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Linear liftings of symmetric tensor fields of type (1, 2)
to Weil bundles

by JACEK DEBECKI (Krakow)

Abstract. This paper contains a classification of all linear liftings of symmetric tensor
fields of type (1,2) on n-dimensional manifolds to any tensor fields of type (1,2) on Weil
bundles under the condition that n > 3.

Introduction. Let A be a Weil algebra inducing the Weil functor 74
(see [3]) and let n be a non-negative integer. We will denote by Te M the
vector space of all tensor fields of type (1,2) on a manifold M. Of course,
t € Te M is called symmetric if t,(y2,y1) = t2(y1,y2) for every x € M and
all y1,y2 € T, M. The vector space of all symmetric tensor fields of type
(1,2) on M will be denoted by SyTe M.

A lifting of symmetric tensor fields of type (1,2) to tensor fields of type
(1,2) on T4 is, by definition, a family of maps Ly; : SyTe M — TeTAM
indexed by all n-dimensional manifolds and satisfying

(1) La(¢*t) = (T49)" (L (1))
for all n-dimensional manifolds M, N, every embedding ¢ : M — N and
every t € SyTe N. Of course, here ¢*t is defined by the formula (¢*t), =
(Tppp)~ Lo to) © (T, T) for every x € M. Such a lifting is said to be
linear if Ly 1s linear for every n-dimensional manifold M. Obviously, all
linear liftings form a subspace of the vector space of all liftings in question.
Our purpose is to give a complete description of all these linear liftings.
We hope that this result can be applied in the study of affine liftings of
torsion-free linear connections to any linear connections on Weil bundles.

Construction of liftings. Our first task is to construct some liftings
in question. We will use four known constructions which we now recall.

There is a unique lifting C' of tensor fields of type (1,2) to tensor fields
of type (1,2) on T such that C},(t)x(Y1,Y2) = (TAt L(X))Y]YF for every
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14 J. Debecki

i € {1,...,n}, every open subset U of R", every t € TeU, every X € TAU
and all Y7,Ys € A" (see [2]).

For each a € A there is a unique natural tensor field @ of type (1,1) on
T4 such that (ai;)x(Y) = aY" for every i € {1,...,n}, every open subset U
of R”, every X € TAU and every Y € A",

Let C A, where s is a non-negative integer, denote the vector space of
all (s + 1)-linear maps G : A X --- x A — R which are skew-symmetric
with respect to the last s variables and such that G(a,be,ds,...,ds) =
G(ab,c,dg,...,ds) + G(ac,b,da, ..., ds) for all a,b,c,da,...,ds € A when-
ever s > 1. Note that elements of CyA are nothing but linear maps A — R.
If p,q are two non-negative integers such that p > ¢, then for each G €
Cp—qA there is a unique lifting GP? of p-forms to g-forms on T 4 such that
GH(w)x (N1, ..., Yy) = G((TAwi,. i, (X))Y{" ... Yy, Xiatt . X%) for ev-
ery open subset U of R™, every p-form w on U, every X € TAU and all
Yi,...,Y, € A" (see [1]).

An R-linear map D : A — A is said to be a derivation of A if D(ab) =
D(a)b+aD(b) for all a,b € A. Let us denote by Der A the vector space of all
derivations of A. For each D € Der A there is a unique natural vector field
D on T# such that (Di;)x = D(X") for every i € {1,...,n}, every open
subset U of R™ and every X € TAU (see [3]).

We can now construct six types of linear liftings of symmetric tensor
fields of type (1,2) to tensor fields of type (1,2) on T4,

Let P € A. Define Py(t) = P o Cy(t) for every n-dimensional mani-
fold M and every t € SyTe M. Thus P is the only lifting such that

(2) Pi(t)x(Y1,Ys) = P(TAt;'k(X))ank

for every i € {1,...,n}, every open subset U of R", every ¢t € SyTeU, every
X € TAU and all Y7,Y, € A™.

