
ANNALES

POLONICI MATHEMATICI

99.2 (2010)

Timelike Christoffel pairs in the split-quaternions

by M. P. Dussan (São Paulo) and M. Magid (Wellesley, MA)

Abstract. We characterize the Christoffel pairs of timelike isothermic surfaces in
the four-dimensional split-quaternions. When restricting the receiving space to the three-
dimensional imaginary split-quaternions, we establish an equivalent condition for a time-
like surface in R3

2 to be real or complex isothermic in terms of the existence of integrating
factors.

1. Introduction. Timelike isothermic surfaces have been studied by
the authors and others ([2], [3], [11], [12], [5], [7]). The chief difference in
this setting is that there are two types of isothermic surfaces, real isothermic
and complex isothermic ones, depending on whether the shape operators are
diagonalizable over R or C. Just as in the Riemannian case, the geometric
transformations of timelike isothermic surfaces are known to be important
tools in the understanding of their geometry and their relationship with
integrable systems.

The purpose of this paper is to study the Christoffel pairs of real and com-
plex isothermic surfaces in codimension two and one, describing those in the
split-quaternionic setting. Our study was motivated by Hertrich-Jeromin’s
work in [6], where an excellent study of the Christoffel pairs of isothermic
surfaces in codimension two was made utilizing the quaternions H, and the
Riemann surface structure of the surface. His definition of Christoffel trans-
form is a generalization of the definition of Christoffel transforms for isother-
mic surfaces in R3. However when the ambient space is H = R4, he observes
that the Christoffel pair constructed using his quaternionic characterization
generally does not share the same tangent planes. With an adjustment of
the definition, this defect can be removed.

In this paper we start by looking at the codimension-two case for time-
like isothermic surfaces in H′ = R4

2, the split-quaternions. We characterize
the real and complex isothermic surfaces in terms of the closure of suit-
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able H′-valued 1-forms and we prove that the corresponding immersions
determined by these forms are also timelike isothermic surfaces of real and
complex type, respectively. Then when taking the split-quaternionic conju-
gate of one of those surfaces, we show that the new surface pair constitutes
a classical Christoffel pair. In addition, we give symmetric conditions to
construct Christoffel pairs in H′. For the particular case that the receiving
space is the imaginary split-quaternions, we obtain an equivalent condition
for a timelike surface in R3

2 to be real or complex isothermic, in terms of the
existence of integrating factors for an expression involving the mean curva-
ture and the Gauss map. That equivalent condition shows, for instance, that
whenever one of the timelike surfaces of a Christoffel pair is a minimal sur-
face, the other is a scaling of its Gauss map. Also the Christoffel transform
of a surface of constant mean curvature H 6= 0 is a parallel surface of the
same constant mean curvature. Finally, we characterize the Hopf differential
for real and complex isothermic surfaces via a split-complex variable.

The split-quaternions H′ were first discovered in [9] and [10]. These form
a real, four-dimensional associative algebra containing some non-invertible,
non-zero elements. They were used in [12] and a thorough treatment can
be found in [7], which also contains an introduction to the split-complex
numbers C′ defined as {s + k′t | k′2 = 1, s, t ∈ R}. The split-complex
numbers appear naturally when looking at immersions in H′, which can be
seen, for example, in the proof of Theorem 2.2 in this note.

The organization of this paper is as follows. In Section 2 we establish
some basic results involving the algebra of split-quaternions and the de-
scription that produces the normal vector in R3

2. It also contains the re-
sults characterizing the Christoffel pairs of timelike isothermic surfaces in
H′ = R4

2. Section 3 is devoted to the codimension-one case when restricting
to the imaginary split-quaternions.

2. Surfaces in H′. Our timelike surfaces will sit in H′, a four-dimen-
sional Clifford algebra given by

H′ = {x0 + x1i+ x2j
′ + x3k

′ | x0, x1, x2, x3 ∈ R}

with
i2 = −1, j′

2 = 1 = k′
2
,

ij′ = k′, j′i = −k′, j′k′ = −i, k′j′ = i, ik′ = −j′, k′i = j′.

