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An improvement of Hayman’s inequality
on an angular domain

by Cai-Feng Yi (Nanchang), Yu Wang (Nanchang) and
Hong-Yan Xu (Jingdezhen)

Abstract. We investigate the properties of meromorphic functions on an angular
domain, and obtain a form of Yang’s inequality on an angular domain by reducing the co-
efficients of Hayman’s inequality. Moreover, we also study Hayman’s inequality in different
forms, and obtain accurate estimates of sums of deficiencies.

1. Introduction. We use C to denote the open complex plane, Ĉ (=
C ∪ {∞}) to denote the extended complex plane, and D (⊂ C) to denote
a domain. It is assumed that the reader is familiar with the notations of
Nevanlinna theory such as T (r, f),m(r, f), N(r, f), N(r, f) and so on, that
can be found, for instance, in [4, 11].

In [4], W. K. Hayman obtained the following well-known theorem by
investigating the characteristic functions of a meromorphic function and its
derivative in the complex plane.

Theorem 1.1 (see [4]). Let f be a transcendental meromorphic function
on complex plane. Then for any positive integer k, we have

T (r, f) <
(

2 +
1
k

)
N

(
r,

1
f

)
+
(

2 +
2
k

)
N

(
r,

1
f (k) − 1

)
+ S(r, f),

where S(r, f) is a remainder term satisfying

(i) S(r, f) = O(log r) (r →∞) if the order of f(z) is finite;
(ii) S(r, f) = O(log(rT (r, f))) (r → ∞, r 6∈ E) if the order of f(z) is

infinite, where E is a set with finite linear measure.

Remark 1.2. Theorem 1.1 is called Hayman’s inequality.

Theorem 1.3 (see [11], the Second Fundamental Theorem). Suppose
that f(z) is a nonconstant meromorphic function in the complex plane and
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a1, . . . , aq are q (≥ 3) distinct values in the extended complex plane. Then

(q − 2)T (r, f) <
q∑
j=1

N

(
r,

1
f − aj

)
−N1(r) + S(r, f),

where S(r, f) is a remainder term with the same properties as in Theorem
1.1 and N1(r) = 2N(r, f)−N(r, f ′) +N(r, 1/f ′).

Remark 1.4. From Theorem 1.1, we know that the characteristic func-
tion T (r, f) is controlled by only two counting functions, and without the
counting function of the derivative function we cannot obtain a better con-
clusion than the one of Theorem 1.1. Moreover, to contrast the above two
theorems, the coefficients of the counting functions in Theorem 1.1 are larger
than the ones in Theorem 1.3.

In view of Remark 1.4, W. K. Hayman [4] put forward the question
whether the coefficients of the counting functions N(r, 1/f) and
N(r, 1/f (k) − 1) are best possible in Theorem 1.1. In [10], Yang further
investigated the above question and established the well-known Yang in-
equality, in which the coefficients of the counting functions are more precise
than the ones in Hayman’s inequality.

Theorem 1.5 (see [11]). Let f be a transcendental meromorphic func-
tion on the complex plane. Then for any ε > 0 and positive integer k, we
have

T (r, f) <
(

1 +
1
k

)
N

(
r,

1
f

)
+
(

1 +
1
k

)
N

(
r,

1
f (k) − 1

)
−N

(
r,

1
f (k+1)

)
+ εT (r, f) + S(r, f),

where S(r, f) is as in Theorem 1.1. Furthermore, if a, b are two finite complex
numbers and b 6= 0, then

δ(a, f) + δk(b, f (k)) ≤ k + 2
k + 1

,

where

δ(a, f) = 1− lim sup
r→∞

N
(
r, 1
f−a
)

T (r, f)
, δk(a, f (k)) = 1− lim sup

r→∞

N
(
r, 1
f (k)−a

)
T (r, f)

.

It is also of interest to extend some important inequalities and results
of value distribution of meromorphic functions in the whole complex plane
to angular domains. Yang [10] extended Theorem 1.1 to angular domains.
Recently, Zheng [13, 14], Xu and Yi [9], Xu and Cao [8], Lin [5] and others
investigated the uniqueness of meromorphic functions in an angular domain
and obtained some important results (see also [1, 6, 7]).

