually nonin-
creasing. The proof is complete.

Lemma 2.4. Assume that x is a solution of (1.3) which satisfies case (ii)
of Lemma 2.1. If

(2.5)
∞�

t0

∞�

z

[∞�
u

p(s)∆s
]1/γ

∆u∆z =∞,

then limt→∞ x(t) = 0.

The proof is similar to that of Erbe et al. [13, Lemma 3], so is omitted.

Theorem 2.5. Assume that (2.3) holds. Furthermore, assume that there
exists a positive function δ ∈ C1

rd([t0,∞)T,R) such that for some 0 < k < 1,

(2.6) lim sup
t→∞

t�

t0

(
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

)
∆s =∞,

where C(t) = (h2(τ(t), t0)/σ(t))γ . Then, for every solution x of (1.3), either
x is oscillatory or limt→∞ x(t) exists.

Proof. Suppose that (1.3) has a nonoscillatory solution x on [t0,∞)T.
We may assume without loss of generality that for some t1 ∈ [t0,∞)T we
have x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T. Then by Lemma 2.1,
x satisfies case (i) or (ii).

Assume case (i) holds. Define the function ω by

(2.7) ω(t) = δ(t)
(x∆∆(t))γ

(x∆(t))γ
, t ∈ [t1,∞)T.
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Then ω(t) > 0. Using the product rule, we have

ω∆(t) = δ∆(t)
(x∆∆(t))γ

(x∆(t))γ
+ δσ(t)

(
(x∆∆(t))γ

(x∆(t))γ

)∆

.

By the quotient rule, we get

ω∆(t) = δ∆(t)
(x∆∆(t))γ

(x∆(t))γ

+ δσ(t)
((x∆∆(t))γ)∆(x∆(t))γ − (x∆∆(t))γ((x∆(t))γ)∆

(x∆(t))γ(x∆σ(t))γ
.

From (1.3) and (2.7), we have

ω∆(t) =
δ∆(t)
δ(t)

ω(t)− p(t)δσ(t)
xγ(τ(t))

(x∆σ(t))γ
− δσ(t)

(x∆∆(t))γ((x∆(t))γ)∆

(x∆(t))γ(x∆σ(t))γ
,

and from (2.2) and (2.4), for any 0 < k < 1,

xγ(τ(t))
(x∆σ(t))γ

=
xγ(τ(t))

(x∆(τ(t)))γ
(x∆(τ(t)))γ

(x∆σ(t))γ

≥
(
k1/γ h2(τ(t), t0)

τ(t)

)γ( τ(t)
σ(t)

)γ
= k

(
h2(τ(t), t0)

σ(t)

)γ
.

Hence we obtain

(2.8) ω∆(t) ≤ δ∆(t)
δ(t)

ω(t)− kp(t)δσ(t)C(t)− δσ(t)
(x∆∆(t))γ((x∆(t))γ)∆

(x∆(t))γ(x∆σ(t))γ
.

If γ ≥ 1, from (2.1), we have

((x∆(t))γ)∆ = γ

1�

0

[hx∆σ(t) + (1− h)x∆(t)]γ−1x∆∆(t) dh

≥ γ(x∆(t))γ−1x∆∆(t).

By (2.8),

ω∆(t) ≤ δ∆(t)
δ(t)

ω(t)− kp(t)δσ(t)C(t)− γδσ(t)
(x∆∆(t))γ+1

x∆(t)(x∆σ(t))γ
.

Since x∆(t)/t is nonincreasing, we have x∆(t)/t ≥ x∆σ(t)/σ(t), so

ω∆(t) ≤ δ∆(t)
δ(t)

ω(t)− kp(t)δσ(t)C(t)− γ
(

t

σ(t)

)γ
δσ(t)

(x∆∆(t))γ+1

(x∆(t))γ+1
.

By (2.7), we obtain

(2.9) ω∆(t) ≤ (δ∆(t))+

δ(t)
ω(t)− kp(t)δσ(t)C(t)− γ

(
t

σ(t)

)γ δσ(t)
δλ(t)

ωλ(t),
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where λ = (γ + 1)/γ. If γ < 1, from (2.1), we have

((x∆(t))γ)∆ = γ

1�

0

[hx∆σ(t) + (1− h)x∆(t)]γ−1x∆∆(t) dh

≥ γ(x∆σ(t))γ−1x∆∆(t).

By (2.8),

ω∆(t) ≤ δ∆(t)
δ(t)

ω(t)− kp(t)δσ(t)C(t)− γδσ(t)
(x∆∆(t))γ+1

(x∆(t))γx∆σ(t)

≤ δ∆(t)
δ(t)

ω(t)− kp(t)δσ(t)C(t)− γ t

σ(t)
δσ(t)

(x∆∆(t))γ+1

(x∆(t))γ+1
.