This was defined by Libermann in [9], and was called a quaternionic algebra
of the second type. We will call them split-quaternions. For x, y ∈ H′ we
define our inner product x · y by

x · y = Re(x̄y) = x0y0 + x1y1 − x2y2 − x3y3,
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where x0 + x1i+ x2j′ + x3k′ = x0 − x1i − x2j
′ − x3k

′. The metric chosen
here in H′ has signature (2, 2). We call those split-quaternions with x0 = 0
imaginary , and denote them by Im H′. They inherit a metric of signature
(2, 1) from H′ and are identified in all that follows with R3

2. Thus, when
we discuss surfaces in three-space, we are working with the negative of the
standard metric on Lorentz three-space used in [12], but it is the standard
metric on the split-quaternions. Note that if x ∈ Im H′ then x = −x, and
that x−1 = x̄

x·x .

For imaginary x and y an important formula for calculations is

xy = −x · y − x× y.(2.1)

Here x× y is the cross product in R3
2 given by

(x× y) · z = Det[z, x, y].

We can define, exactly as in [8], a wedge product on H′-valued one-forms
on M2

1 by
α ∧ β(X,Y ) = α(X)β(Y )− α(Y )β(X),

which satisfies the identities

α ∧ β = −β̄ ∧ ᾱ, α ∧ hβ = αh ∧ β,
d(hα) = dh ∧ α+ hdα, d(αh) = dαh− α ∧ dh,

where h : M2
1 → H′. We also identify two-forms on M2

1 with their quadratic
forms by

ω(X) = ω(X,J ′X),

for ω an H′-valued two-form on M2
1 , and J ′ an integrable product structure

satisfying J ′2 = Id, intrinsic to the Lorentz surface M2
1 , which we define by

choosing the two future directed null vectors ∂x, ∂y in the chosen time cone
so that {∂x, ∂y} is positively oriented and with J ′(∂x) = −∂x, J ′(∂y) = ∂y.
If we define ∗α = α ◦ J ′ then we have

α ∧ β = α(∗β)− (∗α)β,

since (α∧β)(U, J ′U) = α(U)β(J ′U)−α(J ′U)β(U). Note that in the Loren-
tzian setting we have ∗2 = Id . There is an algebraic lemma whose statement
and proof is quite similar to one in [1].

Lemma 2.1 (Algebra of split-quaternions). For x, y ∈ H′:

1. xy = yx iff Im(x) and Im(y) are linearly dependent over R.
2. Im(x2) = 0 iff x is either real or purely imaginary.
3. x2 = 1 iff x = ±1 or x is purely imaginary and x · x = −1.
4. x2 = −1 iff x is purely imaginary and x · x = 1.

We also need the following version of Lemma 2.1 found in [8].
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Lemma 2.2. f : M2
1 → R3

2 is a conformal immersion iff there exists
N : M2

1 → H′ such that

(†) (∗df)U = df(J ′U) = Ndf(U).

If (†) holds then N : M2
1 → H2

1 ⊂ R3
2 where H2

1 are the vectors x with
x · x = −1 in R3

2 and N is the oriented unit normal field to f .

Proof. Assume first that N exists. Since df is pointwise injective and

df(U) = (∗df)(J ′U) = (Ndf)(J ′U) = NNdf(U),

we have N2 = 1. We see that N cannot be ±1, so that N is purely imaginary
and a map intoH2

1 . Next we would like to see thatN is normal to the surface.
Note that −N̄ = N , so that df(J ′U) = df(U) N̄ gives −df(J ′U) = df(U)N
so that −Ndf(U) = df(U)N and

Ndf(U) + df(U)N = 0 = −2N · df(U),

so that N is a normal field.
Conversely, suppose f : M2

1 → R3
2 is a conformal immersion of a Loren-

tzian surface and assume that N : M2
1 → H2

1 is the timelike unit normal
field to f . We need to show that

df(J ′U) = Ndf(U) = −N × df(U).