To state our results, we require the following basic notations and defini-
tions (see [4, 13, 14]).
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Let f be a meromorphic function on the angular domain Ω(α, β) = {z :
α ≤ arg z ≤ β} and 0 < β − α ≤ 2π. Define

Aα,β(r, f) =
ω

π

r�

1

(
1
tω
− tω

r2ω

)
{log+ |f(teiα)|+ log+ |f(teiβ)|} dt

t
,

Bα,β(r, f) =
2ω
πrω

β�

α

log+ |f(reiθ)| sinω(θ − α) dθ,

Cα,β(r, f) = 2
∑

1<|bµ|<r

(
1
|bµ|ω

− |bµ|
ω

r2ω

)
sinω(θµ − α),

Dα,β(r, f) = Aα,β(r, f) +Bα,β(r, f),
Sα,β(r, f) = Dα,β(r, f) + Cα,β(r, f),

where ω = π/(β − α) and bµ = |bµ|eiθµ (µ = 1, 2, . . .) are the poles of f
in Ω(α, β) counted according to their multiplicities. Sα,β(r, f) is called the
Nevanlinna angular characteristic, and Cα,β(r, f) is the angular counting
function of the poles of f in Ω(α, β); if we only consider the distinct poles
of f , we denote the corresponding angular counting function by Cα,β(r, f).
Similarly, when a 6=∞, we will use the notations Aα,β

(
r, 1
f−a
)
, Bα,β

(
r, 1
f−a
)
,

Cα,β
(
r, 1
f−a
)
, Sα,β

(
r, 1
f−a
)

and so on.

For a ∈ Ĉ, we define

δα,β(a, f) = 1− lim sup
r→∞

Cα,β
(
r, 1
f−a
)

Sα,β(r, f)
,

δkα,β(a, f (k)) = 1− lim sup
r→∞

Cα,β
(
r, 1
f (k)−a

)
Sα,β(r, f)

.

In 1990, Yang [10] obtained the following result which extended Theorem
1.1 to angular domains.

Theorem 1.6 (see [10]). Let f be a transcendental meromorphic func-
tion on the complex plane, and Ω(α, β) be an angular domain. Then for any
positive integer k, we have

Sα,β(r, f) ≤
(

2 +
1
k

)
Cα,β

(
r,

1
f

)
+
(

2 +
2
k

)
Cα,β

(
r,

1
f (k) − 1

)
+Qα,β(r, f),

where

Qα,β(r, f) =
(

2 +
2
k

)
Dα,β

(
r,

f (k+1)

f (k) − 1

)
+
(

2 +
1
k

)[
Dα,β

(
r,
f (k+1)

f (k)

)
+Dα,β

(
r,
f (k)

f

)]
+O(1).
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In this paper, we continue the study of meromorphic functions in angular
domains and obtain the following results.

Theorem 1.7. Let f be a transcendental meromorphic function on the
complex plane, and Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain
with 0 < β − α ≤ 2π. Then for any ε > 0 and positive integer k, we have

Sα,β(r, f) <
(

1 +
1
k

)
Cα,β

(
r,

1
f

)
+
(

1 +
1
k

)
Cα,β

(
r,

1
f (k) − 1

)
− Cα,β

(
r,

1
f (k+1)

)
+ εSα,β(r, f) +Rα,β(r, f).

Throughout, we use Rα,β(r, ∗) to denote a quantity satisfying

Rα,β(r, ∗) = O(log(rT (r, ∗))), r 6∈ E,
where E is a set with finite linear measure.

Furthermore, when a, b are two finite complex numbers with a 6= b and
b 6= 0, and f satisfies

(1.1) lim
r→∞

Sα,β(r, f)
log(rT (r, f))

=∞ (r 6∈ E),

then

δα,β(a, f) + δkα,β(b, f (k)) ≤ k + 2
k + 1

.

Moreover, we also consider another kind of precise inequalities, and ob-
tain an accurate estimate of the sum of deficiencies as follows.