By (2.7), we obtain

(2.10) ω∆(t) ≤ (δ∆(t))+

δ(t)
ω(t)− kp(t)δσ(t)C(t)− γ t

σ(t)
δσ(t)
δλ(t)

ωλ(t).

By (2.9), (2.10) and the definition of α(t), we have, as γ > 0,

(2.11) ω∆(t) ≤ (δ∆(t))+

δ(t)
ω(t)− kp(t)δσ(t)C(t)− γα(t)

δσ(t)
δλ(t)

ωλ(t).

Set

A =
[
γα(t)

δσ(t)
δλ(t)

]1/λ

ω(t), B =
[

(δ∆(t))+

λδ(t)

(
γα(t)

δσ(t)
δλ(t)

)−1/λ]1/(λ−1)

.

Using the inequality

λABλ−1 −Aλ ≤ (λ− 1)Bλ, λ ≥ 1,

we have
(δ∆(t))+

δ(t)
ω(t)− γα(t)

δσ(t)
δλ(t)

ωλ(t) ≤ 1
(γ + 1)γ+1

((δ∆(t))+)γ+1

αγ(t)δγ(σ(t))
,

hence from (2.11), we get

(2.12) ω∆(t) ≤ −kp(t)δσ(t)C(t) +
1

(γ + 1)γ+1

((δ∆(t))+)γ+1

αγ(t)δγ(σ(t))
.

Integrating the inequality (2.12) from t1 to t, we obtain

−ω(t1) ≤ ω(t)− ω(t1)

≤ −
t�

t1

(
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

)
∆s,

which yields
t�

t1

(
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

)
∆s ≤ ω(t1)
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for all large t, which contradicts (2.6). If case (ii) holds, then limt→∞ x(t)
exists. The proof is complete.

Remark 2.6. From Theorem 2.5, we can obtain different conditions for
oscillation of all solutions of (1.3) with different choices of δ.

For example, let γ ≥ 1, δ(t) = tγ . Then (tγ)∆ ≤ γ(σ(t))γ−1. Now Theo-
rem 2.5 yields the following result.

Corollary 2.7. Assume that (2.3) holds and γ ≥ 1. If for some 0 <
k < 1,

(2.13) lim sup
t→∞

t�

t0

(
kp(s)(h2(τ(s), t0))γ −

(
γ

γ + 1

)γ+1 (σ(s))γ
2−1

sγ2

)
∆s =∞,

then for every solution x of (1.3), either x is oscillatory or limt→∞ x(t)
exists.

The following theorem gives a Kamenev-type oscillation criterion for
(1.3).

Theorem 2.8. Assume (2.3) holds. Let δ, C be as in Theorem 2.5. If
for some 0 < k < 1 and m ≥ 1,

(2.14)

lim sup
t→∞

1
tm

t�

t0

(t−s)m
(
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

)
∆s =∞,

then for every solution x of (1.3), either x is oscillatory or limt→∞ x(t)
exists.

Proof. Suppose that (1.3) has a nonoscillatory solution x on [t0,∞)T. We
may assume that for some t1 ∈ [t0,∞)T we have x(t) > 0 and x(τ(t)) > 0
for all t ∈ [t1,∞)T. Then by Lemma 2.1, x satisfies case (i) or (ii).

Assume case (i) holds. Define the function ω as in (2.7). We proceed as
in the proof of Theorem 2.5 to get (2.12). Then from (2.12), we have

kp(t)δσ(t)C(t)− 1
(γ + 1)γ+1

((δ∆(t))+)γ+1

αγ(t)δγ(σ(t))
≤ −ω∆(t).

Therefore,

(2.15)
t�

t1

(t− s)m
[
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

]
∆s

≤ −
t�

t1

(t− s)mω∆(s)∆s.
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By integration by parts, the right hand side equals
t�

t1

(t− s)mω∆(s)∆s = (t− s)mω(s)|tt1 −
t�

t1

((t− s)m)∆sω(σ(s))∆s.

Note that since ((t − s)m)∆s ≤ −m(t − σ(s))m−1 ≤ 0 for t ≥ σ(s),m ≥ 1
(see Erbe et al. [14]), from (2.15) we have
t�

t1

(t−s)m
[
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

]
∆s ≤ (t− t1)mω(t1).

Then

1
tm

t�

t1

(t− s)m
[
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

((δ∆(s))+)γ+1

αγ(s)δγ(σ(s))

]
∆s

≤
(
t− t1
t

)m
ω(t1),

which contradicts (2.14). If case (ii) holds, then limt→∞ x(t) exists. The
proof is complete.