Equivalently we must show that for the null coordinates {x, y},
df(−∂x) = −N × fx, df(∂y) = −N × fy.

This is so because Det[fs/µ, ft/µ,N ] = 1, where µ2 = fs·fs = −ft·ft = fx·fy
and fs · ft = 0.

Lemma 2.3 (Fundamental Lemma). Let U be a Lorentzian subspace
in H′.

1. There are L,R ∈ H′ such that

L2 = R2 = 1, LU = U = UR, U = {x ∈ H′ | LxR = −x}.
L,R are unique up to sign.

2. If L,U,R are as above, and U ⊂ Im H′, then L = R is the normal
vector in R3

2.
3. If L,R ∈ H′ with L2 = 1 = R2 then U = {x ∈ H′ | LxR = −x}

and U⊥ = {x ∈ H′ | LxR = x} are orthogonal real two-dimensional
subspaces.

Proof. 1. If 1 ∈ U , let a ∈ U ⊂ Im H′, so that a · a = −1 and
a · 1 = 0, keeping in mind that U = span{1, a} is Lorentzian. We can
see that one possible choice is L = a and R = −a. Indeed, L2 = R2 =
a2 = −a · a = 1; LU = {a(v + ua) = va + u | u, v ∈ R} = U , and
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UR = {(ua+ v)(−a) = −u− va} ∈ U, for u, v ∈ R. Finally we see that

a(ua+ v)(−a) = (u+ va)(−a) = −ua− v,
so that U ⊂ {x ∈ H′ | LxR = −x}. To see the other containment, take
b, c ∈ R3

2 so that 1, a, b, c is an orthonormal basis with b ·b = 1 = −c ·c. Then
a(u+ va+ wb+ xc)(−a) = −u− av + wb+ xc, assuming that a× b = c.

To see uniqueness, we see that L 1 = L ∈ U , so that L = u + va.
Calculating L2 = (u+ va)2 = 1 gives u2 + v2 + 2uva = 1, yielding L = 1 or
L = a, so L = a.

If U is arbitrary, write U = span{x, x⊥} with x · x = 1, x⊥ · x⊥ = −1
and x · x⊥ = 0. If we let, as [1] does, Ũ = x−1U then a = x−1x⊥ and
L = xL̃x−1 = x⊥x−1, R = R̃ = −x−1x⊥.

2. Now let U = span{x, x⊥} be a Lorentzian subspace of Im H′. Then

L = x⊥x−1 = −x⊥ × x−1 = x−1 × x⊥ = R := −n
where n is the oriented timelike unit normal vector to the plane in Im H′.

3. We know that x⊥x−1x⊥x−1 = 1 = x−1x⊥x−1x⊥, so that

L(ux+ bx⊥)R = x⊥x−1(ux+ bx⊥)(−x−1x⊥) = −ux− bx⊥.
Now, σ(x) = LxR is an orthogonal transformation, in fact, LxR · LxR =
R̄x̄L̄LxR = x ·x. If LxR = −x and LyR = y then x ·y = −LxR ·LyR = −x ·
y = 0. Conversely, if LxR = −x and x ·y = 0, then LxR ·LyR = 0 = x ·LyR,
so that LyR is in the orthogonal complement of the −1 eigenspace. Since
σ2 = Id is one-to-one, the +1 eigenspace is the orthogonal complement.

Take an immersed surface f : M2
1 → H′ with conformal coordinates

{s, t}, so that fs · fs > 0, ft · ft + fs · fs = 0 and fs · ft = 0. Let U =
span{fs/µ, ft/µ}. Then L = ftf

−1
s , R = −f−1

s ft. Any normal vector N to
the surface must satisfy LNR = N or

−f−1
s Nf−1

s = f−1
t Nf−1

t .(2.2)

We will derive an equivalent condition for fs · ft = 0. Note that

fs · ft = 0 iff f̄tfs + f̄sft = 0

iff (ft · ft)f−1
t fs + (fs · fs)f−1

s ft = 0

iff (ft · ft)f−1
t fs = −(fs · fs)f−1

s ft.