Theorem 1.8. Let f be a transcendental meromorphic function on the
complex plane, and Ω(α, β) = {z : α ≤ arg z ≤ β} an angular domain with
0 < β − α ≤ 2π. Then for any finite complex numbers a, b (a 6= b), ε > 0
and positive integer k, we have

Sα,β(r, f (k)) <
(

1 +
1
2k

)
Cα,β

(
r,

1
f (k) − a

)
+
(

1 +
1
2k

)
Cα,β

(
r,

1
f (k) − b

)
− Cα,β

(
r,

1
f (k)

)
+ εSα,β(r, f) +Rα,β(r, f (k)),

Furthermore, if f satisfies (1.1), then

δα,β(a, f (k)) + δα,β(b, f (k)) ≤ 1 +
1

2k + 1
.

2. Some lemmas. To prove our results, we require the following lem-
mas.

Lemma 2.1 (see [2]). Let f be a nonconstant meromorphic function on
Ω(α, β). Then for every complex number a, we have
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Sα,β

(
r,

1
f − a

)
= Sα,β(r, f) + ε(r, a),

where ε(r, a) = O(1) as r →∞.

Lemma 2.2 (see [3, p. 138]). Let f be a nonconstant meromorphic func-
tion on C and Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with
0 < β − α ≤ 2π. Then for any 1 ≤ r < R, we have

Aα,β

(
r,
f ′

f

)
≤ K

{(
R

r

)ω R�
1

log+ T (t, f)
t1+ω

dt+ log+ r

R− r
+ log

R

r
+ 1
}
,

and

Bα,β

(
r,
f ′

f

)
≤ 4ω
rω
m

(
r,
f ′

f

)
,

where ω = π/(β − α) and K is a positive constant not depending on r and R.

Remark 2.3. Nevanlinna conjectured that

(2.1) Dα,β(r, f ′/f) = Aα,β

(
r,
f ′

f

)
+Bα,β

(
r,
f ′

f

)
= o

(
Sα,β

(
r,

1
f − a

))
when r tends to +∞ outside an exceptional set of finite linear measure, and
he proved that Dα,β(r, f ′/f) = O(1) when the function f is meromorphic in
C and has finite order. In 1974, Gol’dberg constructed a counter-example to
show that (2.1) is not valid in general (see [2, 14]). However, it follows from
Lemma 2.2 that

Dα,β

(
r,
f ′

f

)
= Aα,β

(
r,
f ′

f

)
+Bα,β

(
r,
f ′

f

)
= Rα,β(r, f),

where Rα,β(r, f) = O{log(rT (r, f))} as r →∞ (r 6∈ E) and E is a set with
finite linear measure.

Lemma 2.4 (see [15]). Let f be a transcendental meromorphic function
on C, and Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with
0 < β − α ≤ 2π. Then for any positive integer k, we have

Sα,β(r, f) ≤ Cα,β(r, f) + Cα,β

(
r,

1
f

)
+ Cα,β

(
r,

1
f (k) − 1

)
− Cα,β

(
r,

1
f (k+1)

)
+Rα,β(r, f).

Lemma 2.5. Let f be a transcendental meromorphic function on C, and
Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with 0 < β − α ≤ 2π.
Then for any ε > 0 and positive integer k, we have

(k − 1)Cα,β(r, f) < (1 + ε)Cα,β

(
r,

1
f (k)

)
+ (1 + ε)(Cα,β(r, f)

− Cα,β(r, f)) +Rα,β(r, f).
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Proof. For any given ε > 0 and positive integer k, we choose a positive
integer n > k/ε, and let z ∈ Ω(α, β). Let W (z) = W (1, z, z2, . . . , zk+n−1,
f, zf, . . . , znf) be the Wronskian determinant of 1, z, z2, . . . , zk+n−1, f, zf,
. . . , znf . We may assume W (z) 6= 0 because f is a transcendental mero-
morphic function. It is easy to see that W (z) is a homogeneous differential
polynomial of degree n+1 in f with polynomial coefficients of z and without
f (j) (j < k) in each term of W (z).

Set A(z) = W (z) · (f (k)(z))−n−1. From Lemma 2.1, we have

Cα,β(r, 1/A) ≤ Sα,β(r,A) +O(1) = Cα,β(r,A) +Dα,β(r,A) +O(1)(2.2)
≤ Cα,β(r,A) +Rα,β(r, f).