For every n-dimensional manifold M and every ¢ € Te M we will denote
by tr¢ the 1-form on M such that for every x € M and every y € T, M,
(trt)z(y) is the trace of the endomorphism T, M > z — t,(y,2) € T, M. If
G € CpA and a € A, then the formula Ly (t) = G}\}[l(tr t) @ aps for every
n-dimensional manifold M and every t € SyTe M defines a lifting L we
want. Since any sum of such liftings is also a lifting, we can carry out a more
general construction. Let Q € CyA® A. Clearly, Q may be interpreted as an
R-linear map A — A and it is easy to see that there is a unique lifting Q
such that

(3) Qi (1) x (Y1, Ya) = QUTt],,(X)YF)Y3

for every i € {1,...,n}, every open subset U of R", every ¢t € SyTeU, every
X € TAU and all Y3, Y € A"
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The last construction may be repeated with ay; ® G}\’; (trt) instead of
G}\’j(trt) ®ap. Let Q' € A® CyA. Clearly, Q' may be interpreted as an
R-linear map A — A and it is easy to see that there is a unique lifting @’
such that
(4) Qu(t)x(Y1,Y2) = Q' ((T4,,(X))Y2")Y{
for every i € {1,...,n}, every open subset U of R", every ¢t € SyTeU, every
X € TAU and all Y1,Ys € A™.

Let d denote the exterior derivative. If G € CpA and D € Der A, then
the formula Ly, (t) = G?\f(d(tr t))® Dy for every n-dimensional manifold M
and every t € SyTe M defines a lifting L we want. More generally, let R €
CoA®Der A. Clearly, R may be interpreted as an R-bilinear map Ax A — A
with the property that R(a,bc) = R(a,b)c + bR(a,c) for all a,b,c € A and
it is easy to see that there is a unique lifting R such that

_. 1 otl. ot .
®  Rowxoi - r((14(55 - 52 )00 )riv.x)
for every i € {1,...,n}, every open subset U of R", every ¢t € SyTeU, every
X € TAU and all Y3,Ys € A™.

If G € C1A and a € A, then the formula Ly,(t) = G?\’j(d(tr t)) ® aps for
every n-dimensional manifold M and every t € SyTe M defines a lifting L we
want. More generally, let S € C1 A® A. Clearly, S may be interpreted as an R-
bilinear map A x A — A with the property that S(a, bc) = S(ab, c)+S(ac,b)
for all a,b,c € A and it is easy to see that there is a unique lifting S such
that

_ 1 otl. ot .
©  Suxmiv =g s((r1(50 - 58 ) o0 )rx )y
for every i € {1,...,n}, every open subset U of R", every t € SyTe U, every
X € TAU and all Y1,Y, € A™.

The last construction may be repeated with aj; ® G?\/l’l(d(tr t)) instead
of G?M’l(d(trt)) ®ap. Let S" € A® CyA. Clearly, S” may be interpreted as
an R-bilinear map A x A — A with the property that S’(a,bc) = S’(ab, c) +
S’'(ac,b) for all a,b,c € A and it is easy to see that there is a unique lifting
57 such that

<5 L A f%gj 8tij k oyl \vi
(M So)x(,Y2) =5 ST 5% — 50 )X Y2, X0 )Yy

for every i € {1,...,n}, every open subset U of R", every ¢t € SyTeU, every
X € TAU and all Y1,Ys € A™.

Classification theorem. We are now in a position to formulate our
main result.
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THEOREM. If n > 3, then for each linear lifting L of symmetric tensor
fields of type (1,2) to tensor fields of type (1,2) on T4 there are uniquely
determined P € A, Q € ChAR A, Q' € A® CyA, R € CyA @ Der A,
SeCiA® A and S" € A® C1 A such that

L=P+Q+Q +R+S5+85"
The remainder of the paper will be devoted to the proof of this theorem.

Lemma. We first prove an auxiliary result.

LEMMA. If n > 2 and L,z are two linear liftings of symmetric tensor
fields of type (1,2) to tensor fields of type (1,2) on T4, then

Lgn 0 ® da' @ dat :an x2i®dml®dml = L=1.
8 9zt ozl

Proof. 1t suffices to show that if
0
(8) LRTL <$2 @ ® d.fCl ® d:cl> = 0’
then L = 0.
From (8) and (1) with ¢ : R® 3 2 — (2,22 + 1,23,...,2") € R” and
t= xQ% ® da' ® dzt it follows that

0
(9) L (F@)d‘r ®d$>:0,
because ¢*t = ( )8 r ®dr! ® drl.
From (9) and (1) with ¢ : R”Bm»—>(m +Az? 22, ... 2") € R", where

AeR,and t = %@dm ® dz' it follows that
(10) (w@) (dz' @ da?* + da® ®dx)):0,

0
(11) Ly~ F@dw ®dz?) =0,

because ¢*t = % ® (dzt + Mdx?) ® (dr' + Adz?) and because all coefficients
of the zero polynomial are zero.