We know that in this case fs · fs, ft · ft 6= 0, so we can take the inverse of
both sides of the last equation and obtain

f−1
s ft
ft · ft

+
f−1
t fs
fs · fs

= 0.

If fs · fs + ft · ft = 0, then

f−1
s ft = f−1

t fs or ftf
−1
s = fsf

−1
t .(2.3)
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Conversely, if ftf−1
s = fsf

−1
t , then

ftf̄s
fs · fs

− fsf̄t
ft · ft

= 0.

Since ftf̄s is not real, this implies that fs · ft = 0 and fs · fs + ft · ft = 0.

Definition 2.1. If {s, t} are conformal coordinates on the immersion
f : M2

1 → R4
2
∼= H′, we say the immersion is real isothermic if f⊥st = 0 and

complex isothermic if (fss + ftt)⊥ = 0. This corresponds to having all the
shape operators diagonalizable either over R or over C.

Theorem 2.1. Let f : M2
1 → R4

2
∼= H′ with conformal coordinates {s, t}.

If f is real isothermic, then ψ∗ := f−1
s ds + f−1

t dt is a closed form, and if
ψ∗ = df∗ locally, then f∗ is also real isothermic.

If f is complex isothermic, then φ∗ := f−1
s dt + f−1

t ds is a closed form,
and if φ∗ = df∗ locally, then f∗ is also complex isothermic.

Proof. First we check that the forms are closed. In the real case we only
need to use (2.3):

dψ∗ = −f−1
s dfsf

−1
s ∧ ds− f−1

t dftf
−1
t ∧ dt

= −f−1
t ftsf

−1
t ds ∧ dt+ f−1

s fstf
−1
s ds ∧ dt

= (−f−1
t (afs + bft)f−1

t ds ∧ dt+ f−1
s (afs + bft)f−1

s )ds ∧ dt
= (−af−1

s − bf−1
t + af−1

s + bf−1
t )ds ∧ dt = 0.

For the complex isothermic case we need equation (2.2) as well:

dφ∗ = −f−1
s fssf

−1
s ds ∧ dt+ f−1

t fttf
−1
t ds ∧ dt

= −f−1
s (bfs + aft + e1N1 + e2N2)f−1

s ds ∧ dt
+ f−1

t (bfs + aft − e1N1 − e2N2)f−1
t ds ∧ dt

= (−bf−1
s − af−1

t − e1f
−1
s N1f

−1
s − e2f

−1
s N2f

−1
s

+ bf−1
s + af−1

t − e1f
−1
t N1f

−1
t − e2f

−1
t N2f

−1
t )ds ∧ dt = 0.

Next we show that f∗ is isothermic. In the real isothermic case we have

df∗ = f−1
s ds+ f−1

t dt,(2.4)

so that

f∗s = f−1
s and f∗t = f−1

t .(2.5)

We must show that

f∗t f
∗
s
−1 = f∗s f

∗
t
−1,(2.6)

f∗st = αf∗s + βf∗t .(2.7)

Clearly (2.6) holds by (2.3). For (2.7),

(f∗t )s = (f−1
t )s = −f−1

t ftsf
−1
t = −f−1

t (afs + bft)f−1
t

= −af−1
s − bf−1

t = −af∗s − bf∗t .
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In the complex isothermic case,

f∗s = f−1
t and f∗t = f−1

s .(2.8)

We can easily see that

f∗t f
∗
s
−1 = f∗s f

∗
t
−1.(2.9)

Finally, we must see that f∗ss + f∗tt is purely tangential:

f∗ss + f∗tt = (f−1
t )s + (f−1

s )t = −f−1
t fstf

−1
t − f−1

s ftsf
−1
s

= −f−1
s (afs + bft + c1N1 + c2N2)f−1

s − f−1
t (afs + bft + c1N1 + c2N2)f−1

t

= −2af−1
s − 2bf−1

t .

