Non-uniruledness and the cancellation problem (II)

by Robert Dryło (Kraków)

Abstract. We study the following cancellation problem over an algebraically closed field \mathbb{K} of characteristic zero. Let X, Y be affine varieties such that $X \times \mathbb{K}^m \cong Y \times \mathbb{K}^m$ for some m. Assume that X is non-uniruled at infinity. Does it follow that $X \cong Y$? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.

1. Introduction. Let \mathbb{K} be an algebraically closed field of characteristic zero. The *cancellation problem* asks whether two affine varieties X, Y are isomorphic if there exists an isomorphism $X \times \mathbb{K}^m \cong Y \times \mathbb{K}^m$ for some m. To study this problem the following terminology will be useful. A variety X has the *cancellation property* if every variety Y with a given isomorphism $X \times \mathbb{K}^m \cong Y \times \mathbb{K}^m$ is isomorphic to X. Furthermore, a variety X has the *strong cancellation property* if every isomorphism $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ satisfies the condition: for each $x \in X$ there exists $y \in Y$ such that $f(\{x\} \times \mathbb{K}^m) = \{y\} \times \mathbb{K}^m$ (then f clearly induces an isomorphism between X and Y).

It is well known and easy to prove that affine curves have the cancellation property (in fact, a much more general algebraic result was proved by Abhyankar, Eakin and Heinzer in [1]). However, surfaces need not have this property, which was showed by Danielewski in [3] (see also [6] and [13]).

Zariski's cancellation problem asks whether \mathbb{K}^n has the cancellation property. The affirmative answer for \mathbb{K}^2 is due to Fujita [7] and Miyanishi–Sugie [17]. This problem remains open for all $n \geq 3$.

Iitaka and Fujita proved in [10] that every variety of non-negative logarithmic Kodaira dimension has the strong cancellation property. Furthermore, it was shown in [4] that also every non-K-uniruled affine variety, and every unirational affine variety non-uniruled at infinity of dimension greater than one, have this property. The aim of the present paper is to extend the last result. First we fix some terminology.

²⁰⁰⁰ Mathematics Subject Classification: Primary 14R10.

Key words and phrases: uniruled variety, cancellation problem, algebraic line bundle.

By a variety we will always mean an algebraic variety.

A variety X of positive dimension n is called *uniruled* (resp. \mathbb{K} -uniruled) if there exists a variety Y of dimension n-1 and a dominant rational map $Y \times \mathbb{P}^1 \dashrightarrow X$ (resp. a dominant morphism $Y \times \mathbb{K} \longrightarrow X$). A closed subset of a variety is called *uniruled* (resp. \mathbb{K} -uniruled) if all its irreducible components are uniruled (resp. \mathbb{K} -uniruled).

We say that an affine variety X is non-uniruled at infinity if for some compactification \overline{X} of X the set $\overline{X} \setminus X$ is non-uniruled. (Note that by a compactification of a variety X we mean any projective variety containing X as an open subset. It is well known that for any compactification \overline{X} of an affine variety X the set $\overline{X} \setminus X$ is of pure codimension one in \overline{X} .)

Recall that a variety X is called *unirational* if there exists a dominant rational map $\mathbb{P}^n \dashrightarrow X$.

The main result of this paper is

THEOREM 1. Let X be an affine variety which is either non- \mathbb{K} -uniruled or non-uniruled at infinity, unirational and of dimension > 1. Then X has the strong cancellation property, and any algebraic line bundle over X has the cancellation property.

In this context it is natural to ask whether an affine variety non-uniruled at infinity has the cancellation property. Clearly, the above theorem gives an affirmative answer under some additional assumptions. Furthermore, it was noticed in [4] that the answer is affirmative for every affine variety having at least two components non-uniruled at infinity, since such a variety is non-K-uniruled, which was showed by Jelonek in [12]. However, the general answer turns out to be negative. Namely, using ideas of Danielewski [3] and Fieseler [6] we construct affine surfaces non-uniruled at infinity without the cancellation property. This example may seem quite surprising if we compare it with Theorem 1 and the following result, which arose by considering the stable equivalence problem (see [5]): if H is a non-uniruled hypersurface in a smooth affine variety X and $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ is an isomorphism satisfying $f(H \times \mathbb{K}^m) = H' \times \mathbb{K}^m$, where H' is a hypersurface in the variety Y, then for each $x \in X$ there exists $y \in Y$ such that $f(\{x\} \times \mathbb{K}^m) = \{y\} \times \mathbb{K}^m$.