Let « € N*. Put U = {& € R* : 2! > 0,22 # 0,...,2" # 0} and
VU332 (Y(x),22%,...,2") € R", where

(l‘l)’ahrl N

1/11(3;) = (—al + 1)($2)a2 (@) if ' #£1,
Inja’] e 1

if ot = 1.
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From (11) and (1) with ¢ instead of ¢ and with ¢ = % ® dr? ® dr? it
follows that Ly (xo‘% ® dz* @ dz?|y) =0. Replacing U by V = {z € R" :
r! < 0,22 #0,...,2" # 0} in the same manner we can see that Ly, (:1:0‘8%169
dr? ® d:l;2|v) = 0. Since U UV is a dense subset of R",

Ozt

If n > 3, then (10) and (1) with ¢ : R" > x — (2! +23,22,...,2") € R®
and t = 52 ® (do' ® dz? + da? ® dz') imply

(12) Lgn <xa 9 ® dz’ ® dm2> =0.

(13) Lgn <% @ (do® ® da® + d2® ® dz3)> =0,
x
because ¢*t = 8%1 ® ((dz' 4 dz?) ® dx? + dx? @ (da' + d2?)).
If n > 3 and @ € N”| then as in the proof of (12), from (13) and (1) with
¢p=1vandt= % ® (dz® ® dz? + dx? ® da?) it follows that

0
(14) Lgn <:ca 5.7 © (do @ do® +da’ ® dx3)> — 0.
We now prove that for every a € N,
(15) Lgn <:r;a % ®dr' @ dx1> =0.

We consider two cases: a? # 0 and a? = 0.

If a® # 0, then we obtain (15) from (8), (12) with 2! and 2? inter-
changed and (1) with ¢ : U > o — (z},2%,23,...,2") € R", where U =
{reR": 2t #£0,22>0,23#0,...,2" # O},,andt = 3723%1®dx1®dm1, be-
cause ¢*t = (aca%—%;(xl)alfl(aﬁ)a%l(x?’)ad (@M ) @dat @dat|y.

If a? = 0, then we obtain (15) from (8), (12) with #! and 22 interchanged
and (1) with ¢ : R? 3 z +— (2!, 22 +2%,2%,...,2") € R" and t = :132% ®
dr! @ dz', because ¢*t = (22 —l—:ca)(% —al(zh)> (@3’ (x")o‘"a%Z) ®
dz' @ dzt.

From (8), (12) with x! and 22 interchanged and (1) with ¢ : R" 3 z

(xl 2t + 22,23, 2") € R and t = :1328%1 ® dz! ® dx' it follows that
0
1 1 1) _
because ¢*t = (z! + xQ)(% - %) ® dz! @ dal.

From (16), (8) and (1) with ¢ : R® > x +— (2! + \z?,2?%,...,2") € R",
where A € R, and ¢t = acl% ® do' ® dx' it follows that

(17) Lign (azl % ® (da' @ da® + da® @ d;&)) —0,

because ¢*t = (z! + )\xz)% ® (dot + Ad2?) @ (dx! + Adz?).
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From(l?)and()withqﬁ'UB:EH( 2+1( 2yl g3 z") € R™,
where U = {z € R" : 22 > 0} andaEN”, and ¢t = lai (dx ® da? +
dz? @ dx') it follows that
(18) Ly~ <x1(x2) 2881 ® (dz' ® dz? + dz® @ dx )> = 0.

x

We now prove that for every a € N,

(19) Lgn <:c %@(daz ® dz? + do’ @ dx )):0.

We consider two cases: a' # 0 and o! = 0.

If o' # 0, then (19) can be deduced immediately from (18), (14), (14)
with 23 and z¢, where i € {4,...,n}, interchanged and (1) with ¢ : U >
z e () (@) . (z™)*",22,... 2") € R, where U = {z € R" : ! > 0,
23#0,...,2" #0}, and t = 3:1(:62)0‘28%1 ® (dz' @ dz? + do® @ dxl), because

o't = 881 (( da +sz )®dx2+dx2®(x“dxl+g vi(x)dxi»‘U,

where v;(z) = 2 (z")*' 1 (2?)*" .. (@) (@) @ L (@)
for every i € {3,...,n}.