Note that φ∗∗ = f∗t
−1ds + f∗s

−1dt = fsds + ftdt = df , so that f∗∗ = f and
the same is true for f real isothermic.

We can also see that, in both cases, df ∧ df∗ = 0. Indeed, in the real
isothermic case,

df ∧ df∗ = (fsds+ ftdt) ∧ (f−1
s ds+ f−1

t dt) = (fsf−1
t − ftf−1

s )(ds ∧ dt) = 0,

while in the complex isothermic case,

df ∧ df∗ = (fsds+ ftdt)∧ (f−1
t ds+ f−1

s dt) = (fsf−1
s − ftf−1

t )(ds∧ dt) = 0.

Proposition 2.1. If g : M2
1 → H′ is isothermic, then ḡ is isothermic.

Furthermore, f and f c = f̄∗, as given in Theorem 2.1, share the same
tangent planes.

Proof. We note that x · y = x̄ · ȳ, so that the normal space to the image
of ḡ is the conjugate of the normal space to g. Thus, for example, if g is real
isothermic, so that [gst]⊥ = 0, then [ḡst]⊥ = 0 and ḡ is real isothermic.

The claim about the tangent planes depends on the formula for the
inverse in H′. We note that, by (2.5) or (2.8) we have f ct = (f̄∗)t = (f̄t)−1

or (f̄s)−1. This is either

ft
ft · ft

or
fs

fs · fs
.

In either case, f c and f have the same tangent spaces.

Hence we can now set the following definition.

Definition 2.2. Using the definition of f∗ in Theorem 2.1, f c = f̄∗

is the Christoffel transform of f and the two surfaces {f, f c} are called a
Christoffel pair.

Theorem 2.2. If f, g : M2
1 → H′ are timelike surfaces satisfying df ∧

dg = 0 = dg ∧ df , then both are isothermic and g = ±f∗. Moreover, f, ḡ
constitute a Christoffel pair.
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Proof. Choose conformal parameters {s, t} for f , so that

ftf̄s ∈ Im H′, fs · fs + ft · ft = 0.

Set fs ·fs = E. Examining the two equations in the hypothesis, we find that

ftgs = fsgt and gtfs = gsft.(2.10)

Next we see that ftgt commutes with fsf̄t:

ft(gtfs)f̄t = ftgsftf̄t = −Efsgt = fs(f̄tft)gt.

If a (split-)quaternion v commutes with an imaginary quaternion u, then
v ∈ span{1, u}. Here, then, ftgt ∈ span{1, fsf̄t}. Set ftgt = a+bfsf̄t, so that

gt = af−1
t − bEf−1

s .(2.11)

In the same way we can see that fsgs commutes with ftf̄s, so that

gs = cf−1
s + dEf−1

t .(2.12)

Using (2.10), (2.11) and (2.12), we see that, in fact,

gt = αf−1
t + βf−1

s ,(2.13)
gs = βf−1

t + αf−1
s .(2.14)

Next we look at the conditions for the integrability of g. Using (2.2) and
(2.3), gts = gst yields

αs = βt,(2.15)
βs = αt,(2.16)

2αf⊥st − β(fss + ftt)⊥ = 0.(2.17)

We will now define a conformal change of coordinates, depending on the
values α and β. For any functions a, b with a2 6= b2 set

du =adt+ bds,
∂

∂u
=

a

a2 − b2
∂

∂t
− b

a2 − b2
∂

∂s
,(2.18)

dv =bdt+ ads,
∂

∂v
= − b

a2 − b2
∂

∂t
+

a

a2 − b2
∂

∂s
.(2.19)

Given {u, v} we see that

(fuu + fvv)⊥ = − 4ab
(a2 − b2)2

f⊥ts +
a2 + b2

(a2 − b2)2
(ftt + fss)⊥,(2.20)

f⊥uv =
a2 + b2

(a2 − b2)2
(fts)⊥ −

ab

(a2 − b2)2
(ftt + fss)⊥.(2.21)