Now we estimate the number of zeros and poles of A on Ω(α, β). A simple
property of Wronskians gives

W (z) = fk+2n+1W (f−1, zf−1, . . . , zk+n−1f−1, 1, z, . . . , zn).

If z0 is a pole of f of order p, then

W (z) = O((z − z0)−p(k+2n+1)), z → z0.

Therefore

A(z) = O((z − z0)(n+1)(k+p)−p(k+2n+1))(2.3)

= O((z − z0)n(k−1)−(k+n)(p−1))

as z → z0.
Let C0

p(r), C
∞
p (r) and C

∗
p(r) be the counting functions of poles of f of

order p on Ω(α, β), where A(z) has a zero, pole or finite nonzero value,
respectively, each pole being counted only once. From (2.2) and (2.3), we
get

(2.4)
∞∑
p=1

(n(k − 1)− (k + n)(p− 1))C0
p(r)

≤ Cα,β(r, 1/A) ≤ Cα,β(r,A) +Rα,β(r, f)

≤
∞∑
p=1

((k + n)(p− 1)− n(k − 1))C∞p (r)

+ (n+ 1)Cα,β

(
r,

1
f (k)

)
+Rα,β(r, f).

If a pole of f contributes to C
∗
p(r), then by (2.3) we get n(k − 1) −

(k + n)(p− 1) ≤ 0 and

n(k − 1)C∗p(r) ≤ (k + n)(p− 1)C∗p(r).
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Summing for p = 1, 2, . . . above and substituting to (2.4), we obtain

n(k − 1)
∞∑
p=1

Cp(r) ≤ (k + n)
∞∑
p=1

(p− 1)Cp(r)(2.5)

+ (n+ 1)Cα,β

(
r,

1
f (k)

)
+Rα,β(r, f),

where Cp(r) = C
0
p(r) + C

∞
p (r) + C

∗
p(r).

Noting
∑∞

p=1(p − 1)Cp(r) =
∑∞

p=1[pCp(r) − Cp(r)] =
∑∞

p=1[Cp(r) −
Cp(r)] = Cα,β(r, f) − Cα,β(r, f), n > k/ε and (2.5), we have proved Lem-
ma 2.5.

Lemma 2.6. Let f be a transcendental meromorphic function on C, and
Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with 0 < β − α ≤ 2π.
Then for any ε > 0 and positive integer k, we have

(2.6) Cα,β(r, f) <
1
k
Cα,β

(
r,

1
f (k)

)
+

1
k
Cα,β(r, f) + εSα,β(r, f) +Rα,β(r, f).

Proof. Replacing ε with ε/3 in Lemma 2.5, we have

Cα,β(r, f) <
1
k
Cα,β

(
r,

1
f (k)

)
+

1
k
Cα,β(r, f) +

ε

3k
Cα,β

(
r,

1
f (k)

)
(2.7)

+
ε

3k
Cα,β(r, f) +Rα,β(r, f).

Since

Cα,β

(
r,

1
f (k)

)
≤ Sα,β(r, f (k)) +O(1)

≤ Dα,β

(
r,
f (k)

f

)
+Dα,β(r, f) + Cα,β(r, f (k)) +O(1)

≤ Dα,β(r, f) + Cα,β(r, f) + kCα,β(r, f) +Rα,β(r, f)
≤ (k + 1)Sα,β(r, f) +Rα,β(r, f),

from (2.7), we have

ε

3k
Cα,β

(
r,

1
f (k)

)
+

ε

3k
Cα,β(r, f) ≤ k + 2

3k
εSα,β(r, f) +Rα,β(r, f)(2.8)

≤ εSα,β(r, f) +Rα,β(r, f).

From (2.7) and (2.8), we get (2.6) easily.

Lemma 2.7. Let f be a transcendental meromorphic function on C, and
Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with 0 < β − α ≤ 2π.
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Then for any ε > 0 and positive integer k, we have

Cα,β(r, f) <
1
k
Cα,β

(
r,

1
f

)
+

1
k
Cα,β

(
r,

1
f (k) − 1

)
+ εSα,β(r, f)(2.9)

+Rα,β(r, f).