If a! = 0, then we obtain (19) from (17), (12), (14), (14) with 2® and
2%, where i € {4,...,n}, interchanged and (1) with ¢ : R® 3 z +— (2! + 2,
2?,...,2") €ER" and t = x1% ® (dr! ® dx? + dr? ® dr'), because

Pt = (z'+x ) ((d:c —}—Z vi(x )®dm2+dm2® (dml—l—zn: vl(aj)dmz)) ,
1=2

where v;(z) = of(z2)* ... (x7 1) (@)@ L (2™ for every
i€{2,...,n}.

Finally, we can take ¢ : R" > z — (x"(l), e ,x”(”)) € R"™, where o is
any permutation of the set {1,...,n}, in (1) to conclude from (12), (14),
(15) and (19) that Lgn(z® 0 ' ) =0 for every o € N" and all
i,7,k € {1,...,n}. This forces Lgn = 0 according to the Peetre theorem

(see [3]), which proves the lemma.

Proof of the classification theorem. Fix a linear lifting L of sym-
metric tensor fields of type (1,2) to tensor fields of type (1,2) on T4. Clearly,
for every p € {1,...,n}, every open subset U of R", every embedding
¢ : U — R", every t € SyTeR", every X € TAU and all Y7,Y; € A",
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condition (1) can be rewritten as

(20) (TA oF <X>)LqU<¢*t>X<Y1, ¥a)

Oxd
0 )
= Lo (T 55 00 ) (14 9500 )72

Formula (20) with ¢ : R* > z +— (A'z!l, ... A"z") € R", where A!,... A"
€ R\ {0}, and t = x2% ® dr' ® do! implies

0

(21)  AMNWLE (2?7 == ®@de' @dx') (V1,Ya) =
Ox! P
p 2 0 1 1
L (2 2= ®@dx" @dx
ox!

(ALX1,.. AnXn)
By continuity, (21) still holds if A!,...,\* € R. Using the homogeneous
function theorem (see [3]) together with (21) and keeping in mind that for
every X € A" the map Ly~ (:L’Q% ®dz! ® d:cl) « is R-bilinear we deduce
that there are unique R-trilinear maps a,b,c: A x A x A — A such that

(LYY, (ALY, L AmYY).

0
(22) Lin (x2 Eys) ®dz' ® d:cl) (Y1,Ys)
x X

= CL(XI, Yll’ Y22) + b(X17 le’ Y21) + C(Xz’ Yllv Y21)7
there are unique R-trilinear maps d,e, f : A x A x A — A such that

(23) L& | ? 9 o i @ da (Y1,Ys)
Oxt X
= d(Xla Y127 }/22) + e(X27 Y117 Y22) + f(X27 Y127 Y21)
and for every p € {3,...,n} there are uniquely determined R-trilinear maps
gP hP P P kP [P A x Ax A— A such that
1) 2k« %ml@daﬂ)xm, ¥a) = (XL, Y2, YD)+ (X1, VP, V)
+ ip(X27 Y117 Y2p) + jp(X27 Y1p7 Y21) + kp(va Y?? Y22) + lp(Xp7 Yf? Y21)‘
If ¢ € {4,...,n}, then from (24) and (20) with p =3, ¢ : R" 3 z —
1 ..2 ,.q .4 q—1 .3 ,.qg+1 n n _ 2.0 1 1.
) ) ) AR ] ) ) AR ] - 1
(', 2%, x x x°,x 2") € R" and t = 2° 577 @ dr” @ dz it
follows that

gUXL Y2 Y 4+ hI(X Y VL YR + (X2 Y YY)
+UXE YY) + RUX Y YS) + 19X YR YY)
= 93(X17Y12’Y2q) + h3(X17 qua }/22) + i3(X2’Y115 }/2(1)
+3(XA YY) + BA(X YY) 4+ (X YE YY),
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Therefore g¢ = ¢, h? = h3, 7 =3, j9 = j3, k% = k3, 19 = [3. Define g = ¢>,
h=h3i=14,j=34% k=K 1=13 Thus for every p € {3,...,n}, we can
rewrite (24) as