There are two cases to consider.
1. |α| > |β|, i.e., |α| + βk′ is in quadrant I of C′ (see the appendix.) If

α > 0 we solve (a+ bk′)2 = α+ βk′. Explicitly, we have a =
√
α cos(ρ), b =
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√
α sin(ρ), where sin(2ρ) = β/α. This gives α2 − β2 = (a2 + b2)2 − 4a2b2 =

(a2 − b2)2. In this case

2f⊥uv =
2α

α2 − β2
f⊥ts −

β

α2 − β2
(ftt + fss)⊥ = 0,

and f is real isothermic.
If α < 0, solve (a+ bk′)2 = −α− βk′, which lies in quadrant I and again

we see that f is real isothermic.
2. |β| > |α|. In this case, if β > 0, solve (a + bk′)2 = β + αk′. Here we

have a2 + b2 = β and 2ab = α, and find

(fuu + fvv)⊥ = − 2α
α2 − β2

f⊥ts +
β

α2 − β2
(ftt + fss)⊥ = 0,

so that f is complex isothermic. If β < 0 we solve (a + bk′)2 = −β − αk′,
with the same result.

We next see that g is ±f∗.
In the real case we show that

dg = gudu+ gvdv = f−1
u du+ f−1

v dv,

i.e., gufu = 1 = gvfv. We know that

gu =
agt − bgs
a2 − b2

and gv =
−bgt + ags
a2 − b2

.

As above, letting α = τ(a2 + b2) and β = 2τab with τ = ±1 we get

fugu =
(
aft − bfs
a2 − b2

)(
a(αf−1

t + βf−1
s )− b(βf−1

t + αf−1
s )

a2 − b2

)
= τ.

We see that fvgv = τ in the same way.
For the complex case we want to see that gufv = τ = gvfu, using α =

2τab and β = τ(a2 + b2). We have

fugv =
(
aft − bfs
a2 − b2

)(
−b(αf−1

t + βf−1
s ) + a(βf−1

t + αf−1
s

a2 − b2

)
= τ

and can also see easily that gvfu = τ.

Next we give two examples which are codimension two and which do not
have positive definite analogs.

Example 2.1. The unit complex circle

f(s, t) = (cos(s) cosh(t), sin(s) cosh(t),− sin(s) sinh(t), cos(s) sinh(t))

is complex isothermic. We have

ft(s, t) = (cos(s) sinh(t), sin(s) sinh(t),− sin(s) cosh(t), cos(s) cosh(t)),
fs(s, t) = (− sin(s) cosh(t), cos(s) cosh(t),− cos(s) sinh(t),− sin(s) sinh(t)).

Thus we see that fs · fs = 1, ft · ft = −1, and fs · ft = 0.



210 M. P. Dussan and M. Magid

N1 = (cos(s) cosh(t), sin(s) cosh(t),− sin(s) sinh(t), cos(s) sinh(t)),
N2 = (sin(s) sinh(t),− cos(s) sinh(t), cos(s) cosh(t), sin(s) cosh(t)),
f−1
t =f∗s =(− cos(s) sinh(t), sin(s) sinh(t),− sin(s) cosh(t), cos(s) cosh(t)),
f−1
s =f∗t =(− sin(s) cosh(t),− cos(s) cosh(t), cos(s) sinh(t), sin(s) sinh(t)),
f∗(s, t) = (− sin(s) sinh(t),− cos(s) sinh(t), cos(s) cosh(t), sin(s)cosh(t)),

Hence the Christoffel transform f c is given by

f c(s, t)=(− sin(s) sinh(t), cos(s) sinh(t),− cos(s) cosh(t),−sin(s)cosh(t)).