Proof. From Lemma 2.6 we have

Cα,β

(
r,

1
f (k+1)

)
> (k + 1)Cα,β(r, f)− Cα,β(r, f)− k + 1

2
εSα,β(r, f)−Rα,β(r, f).

Substituting the above inequality back into Lemma 2.4, we obtain

kCα,β(r, f) < Cα,β

(
r,

1
f

)
+ Cα,β

(
r,

1
f (k) − 1

)
+ (Cα,β(r, f)− Sα,β(r, f))

+
k + 1

2
εSα,β(r, f) +Rα,β(r, f).

Therefore

Cα,β(r, f) <
1
k
Cα,β

(
r,

1
f

)
+

1
k
Cα,β

(
r,

1
f (k) − 1

)
+
k + 1

2k
εSα,β(r, f) +Rα,β(r, f)

<
1
k
Cα,β

(
r,

1
f

)
+

1
k
Cα,β

(
r,

1
f (k) − 1

)
+ ε′Sα,β(r, f) +Rα,β(r, f).

This completes the proof of Lemma 2.7.

From Theorem 1.4 in [10], we can deduce

Lemma 2.8. Let f be a transcendental meromorphic function on C, and
Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with 0 < β − α ≤ 2π.
Then for any finite complex number a, b (a 6= b), we have

Sα,β(r, f) ≤ Cα,β(r, f) + Cα,β

(
r,

1
f − a

)
+ Cα,β

(
r,

1
f − b

)
− C0

α,β(r) +Rα,β(r, f),

where C0
α,β(r) = 2Cα,β(r, f)− Cα,β(r, f ′) + Cα,β(r, 1/f ′).

Lemma 2.9. Let f be a transcendental meromorphic function on C, and
Ω(α, β) = {z : α ≤ arg z ≤ β} be an angular domain with 0 < β − α ≤
2π. Then for any finite complex numbers a, b (a 6= b), ε > 0 and positive
integer k,
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Cα,β(r, f) <
1
2k
Cα,β

(
r,

1
f (k) − a

)
+

1
2k
Cα,β

(
r,

1
f (k) − b

)
+ εSα,β(r, f) +Rα,β(r, f).

Proof. By using Lemma 2.8 for f (k) and three distinct complex numbers
a, b,∞, we have

Sα,β(r, f (k)) ≤ Cα,β(r, f (k)) + Cα,β

(
r,

1
f (k) − a

)
+ Cα,β

(
r,

1
f (k) − b

)
− C0

α,β(r) +Rα,β(r, f (k)),

where C0
α,β(r) = 2Cα,β(r, f (k)) − Cα,β(r, f (k+1)) + Cα,β(r, 1/f (k+1)). Thus,

we get

Sα,β(r, f (k)) ≤ Cα,β(r, f) + Cα,β

(
r,

1
f (k) − a

)
+ Cα,β

(
r,

1
f (k) − b

)
(2.10)

− Cα,β
(
r,

1
f (k+1)

)
+Rα,β(r, f (k)).

Since Sα,β(r, f (k)) = Dα,β(r, f (k)) + Cα,β(r, f) + kCα,β(r, f), by applying
Lemma 2.6 for f (k+1) we have

Cα,β

(
r,

1
f (k+1)

)
> (k + 1)Cα,β(r, f)− Cα,β(r, f)− (k + 1)εSα,β(r, f)

− (k + 1)Rα,β(r, f).

Substituting the above two inequalities back into (2.10), we get

Cα,β(r, f) <
1
2k
Cα,β

(
r,

1
f (k) − a

)
+

1
2k
Cα,β

(
r,

1
f (k) − b

)
+
k + 1

2k
εSα,β(r, f) +

k + 2
2k

Rα,β(r, f (k))

<
1
2k
Cα,β

(
r,

1
f (k) − a

)
+

1
2k
Cα,β

(
r,

1
f (k) − b

)
+ ε′Sα,β(r, f) +Rα,β(r, f (k)).

From the definition of Rα,β(r, ∗) and T (r, f) ≤ T (r, f (k)) ≤ (k+ 1)T (r, f) +
S(r, f), where S(r, f) is as in Theorem 1.1, we get the conclusion of Lemma
2.9.