0
(25) LR, <m2ﬁ®dml®dxl> (Y1,Ys) = (XL, Y2, YY)+ h(X, Y, V)
X
+i(X% YY) + (X5 YT, Y5 + R(XP YY) + UKD, Y, V),
From (25) and (20) with p =3, U ={zx € R* : 23 >0}, ¢ : U > = —
(zt, 22, (23)2/2,2%,...,2") e R" and t = xQ% ® dzt @ dx! it follows that
(26)  X3(g(X' Y2 YS) +h(X' Y YY) +4(X2 Y], Y5
+j(X27 Y13’Y21) + k(Xga }/117Y22) + Z(Xga }/127}/21))
= g(X17Y12,X3}63) + h(X17X3Y137Y22) + Z-()(27}/117 XBY'QB)
+ (X2 X0V, YY) + R((XP)?/2,Y1,Y5) + 1((XP)? /2, Y1, Yy)
for every X € TAU. Replacing U by V = {z € R : 2% < 0} in the same
manner we can see that (26) holds for every X € TAV. Since UUV is a

dense subset of R™, (26) holds for every X € A". Carrying out polarization
if necessary we see from (26) that for all w,z,y,z € A,

(27) wy(z,y,z) = g(x,y, wz),
(28) wh(z,y,z) = h(z,wy, 2),
(29) wi(z,y,2z) =i(z,y, wz),
(30) wj(z,y,z) = jz, wy, 2),
(31) wk(x,y, z) + zk(w,y, 2) = k(wz,y, z)

From (25) and (20) withp =3, ¢ : R" 3> 2+ (2}, 224+1,23,...,2") € R?
and ¢t = m2£1- ® dz' ® dx! it follows that

d
(32)  Lin <@®dx1®dx1> (Y1,Ys) =i(1, Y], Y5)) + (1, Y3, Y3,
X

because ¢*t = (z2 + 1)% ® dr' ® dx'.

From (32) and (20) withp =3, ¢ : R" > z +— (z! + 22, 2%,.. . 2") € R",
where A € R, and ¢t = 8%1 ® dz' ® dx' it follows that

0
(33) Lin <ﬁ ®da’ ® dx2> (Y1,Y2) = 0,
x X

because ¢*t = % ® (dzt 4+ \dx?) @ (dz' + Adx?) and because the respective
coefficients of two equal polynomials are equal.
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From (33) and (20) withp =3, U ={z e R": 2 #0}, ¢ : U >z —
(=1/z',2%,...,2") € R and t = a%l ® dx? ® da? it follows that

Ozt

From (34) and (20) with p =3, ¢ : R" > 2 — (22, 2Y,23,...,2") € R®
and t = (x1)2% ® dz? ® dx? it follows that

(34) L3, <(a:1)2 0 ® dz? ® d:ﬂ) (Y1,Y3) = 0.
X

0
(35) L3n<($2) 527 ® dz' ® dx >X(Y1,Y2) =0.
From (25), (35)and(0)withp—3 U—{LEER”:LE #0},¢0:U >
v (2t atz? 23, 2") € R" and t = 22 8 r @ dxt @ dxt it follows that

(36) Lin (acl 28i®dx ®dm> (Y1, Y)
X

= g<X17X2Y11 + X Yl 7Y23)+h(X17}/137X2Y21 + Xl}/QQ)_'_Z‘(Xle:Yll?YQg)
HI (XX YY) +R(X Y XY + XY +U(XP, XY + XY YY),
because ¢*t = (z? 2881 - ($2)2%) ® dr' @ dol|y.

From (25) and (20) with p =3, U ={zr € R* : 2! >0}, ¢: U >z —
((z)?/2,2%...,2") e R" and t = CEQ% ® dot ® dx! it follows that

d
(37) Lf@( 5T ® dat ®daz> (Y1,Y3)
X

= g((X")?/2,Y2,Y5) + h((X")?/2, VP, Y5) +i(X?, X'V, Y5)
+j(X27 Y137X1Y21) + k(X37X1Y117 Y722) + Z(ng Y127X1Y21)-

Carrying out polarization if necessary we see from (36) and (37) that for
all w,x,y,z € A,

(38) g(w, zy, z) + g(z, wy, 2) = g(wa,y, 2),
(39) h(w,x,yz) + h(y, z,wz) = h(wy, z, ),
(40) g(w,zy, 2) + i(wa,y, 2) = i(z,wy, 2),
(41) h(w, z,y2) + j(wy, z, 2) = j(y, z,wz),
(42) k(w,z,yz) = k(w,yz, 2),
(43) k(w,z,yz) + l(w,yx, z) = 0.