2. Proof of Theorem 1. In this section π_X denotes the projection $X \times \mathbb{K}^m \ni (x,t) \mapsto x \in X$.

LEMMA 2. Let $f: Y \times \mathbb{K}^m \to X$ be a dominant morphism of affine varieties and assume that dim $f(\{b\} \times \mathbb{K}^m) > 0$ for some $b \in Y$. Then X is \mathbb{K} -uniruled. Furthermore, if Y is unirational then X is uniruled at infinity.

Proof. Let L be a line in \mathbb{K}^m such that dim $f(\{b\} \times L) > 0$ and $g : (Y \times \mathbb{K}^{m-1}) \times \mathbb{K} \to Y \times \mathbb{K}^m$ an isomorphism satisfying $g(\{b'\} \times \mathbb{K}) = \{b\} \times L$

for some $b' \in Y \times \mathbb{K}^{m-1}$. Then taking the composition $f \circ g$ we may assume that m = 1. Now we use induction on $r := \dim Y$. Let $n := \dim X$.

If r = n - 1 then X is K-uniruled by definition. Furthermore, if Y is unirational with a dominant rational map $g \colon \mathbb{P}^r \dashrightarrow Y$ then we have a dominant morphism $f \circ (g \times \operatorname{id}_{\mathbb{K}}) \colon U \times \mathbb{K} \to X$, where U is the domain of g. So it follows from [11, Th. 4] (see also [4, Lem.1]) that X is uniruled at infinity, since $\mathbb{P}^r \times \mathbb{P}^1$ is a smooth compactification of $U \times \mathbb{K}$ such that the set $(\mathbb{P}^r \times \mathbb{P}^1) \setminus (U \times \mathbb{K})$ is uniruled.

Assume now that $r \geq n$. Observe that the set of all $y \in Y$ for which $\dim f(\{y\} \times \mathbb{K}) = 0$ is closed in Y, since if X is contained in \mathbb{K}^N and $f = (f_1, \ldots, f_N)$ then the set in question equals $\bigcap_{i=1,\ldots,N} \bigcap_{s,t \in \mathbb{K}} \{y \in Y : f_i(y,s) - f_i(y,t) = 0\}$. Hence after removing some closed subset from Y we may assume that $\dim f(\{y\} \times \mathbb{K}) > 0$ for all $y \in Y$. Furthermore, if Y is unirational, we may also assume that there is an open subset U of \mathbb{P}^r together with a finite morphism from U to Y. Now choose $x \in X$ such that $\dim f^{-1}(x) = r + 1 - n$ and a hypersurface H in Y satisfying $0 \leq \dim(H \cap \pi_Y(f^{-1}(x))) < \dim f^{-1}(x)$, which can be unirational in case Y is unirational. Then res $f: H \times \mathbb{K} \to Y$ is a dominant morphism, since its fiber over x has dimension r - n. So the lemma follows from the induction hypothesis.

LEMMA 3. Let $p_i: E_i \to X$ be an algebraic line bundle over a variety X, i = 1, 2. Then E_1 and E_2 are isomorphic as algebraic line bundles over X provided there exists an isomorphism $f: E_1 \times \mathbb{K}^m \to E_2 \times \mathbb{K}^m$ for which the following diagram is commutative:

Proof. Assume that E_i is given on an open cover $\{U_\alpha\}$ of X by transition functions $g^i_{\alpha,\beta}: U_\alpha \cap U_\beta \to \mathbb{K}^*, i = 1, 2$. Observe that one can identify $E_i \times \mathbb{K}^m$ with the direct sum of E_i and the trivial bundle $X \times \mathbb{K}^m$. Hence

$$G^{i}_{\alpha,\beta} = \left(\begin{array}{cc} g^{i}_{\alpha,\beta} & 0\\ 0 & I_{m} \end{array}\right)$$

are transition functions for $E_i \times \mathbb{K}^m$ on $U_\alpha \cap U_\beta$, where I_m is the identity in $\operatorname{GL}(\mathbb{K}^m)$. Therefore f induces a family of morphisms $f_\alpha \colon U_\alpha \times \mathbb{K}^{m+1} \to \mathbb{K}^{m+1}$ such that $f_\alpha(u, \cdot)$ is an automorphism of \mathbb{K}^{m+1} for each $u \in U_\alpha$ and

$$f_{\alpha}(u, \cdot)G^{1}_{\alpha,\beta}(u) = G^{2}_{\alpha,\beta}(u)f_{\beta}(u, \cdot) \quad \text{ for all } u \in U_{\alpha} \cap U_{\beta}.$$