Example 2.2. The immersion

f(s, t) = (s2 + t2, s, t, s2 + t2)

is real isothermic. We have

fs(s, t) = (2s, 1, 0, 2s),
ft(s, t) = (2t, 0, 1, 2t),

f−1
t = f∗t = (−2t, 0, 1, 2t),

f−1
s = f∗s = (2s,−1, 0,−2s),

N1 =
(

2s2 − 2t2 + 1/2√
2

,
√

2s,−
√

2t,
2s2 − 2t2 + 3/2√

2

)
,

N2 =
(
−2s2 + 2t2 + 3/2√

2
,−
√

2s,
√

2t,
−2s2 + 2t2 + 1/2√

2

)
,

f∗(s, t) = (s2 − t2,−s, t,−s2 + t2).

The Christoffel transform f c is given by

f c(s, t) = (s2 − t2, s,−t, s2 − t2).

3. Timelike surfaces in R3
2. We want to look at the special case when

our surface is contained in the imaginary quaternions. Let {s, t} be isother-
mal coordinates in Im H′, with fs ·fs = µ2 and N ·N = −1. The fundamental
equations of the immersion f are given by

ftt =
µt
µ
ft +

µs
µ
fs + aN,(3.1)

fts =
µs
µ
ft +

µt
µ
fs + bN,(3.2)

fss =
µt
µ
ft +

µs
µ
fs + cN,(3.3)

Nt = − a

µ2
ft +

b

µ2
fs,(3.4)

Ns = − b

µ2
ft +

c

µ2
fs.(3.5)
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Thus, the shape operator corresponding to N is

AN =

(
a/µ2 +b/µ2

−b/µ2 −c/µ2

)
.

In [7] Inoguchi and Toda give a definition of the Hopf differentials using null
coordinates. We give a similar definition using the associated isothermal
coordinates via a split-complex variable. Let z′ = s + k′t : M2

1 → C′ for
isothermal coordinates {s, t} on M2

1 . On TC′
M we define

∂

∂z′
=

1
2

(
∂

∂s
+ k′

∂

∂t

)
.

We need the + sign to be consistent with dz′(∂/∂z′) = (ds+ k′dt)(∂/∂z′) = 1.
We extend the metric on R4

2 to C′2 bilinearly.

Lemma 3.1. The coordinates {s, t} are conformal coordinates for an im-
mersion f : M2

1 → H′ iff z′ = s+ k′t are isotropic coordinates for f .

Proof. We calculate

fz′ · fz′ =
1
4

(fs · fs + ft · ft + 2k′ft · fs).

The isotropy condition does not determine the sign of fs · fs.
Continuing, we see that

fz′z′ =
1
4

(fss + ftt) +
1
2
k′fts.

Thus {s, t} are real conjugate parameters iff the imaginary part of fz′z′ is
tangential, while they are i-conjugate parameters iff the real part of fz′z′ is
tangential. Here i-conjugate means that AN (∂s+ i∂t) · ∂s− i∂t = 0, where
N is a unit normal vector field.

Definition 3.1. For a normal vector field N : M2
1 → H2

1 the Hopf
differential QN is (fz′z′ ·N)dz′2, a quadratic differential ([4]).

Thus if we have real conjugate parameters then QN is a real multiple of
dz′2, while for i-conjugate parameters, QN is a real multiple of k′dz′2, i.e.,
a pure split-imaginary multiple of dz′2.

We begin with the timelike version of Lemma 3.3.27 in [6], for which H
and N denote the mean curvature and the Gauss map corresponding to f .

Lemma 3.2. If f, f c : M2
1 → R3

2 form a Christoffel pair, then, with
N c = −N ,

dN +Hdf = Hcdf c.

Proof. Using (3.4), (3.5) we see that

dN +Hdf =
(
−a− c

2µ2
ft +

b

µ2
fs

)
dt+

(
a+ c

2µ2
fs −

b

µ2
ft

)
ds.(3.6)
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We will only consider the case where the immersions are complex isothermic,
so that a+ c = 0. The equation (3.6) reduces to

dN +Hdf =
b

µ2
fsdt−

b

µ2
ftds = λcdf c(3.7)

for some λc, since in this case,

df c =
fs
µ2
dt− ft

µ2
ds.