Define R(y, z) = —2k(z,y, 1) for all y, z € A. According to (31), we have
zR(y,z) + 2R(y,z) = R(y,zz) for all z,y,z € A, and so R € CpA ® Der A.

By (5),

_ 0 1
(44)  RE, <:c2 51 ® dr' ® da:1> (V1,Y2) = 5 R(Y2Y) — VY2 XP).
X
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From (42) it follows that k(z,y,z) = —%R(zy, x) for all z,y,z € A and
from (43) it follows that | = —k. Combining these with (44) gives, for every
pE {1,...,71,},
(45) RE, (:ﬁ % ®dz! ® dm1> (Y1,Y2) = k(XP, Y, V) + 1(XP, Y2, YY),
x X
Define S(y,z) = 2¢9(z,y,1) for all y,z € A. According to (38), we have
S(zy, z2)+S(zy,z) = S(y, zx) forall x,y,z € A, and so S € C1A® A. By (6),
_ 0 1
2 1 1 _
(46) SE. <x p) ® dz' @ dx >X(Y1,Y2) =5
From (27) it follows that %xS’(y, z) = g(z,y,x) for all z,y, z € A. Combining
this with (46) gives, for every p € {1,...,n},

(S(YIQv Xl) - S(Yll’ X2))§/2p.

- 0
(47)  Sga (wa ®dz' ® dxl)X(Yl, Vo) = g(X1 Y2 YY) — g(X2, Y], YY),
Define S'(y, z) = 2h(z,1,y) for all y,z € A. According to (39), we have
S'(zy,z) + S'(zy,x) = S'(y, 2x) for all z,y,2 € A, and so S’ € A® C1A.
By (7),
0 1
(48)  S'%n (aﬂ% ®dx1®dx1)X<Y1,m =5 (S5, X1) =8/ (Yy, X*))YY.
From (28) it follows that %:ES"(y, z) = h(z,z,y) for all z,y, 2 € A. Combining
this with (48) gives, for every p € {1,...,n},

— 0
(49) B (o o odet o) (1,%5) = XYLV XT3
X
Put L/ =L—-—R-S—
d=c+g+hd=d—g-—
j' =7+ h. From (45) (47)

S aswellasad =a—k—h VUV =b—1—g,
h, e —e—k‘—l—g,f'—f—l+h,2":i—|-gand
) and (49) we see that (22), (23) and (25) lead to
(50) Lﬁ@( —@dz' @dz' | (Y1,Ys)
Ox! X
=a (le 1/1 7Y2 ) + b/(Xl’YIQ’ YZI) + C/(Xz’ylla YZI)’
(51) L. | ? 0 @dr' @de') (Y1,Y2)
Ox! X
= d/(X17 Y127 Y22) + eI(X27 Y117 Y22) + f/(X27 Y127 Y21)7
(52) Lg. (ﬁil ®dr' @ dz') (Y1,Ys)
Ox x
= (YY) + (XY
for every p € {3,...,n}. Since (29), (30), (40) and (41) hold for every linear
lifting satisfying (22), (23) and (25), upon comparing (22), (23) and (25)
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with (50), (51) and (52) we can assert that for all w,z,y,z € A,

(53) wi'(z,y, 2) = i'(x,y, wz),
(54) wj'(w,y,2) = j'(w, wy, 2),
(55) (wx y2) =i (z,wy, 2),
(56) §'(wa,y, z) = j'(x,y, wz).
Define Q(z) = i'(z,1,1) for every z € A. Of course, Q € CoA® A. By (3),
(57) Q. <:c2 % ®dz' ® d:c1>X(Y1, V) = Q(X2Y{Y?.