Denote by $h_{\alpha}(u)$ the Jacobian of $f_{\alpha}(u, \cdot)$ for $u \in U_{\alpha}$. Then

$$h_{lpha}(u)g^1_{lpha,eta}(u) = g^2_{lpha,eta}(u)h_{eta}(u) \quad ext{ for all } u \in U_{lpha} \cap U_{eta},$$

which means that the family $\{h_{\alpha}\}$ determines an isomorphism between E_1 and E_2 .

We will also need a solution of the following problem: assuming that R is a ring and A is an R-algebra together with an R-isomorphism of polynomial rings $R[T_1, \ldots, T_{n+1}] \cong A[T_1, \ldots, T_n]$, we ask if A is R-isomorphic to $R[T_1]$. This problem was studied in several papers. Abhyankar, Eakin and Heinzer gave in [1] an affirmative solution in case R is locally factorial. A little later Asanuma showed in [2] that the answer is affirmative if R is normal, but negative in general. In fact, he showed that the ring $k[T^n, T^{n+1}]$, where n > 1 and k is a field of positive characteristic, is a counterexample to this problem. On the other hand, Hamann gave in [8] an affirmative solution for any \mathbb{Q} -algebra R. Now we formulate the geometric version of his result and we show how it can be proved directly for smooth varieties.

LEMMA 4. Let $q: Y \to X$ be a morphism of affine varieties and $f: X \times \mathbb{K}^{m+1} \to Y \times \mathbb{K}^m$ an isomorphism satisfying $\pi_X = q \circ \pi_Y \circ f$. Then there exists an isomorphism $g: X \times \mathbb{K} \to Y$ such that $q \circ g = \pi_X$.

Proof. (As mentioned above, the proof is given under the assumption that X is smooth.) Observe that all fibers of q are isomorphic to K, since f carries $\pi_X^{-1}(x) \cong \mathbb{K}^{m+1}$ onto $q^{-1}(x) \times \mathbb{K}^m$, and affine curves have the cancellation property. Furthermore, if $s_0: X \ni x \mapsto (x,0) \in X \times \mathbb{K}^{m+1}$ is the null section then the map $s: X \ni x \mapsto \pi_Y(f(s_0(x))) \in Y$ is a section of q, i.e. $q \circ s = \operatorname{id}_X$. Now we claim that on Y one can introduce a structure of an algebraic line bundle over X with projection q and zero section s, which concludes the proof by Lemma 3.

To see this observe that the induced map q^* : $\operatorname{Pic}(X) \to \operatorname{Pic}(Y)$ is an isomorphism, since the maps π_X^* : $\operatorname{Pic}(X) \to \operatorname{Pic}(X \times \mathbb{K}^{m+1})$ and π_Y^* : $\operatorname{Pic}(Y) \to \operatorname{Pic}(Y \times \mathbb{K}^m)$ are isomorphisms. So for a prime divisor $\Gamma := s(X)$ on Y there exists a divisor D on X such that Γ and $q^*(D)$ are linearly equivalent (recall that on a smooth variety every divisor is locally principal). Let $\{U_i\}$ be an open affine cover of X such that $D \cap U_i$ is principal in U_i . Then $q^*(D) \cap q^{-1}(U_i)$ is principal in $q^{-1}(U_i)$ and hence so is $\Gamma \cap q^{-1}(U_i)$. This implies that the ideal of the set $\Gamma \cap q^{-1}(U_i)$ is principal in the coordinate ring $\mathbb{K}[q^{-1}(U_i)]$; say it is generated by $F_i \in \mathbb{K}[q^{-1}(U_i)]$. Since $q^{-1}(x) \cong \mathbb{K}$ and Γ intersects $q^{-1}(x)$ transversally and at only one point, it follows that the restriction of F_i to $q^{-1}(x)$ is a coordinate for each $x \in U_i$. Now consider the map $q^{-1}(U_i) \ni y \mapsto (q(y), F_i(y)) \in U_i \times \mathbb{K}$. It is obviously bijective and hence an isomorphism by Zariski's Main Theorem. Now using these maps we introduce on Y the claimed structure of a line bundle.