Following Hertrich-Jeromin, we see that −dN+Hcdf c = λdf , and the result
follows.

Thus, in either case we have df c = ρ(dN +Hdf).

Lemma 3.3. Every immersion of a timelike surface M2
1 in R3

2 with nor-
mal field N and mean curvature H satisfies

df ∧ (dN +Hdf) = 0.(3.8)

Proof. For an arbitrary conformal coordinate system {s, t},

df ∧ (dN +Hdf) =
1
µ2

(−bftft + cftfs + afsft − bfsfs)dt ∧ ds

+
a− c
2µ2

(ftfs − fsft)(dt ∧ ds).

We can let ft × fs = µ2N , so that, using (2.1), our equation is

−b− cN + aN + b+
a− c

2
(−2N) = 0.

Just as in [6] we have:

Corollary 3.1. A surface f : M2
1 → R3

2 is isothermic iff there is locally
an integrating factor ρ : M2

1 → R, so that d[ρ(dN +Hdf)] = 0.

Using Lemma 3.2, 3.3 and Corollary 3.1 we see that whenever one of the
timelike surfaces in R3

2 of a Christoffel pair is a minimal surface the other is
totally umbilic, namely a scaling of its Gauss map, and vice versa. Moreover,
the Christoffel transform of a timelike surface of constant mean curvature
H 6= 0 is its parallel surface f+(1/H)N of constant mean curvatureHc = H.
In particular the integrating factor can be chosen to be constant in both
cases.

The next proposition shows how the split-complex numbers arise natu-
rally when looking at timelike surfaces in R4

2.

Proposition 3.1. Let f, f c : M2
1 → R3

2 be a Christoffel pair of isother-
mic surfaces and N : M2

1 → H2
1 = {x | x · x = −1}. Identify the trivial

normal bundle NM of f : M2
1 → H′ with the trivial C′ bundle M × C′, so

that NpM = span{1, N(p)} ∼= C′ = span{1, k′}. The map

q = df · df c : TM → NM



Christoffel pairs in split-quaternions 213

is a split-holomorphic quadratic differential. The Hopf differential is a real
multiple of q if the immersions are real isothermic, and a pure imaginary
multiple if the immersions are complex isothermic.

Proof. Set N = ft

µ ×
fs

µ . Then ftf−1
s = N = fsf

−1
t . In the real isothermic

case

df · df c = −[dt2 + ds2 + 2Ndtds] = −(ds+ k′dt)2 = −dz′2.

In the complex isothermic case

df · df c = −N(dt2 + ds2)− 2dtds = −k′dz′2.

4. Appendix: Polar coordinates for C′. The split-complex numbers
are C′ = {w = a + bk′ | a, b ∈ R, k′2 = 1}. We are interested in square
roots of split-complex numbers. For convenience, we break the split-complex
plane into the quadrants determined by the null lines Re(w) = ± Im(w). Let
quadrant I be defined by {a+ bk′ ∈ C′ | |a| > |b|, a > 0}, with quadrants II,
III and IV numbered counter-clockwise from there. Numbers in quadrant I
can be written, with r > 0, as

w = reθk
′

= r cosh(θ) + r sinh(θ)k′,(4.1)

where the second equality follows from the power series expansion of et.
Points in quadrant II can be written in the form

reθk
′
k′ = r sinh(θ) + r cosh(θ)k′.(4.2)

In the other two quadrants numbers are of the form −reθk′
and −reθk′

k′.
Note that to consider all the split-complex numbers we must also look at
the null lines of the form w = a± ak′.

Lemma 4.1. A split-complex number has a square root iff it is in quad-
rant I or is of the form w = a± ak′ with a ≥ 0.

Proof. Using the polar form, we can see that all squares from the quad-
rants land in quadrant I, and conversely, every number in quadrant I has a
square root. Finally we consider the null lines. If a > 0, then (−a± ak′)2 =
2a2 ∓ 2a2k′, so that squares of null elements with negative real part have
positive real parts and are null. It is clear that null elements with positive
real parts are squares.
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