From (53) and (55) it follows that zQ(yz) = i'(z,y,x) for all x,y,z € A.
Combining this with (57) gives, for every p € {1,...,n},

(58) [ (x2 521 © dz' ® dml)X(Yl, Vo) =4 (X2, Y], VD).
Define Q'(2) = j'(2,1,1) for every z € A. Of course, Q' € A ® CyA.
By (4),

— )
(59) " <:c2 5.1 ® dz' ® d:c1> (V1,Ys) = Q' (XY YYP.
X

From (54) and (56) it follows that Q' (yz) = j'(z,z,y) for all z,y,z € A.
Combining this with (59) gives, for every p € {1,...,n},

7P 0 .
(60) e (x2 51 & da' @ dm1>X(Y1, Ya) = /(X2 YD, Y3).

Put L' = L' —Q—-Q aswellasa” =d/, " =V, =¢ —i' —j,d" = d,
e/ =¢ —i and f”" = f' — j'. From (58) and (60) we deduce that (50), (51)
and (52) lead to

0
(61) L”1< —1®dx1®dx1> (Y1,Y5)
ox x
:a,”<X1,Y]_1,Y22)+b”(X1,Y12,Y21)+C”<X2,Y11,Y21),
0
(62) Li2 ( 5T ® da' ®d:1:1> (Y1,Y5)
x X
= d”(Xla Y127Y22) + 6”<X27 Y117Y22) + f”<X27 Y127Y21)7

d
(63) Lgh <x2 5.1 ® dz' ® d:r1> (Y1,Y3) =0
z b'e

for every p € {3,...,n}.
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From (63) and (20) with p =3, ¢ : R” > x> (2!, 2% +23,23,...,2") €
R™ and t = ZL‘Q% ® dz! ® dx' it follows that

(64) 18 (2 2 wdrt wda) (vi,¥8) =0,
ozt X

because ¢*t = (22 + m%% ® dz! @ dxt.
From (62) and (20) withp =2, ¢ : R" > z+ (2!, 23,22, 2%,... 2") € R?
and t = 3523%1 ® dr' ® dz' it follows that
ox!
= d"(X1 VP, Y5) + (X0 VLY + (XL V).
Comparing (64) with (65) we see that d’ =0, ¢” =0 and f” = 0, which
enables us to rewrite (62) as

(65) L (ﬁ 0 ® dz' @ da') x (Y1, Y2>

0
(66) Lg|2* = ®da' @da' ) (Y1,Y2) =0.
ot <

Ifo:R" >z (Y, 22+ 1,23,...,2") e R" and t = x2% ® dz' @ dzt,
then ¢*t = (22 + 1)% ®dx! ® dx'. Taking successively p = 1,2,3 and these
¢ and t in (20) and combining this with (61), (66) and (63) respectively
we get

0
(67) L/]I@b <% & dxl ® d:l?1> (Yla }/2) = C”(la }/117Y21)7
X
0
X
0
(69) L, (W ® dr' ® d:&) (Y1,Y3) = 0.
x X

If o :R*" > 2 (2! + 22 2%...,2") € R", where A\ € R, and t =
% ®dr! @ dr!, then ¢*t = 8%1 ® (dzt 4+ Adx?) ® (dz' + Adx?). Upon taking
p = 1,2,3 (2 before 1) and these ¢ and ¢ in (20) and combining this with
(67), (68) and (69) respectively we get

)
(70) L/]I@b <w & de ® d:l?2> (Yla }/2) = C”(la }/127Y22)7
X
)
(71) L <@ ®dx2®dx2) (Y1,Ys) =0,
X
)
(72) L (W ®dz? ® dx2> (Y1,Ys) = 0.
o X

From (70) and (20) with p =1, U ={zx e R* : 2! >0}, ¢: U >z —
®
1

(In|zt],2%,...,2") € R" and t = 82 dz? ® da? it follows that
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oz 1

From (73) and (20) with p =1, ¢ : R" > 2 — (22, 2Y,23,...,2") € R®
and ¢t = mla%l ® dz? ® dx? it follows that

(73) L, ( 1 0 ® dz* @ dx ) (Y1,Ys) = X1"(1, Y2, Y3).
X

0
(74) Lgh ( 57 ®de' @ dml) (N1, Ya) = X2¢"(1,Y7,Y3).
X
From (61), (74), (66) and (20) with p =2, ¢ : R® > x +— (2!, \z! + 22,
23,...,2") € R", where A € R, and t = 5625% ® dx' ® dx' it follows that

)

(75) L”2< 861®dx ®d:p) (Y1,Y3)

X
= _a”(Xl’Yl 7)/2 ) - b”(Xl Y127Y21) - C”(X2’Y117 )/21) + XQCH(L Y117Y21)7
because ¢*t = (Az! + :132)(— - )xaxQ) ® dz' @ dxt.