The following theorem gives a Philos-type oscillation criterion for (1.3).

Theorem 2.9. Assume that (2.3) holds. Let δ, C be as in Theorem 2.5.
Furthermore, assume that there exist functions H,h ∈ Crd(D,R), where
D ≡ {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,
and H has a nonpositive continuous ∆-partial derivative H∆s(t, s) with re-
spect to the second variable which satisfies

H∆s(σ(t), s) +H(σ(t), σ(s))
δ∆(s)
δ(s)

= −h(t, s)
δ(s)

(H(σ(t), σ(s)))γ/(γ+1).

If for some 0 < k < 1,

(2.16) lim sup
t→∞

1
H(σ(t), t0)

σ(t)�

t0

K(t, s)∆s =∞,

where

K(t, s) = kH(σ(t), σ(s))p(s)δσ(s)C(s)− 1
(γ + 1)γ+1

(h−(t, s))γ+1

αγ(s)δγ(σ(s))
,

then for every solution x of (1.3), either x is oscillatory or limt→∞ x(t)
exists.

The proof is similar to that of Theorem 2.5 in Han et al. [16] using the
inequality (2.11). We omit the details.
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In the following theorem we establish new oscillation criteria for (1.3)
which are different from those above.

Theorem 2.10. Assume that (2.3) holds. If for some 0 < k < 1,

(2.17) lim sup
t→∞

t�

τ(t)

p(s)(h2(τ(s), t0))γ∆s >
1
k
,

then for every solution x of (1.3), either x is oscillatory or limt→∞ x(t)
exists.

Proof. Suppose that (1.3) has a nonoscillatory solution x on [t0,∞)T. We
may assume that for some t1 ∈ [t0,∞)T we have x(t) > 0 and x(τ(t)) > 0
for all t ∈ [t1,∞)T. Then by Lemma 2.1, x satisfies case (i) or (ii).

Assume case (i) holds. From (2.2) and (2.4), for any 0 < k < 1, we have

x(τ(t)) ≥ k1/γ h2(τ(t), t0)
τ(t)

x∆(τ(t)) ≥ k1/γ h2(τ(t), t0)
τ(t)

τ(t)x∆∆(τ(t))

= k1/γh2(τ(t), t0)x∆∆(τ(t)).

By (1.3), we obtain

((x∆∆(t))γ)∆ + kp(t)(h2(τ(t), t0))γ(x∆∆(τ(t)))γ ≤ 0.

Set z(t) = (x∆∆(t))γ . Then

z∆(t) + kp(t)(h2(τ(t), t0))γz(τ(t)) ≤ 0.

Integrating the above inequality from τ(t) to t, we have

0 ≥
t�

τ(t)

z∆(s)∆s+
t�

τ(t)

kp(s)(h2(τ(s), t0))γz(τ(s))∆s

= z(t)− z(τ(t)) +
t�

τ(t)

kp(s)(h2(τ(s), t0))γz(τ(s))∆s

≥ z(t)− z(τ(t)) + z(τ(t))
t�

τ(t)

kp(s)(h2(τ(s), t0))γ∆s

= z(t) + z(τ(t))
[ t�

τ(t)

kp(s)(h2(τ(s), t0))γ∆s− 1
]
> 0

by (2.17), a contradiction. If case (ii) holds, then limt→∞ x(t) exists. The
proof is complete.

Remark 2.11. Note that Theorem 2.10 is not applicable to equations
of type (1.3) with τ(t) = t. So the delay appearing in (1.3) plays a crucial
role in the qualitative behavior.
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Theorem 2.12. Assume that (2.3) holds. If

(2.18) lim sup
t→∞

tγ
∞�

t

p(s)
(
h2(τ(s), t0)

s

)γ
∆s =∞,

then for every solution x of (1.3), either x is oscillatory or limt→∞ x(t)
exists.

Proof. Suppose that (1.3) has a nonoscillatory solution x on [t0,∞)T. We
may assume that for some t1 ∈ [t0,∞)T we have x(t) > 0 and x(τ(t)) > 0
for all t ∈ [t1,∞)T. Then by Lemma 2.1, x satisfies case (i) or (ii).

Assume case (i) holds. Set y(t) = (x∆∆(t))γ . By (1.3), for T ≥ t ≥ t1,

y(T ) = y(t) +
T�

t

y∆(s)∆s = y(t)−
T�

t

p(s)xγ(τ(s))∆s,

and hence
T�

t

p(s)xγ(τ(s))∆s = y(t)− y(T ) ≤ y(t) = (x∆∆(t))γ .