3. Proof of Theorem 1.7. From Lemmas 2.4 and 2.7, we get

Sα,β(r, f) <
(

1 +
1
k

)
Cα,β

(
r,

1
f

)
+
(

1 +
1
k

)
Cα,β

(
r,

1
f (k) − 1

)
− Cα,β

(
r,

1
f (k+1)

)
+ εSα,β(r, f) +Rα,β(r, f).
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Next, we prove the inequality for the sum of deficiencies. First, using the
above inequality for the function (f − a)/b, we get

Sα,β(r, f) <
(

1 +
1
k

)
Cα,β

(
r,

1
f − a

)
+
(

1 +
1
k

)
Cα,β

(
r,

1
f (k) − b

)
− Cα,β

(
r,

1
f (k+1)

)
+ εSα,β(r, f) +Rα,β(r, f)

<

(
1 +

1
k

)
Cα,β

(
r,

1
f − a

)
+
(

1 +
1
k

)
Cα,β

(
r,

1
f (k) − b

)
+ εSα,β(r, f) +Rα,β(r, f).

Dividing both sides by Sα,β(r, f), we have

(3.1)
(

1 +
1
k

)(
1−

Cα,β
(
r, 1
f−a
)

Sα,β(r, f)
+ 1−

Cα,β
(
r, 1
f (k)−b

)
Sα,β(r, f)

)
< 1 +

2
k

+ ε+
Rα,β(r, f)
Sα,β(r, f)

.

From (3.1) and the definitions of δα,β(a, f), δkα,β(a, f (k)), we get(
1 +

1
k

)
(δα,β(a, f) + δkα,β(b, f (k)))

≤
(

1 +
1
k

)
lim inf
r→∞

(
1−

Cα,β
(
r, 1
f−a
)

Sα,β(r, f)
+ 1−

Cα,β
(
r, 1
f (k)−b

)
Sα,β(r, f)

)
≤ lim sup

r→∞

(
1 +

2
k

+ ε

)
+ lim inf

r→∞

Rα,β(r, f)
Sα,β(r, f)

.

From (1.1), we get

(3.2) lim
r→∞

Rα,β(r, f)
Sα,β(r, f)

= 0.

From (3.2), since ε is arbitrary we get

δα,β(a, f) + δkα,β(b, f (k)) ≤ k + 2
k + 1

.

Thus, we have completed the proof of Theorem 1.7.

4. Proof of Theorem 1.8. From Lemma 2.9 and (2.10), we get

Sα,β(r, f (k)) ≤
(

1 +
1
2k

)
Cα,β

(
r,

1
f (k) − a

)
+
(

1 +
1
2k

)
Cα,β

(
r,

1
f (k) − b

)
− Cα,β

(
r,

1
f (k+1)

)
+ εSα,β(r, f) +Rα,β(r, f (k)).
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The above inequality implies

(4.1)
(

1 +
1
2k

)(
2−

Cα,β
(
r, 1
f (k)−a

)
Sα,β(r, f (k))

−
Cα,β

(
r, 1
f (k)−b

)
Sα,β(r, f (k))

)
< 1 +

1
k

+ ε+
Rα,β(r, f (k))
Sα,β(r, f (k))

.

Thus, from (4.1) and the definition of δα,β(a, f), we get(
1 +

1
2k

)
(δα,β(a, f (k)) + δα,β(b, f (k)))

≤
(

1 +
1
2k

)
lim inf
r→∞

(
1−

Cα,β
(
r, 1
f (k)−a

)
Sα,β(r, f (k))

+ 1−
Cα,β

(
r, 1
f (k)−b

)
Sα,β(r, f (k))

)
≤ lim sup

r→∞

(
1 +

1
k

+ ε

)
+ lim inf

r→∞

Rα,β(r, f (k))
Sα,β(r, f (k))

.

From (1.1), we easily get

(4.2) lim inf
r→∞

Rα,β(r, f (k))
Sα,β(r, f (k))

= 0.

From (4.2), since ε is arbitrary,

(4.3) δα,β(a, f (k)) + δα,β(b, f (k)) ≤ 1 +
1

2k + 1
.

This completes the proof of Theorem 1.8.
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