From (68) and (20) withp =2, U ={zr € R*: 2! >0}, ¢:U > 2 —
((z1)?/2,2%,...,2") € R" and t = 881

8 1
Comparing (75) with (76) we see that a” = 0 and 0" = 0, which enables
us to rewrite (61) as

X

0
(e e st ) 1Y) = XYL
X
and that for all z,y, z € A,

(78) wc’(1,y,2) = (2,9, 2).

If  : R® > 2 — (2',22 + Xz3,23,...,2") € R?, where A € R, and
t = % ® dz? ® dz?, then ¢*t = % ® (dr? + Mdz?®) ® (dr? + Adz®). Upon
taking p = 1,2, 3 (3 before 2) and these ¢ and ¢ in (20) and combining this
with (70), (71) and (72) respectively we get

(79) Ll (8‘91 (do? @ da® + da® ® da )) (Y1,Y2)
X

:c//(l,Y12,Y23)—l—c”(l,Y13,Y22),

(80) L2 (% ® (do* ® do® + da* ® dx2)> (Y1,Y2) = 0,
X

(81) L (aal (dz? @ da? + da® @ dx )) (Y1,Y2) = 0.
X
fU={zeR":1+2%%#0},¢:Us 2+ (W,xQ,...,m”) € R”
and t = %@(dﬁ@dﬁ—i—dﬁ@dﬁ), then ¢*t = (1+ 22z )agl ® (da? ® da’
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+ d2® ® da?)|y. Taking p = 1,2,3 (2 and 3 before 1) and these ¢ and t in
(20) and combining this with (79), (80) and (81) respectively we get

(82) L”1< 2 3881 (dm2®dm3+dx3®dx2)) (Y1,Y3)
X

= X2X3("(1,Y7,Ys) 4+ "(1, Y7, Y5)).
fop:R*">2+— (ﬁ,x{...,x") €R"and t = Ef%@de@d:rQ, then

o't =1+ (x3)2)% ® dr? ® dx?. Taking p = 1,3 (3 before 1) and these ¢
and ¢ in (20) and combining this with (70) and (72) respectively we get

oxl

From (83) and (20) withp=1,¢ : R" > z + (2!, 23,22, 2%,... 2") € R?
and t = (3)? ® 8%1 ® dx? ® da? it follows that

(83) Lk (( %)? 90 ® dr* @ dx >X(Y1,Y2) (X2 (1, Y2, Y2).

0
s 1 (0 g o daddt) (4,1) = (2211 1)
X

From( )7(2 ( ), (70) and(20)w1thp—1 U = {xéR”' 37é0}7
¢:U x> (2l,2%5,2%,...,2") € R" and t = % @ da? @ da? it follows
that

(85) (X?)2¢"(L,Y2Y5) + X2X3(" (LY, Y5)
+ C”(l, Y137 }/22)) + (X2)20/l<17 Y137 }/23)
=c"(1, X3V + X2V, X33 + X2Y3),
because ¢*t = 8%1 ® (23dx? + 2%d2?) @ (23d2? + x2dx3)|y. From (85) we see
that for all w,z,y, z € A,
(86) wad' (1,y,2) = (1, wy, x2).
Define P = ¢’(1,1,1). Of course, P € A. By (2),
— 0 PX2YlYy) ifp=1,
(87) Ppn<x2—1®d$1®dml> (Yl,YQ):{ ¥z P
ox x if pe{2,...,n}.

From (86) and (78) it follows that zyzP = '(x,y,z) for all x,y,z € A.
Combining this with (87) gives

(88) Phn <:c2 0 ®dz! ® d:&) (Y1,Y3)
X

Ozt
(XA YLYY) ifp=1,
_{o if pe{2,...,n}.
From (88) and the lemma we see that (77), (66) and (63) lead to L” = P.

Analyzing (44), (46), (48), (57), (59) and (87), one easily finds that R, S,
S’, Q, Q" and P are uniquely determined, which completes the proof.
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