By (2.2) and (2.4), for any 0 < k < 1,

(x∆(t))γ ≥ tγ(x∆∆(t))γ ≥ tγ
∞�

t

p(s)xγ(τ(s))∆s

≥ tγ
∞�

t

kp(s)
(
h2(τ(s), t0)

τ(s)
x∆(τ(s))

)γ
∆s

≥ ktγ
∞�

t

p(s)
(
h2(τ(s), t0)

τ(s)
τ(s)
s
x∆(s)

)γ
∆s

= ktγ
∞�

t

p(s)
(
h2(τ(s), t0)

s

)γ
(x∆(s))γ∆s

≥ ktγ(x∆(t))γ
∞�

t

p(s)
(
h2(τ(s), t0)

s

)γ
∆s,

which yields

tγ
∞�

t

p(s)
(
h2(τ(s), t0)

s

)γ
∆s ≤ 1

k
,

contrary to (2.18). If case (ii) holds, then limt→∞ x(t) exists. The proof is
complete.

From Lemma 2.4, we have the following result.

Theorem 2.13. Assume that (2.3) and (2.5) hold. Let δ, C be as in
Theorem 2.5, and 0 < k < 1. If one of the conditions (2.6), (2.14), (2.16),
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(2.17) or (2.18) holds, then every solution of (1.3) oscillates or converges to
zero.

Remark 2.14. If we define the Riccati substitution as (2.7), then we
can obtain

ω∆(t) = (x∆∆σ(t))γ
(

δ(t)
(x∆(t))γ

)∆

+
δ(t)

(x∆(t))γ
((x∆∆(t))γ)∆.

From this formula, we can establish some oscillation criteria which are dif-
ferent from the above results; we leave this to the interested reader.

3. Examples. The following examples illustrate our main results.

Example 3.1. Consider the equation

(3.1) ((x∆∆(t))γ)∆ +
β

t(h2(τ(t), t0))γ
xγ(τ(t)) = 0, t ∈ [t0,∞)T,

where β > 0, γ ≥ 1 is a quotient of odd positive integers, and σ(t) ≤ αt for
α ≥ 1.

It is easy to see that (2.3) holds. Let

p(t) =
β

t(h2(τ(t), t0))γ
.

From (2.11), we have

lim sup
t→∞

t�

t0

(
kp(s)(h2(τ(s), t0))γ −

(
γ

γ + 1

)γ+1 (σ(s))γ
2−1

sγ2

)
∆s

≥
(
kβ −

(
γ

γ + 1

)γ+1

αγ
2−1

)
lim sup
t→∞

t�

t0

∆s
s
.

Hence if β > (γ/(γ + 1))γ+1αγ
2−1/k for some 0 < k < 1, then (2.13) holds,

so by Corollary 2.7, every solution x of (3.1) is oscillatory or convergent.

Example 3.2. Consider the equation

(3.2) x∆∆∆(t) +
β

tτ2(t)
x(τ(t)) = 0, t ∈ [1,∞)T,

where T = qN0 , q > 1, β > 0. Here we have σ(t) = qt, h2(τ(t), t0) =
h2(τ(t), 1) = (τ(t)− 1)(τ(t)− q)/(1 + q). Let p(t) = β/(tτ2(t)), γ = 1. Then

∞�

t0

p(t)(h2(τ(t), t0))γ∆t =
∞�

1

β

tτ2(t)
(τ(t)− 1)(τ(t)− q)

1 + q
∆t

≥ αβ

1 + q

∞�

1

∆t
t

=∞ for some 0 < α < 1,
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so (2.3) holds. It is easy to see that (2.5) holds. Let δ(t) = t. Moreover,

lim sup
t→∞

t�

t0

(
kp(s)δσ(s)C(s)− 1

(γ + 1)γ+1

(σ(s))γ
2
((δ∆(s))+)γ+1

sγ2δγ(σ(s))

)
∆s

= lim sup
t→∞

t�

1

(
k

β

sτ2(s)
(τ(s)− 1)(τ(s)− q)

1 + q
− 1

4s

)
∆s

≥
(
kαβ

1 + q
− 1

4

)
lim sup
t→∞

t�

1

∆s
s
.

Hence if β > (1 + q)/(4kα) for some 0 < k < 1 and 0 < α < 1, then (2.6)
holds, so by Theorem 2.13, every soluion x of (3.2) is either oscillatory or
converges to zero.

Remark 3.1. Note that the results due to Hassan [19] do not apply to
equations (3.1) and (3.2) since τ(σ(t)) 6≡ σ(τ(t)). Hence our results are new.
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