We will need one more elementary fact: if X and Y are affine varieties and an isomorphism $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ is given then X dominates Y (in particular, if X is unirational then so is Y). To see this, choose a point $y \in Y$ and a morphism $p: X \to \mathbb{K}^m$ such that the intersection of its graph with $f^{-1}(\{y\} \times \mathbb{K}^m)$ has a component of dimension zero. Then the morphism $X \ni x \mapsto \pi_Y(f(x, p(x))) \in Y$ is dominant, since its fiber over y has a component of dimension zero.

Proof of Theorem 1. The first statement is an immediate consequence of Lemma 2. To prove the second part take an algebraic line bundle over X, $p: E \to X$, and an isomorphism $f: Y \times \mathbb{K}^m \to E \times \mathbb{K}^m$. By Lemma 2 the composition $p \circ \pi_E \circ f$ contracts subvarieties of the form $\{y\} \times \mathbb{K}^m$ to a point, for all $y \in Y$. This means that there exists a morphism $q: Y \to X$ making the diagram

commutative. If E is trivial over an open affine subset U of X then res $q: q^{-1}(U) \to U$ is a trivial bundle by Lemma 4. Furthermore, as in the proof of Lemma 4 we show that q has a section $s: X \to Y$. These imply that on Y one can introduce a structure of an algebraic line bundle over X with projection q and zero section s. Now Lemma 3 concludes the proof.

REMARK 5. Theorem 1 remains true if we assume that Reg X is either non-K-uniruled or unirational of dimension greater than 1 and has a nonuniruled hypersurface at infinity. (Here and in what follows, we denote by Reg X the set of all nonsingular points of a variety X. Furthermore, we say that a variety X has a non-uniruled hypersurface at infinity if for some compactification \overline{X} of X the set $\overline{X} \setminus X$ has a non-uniruled irreducible component of codimension one in \overline{X} .) The above proof works also in this case, we only

R. Dryło

need to modify Lemma 1 slightly. Furthermore, the following obvious fact will be needed: every isomorphism $f: Y \times \mathbb{K}^m \to X \times \mathbb{K}^m$ induces the isomorphism res $f: \operatorname{Reg} Y \times \mathbb{K}^m \to \operatorname{Reg} X \times \mathbb{K}^m$. The details are left to the reader.

3. Final remarks. Now applying ideas of Danielewski–Fieseler we give the announced example of affine surfaces non-uniruled at infinity without the cancellation property.

EXAMPLE 6. Let X be a smooth non-rational affine curve. Assume that f and g are regular functions on X vanishing only at a point $x_0 \in X$. Put $X_1 = X_2 = X$ and $U_1 = U_2 = X \setminus \{x_0\}$. Let V be the surface obtained by gluing $X_1 \times \mathbb{K}$ and $X_2 \times \mathbb{K}$ via the isomorphism $U_1 \times \mathbb{K} \ni (x,t) \mapsto (x,t+1/f(x)) \in U_2 \times \mathbb{K}$. Let W be the surface obtained in the same manner as V by using g instead of f. Then V and W are affine surfaces non-uniruled at infinity, $V \times \mathbb{K} \cong W \times \mathbb{K}$, but V is not isomorphic to W in case $\operatorname{ord}_{x_0}(f) \neq \operatorname{ord}_{x_0}(g)$.

To show that V is affine consider the function

$$H(x,t) := \begin{cases} f(x)t+1, & (x,t) \in X_1 \times \mathbb{K}, \\ f(x)t, & (x,t) \in X_2 \times \mathbb{K}. \end{cases}$$

It induces a morphism $h: V \to \mathbb{K}$ such that the sets $V \setminus h^{-1}(0) \cong X_1 \times \mathbb{K} \setminus \{(x,t) : f(x)t+1=0\}$ and $V \setminus h^{-1}(1) \cong X_2 \times \mathbb{K} \setminus \{(x,t) : f(x)t=1\}$ are affine. This implies that h is an affine morphism and consequently V is an affine surface.

From [11, Th. 4] it follows that V is non-uniruled at infinity.

To show that $V \times \mathbb{K} \cong W \times \mathbb{K}$ denote by \widetilde{X} the curve X with a doubled x_0 , i.e. \widetilde{X} is obtained by gluing X_1 and X_2 along U_1 and U_2 via the identity. Clearly, V and W with the natural projections onto the prevariety \widetilde{X} are principal \mathbb{K}^+ -bundles over \widetilde{X} . Since the fiber product $V \times_{\widetilde{X}} W$ is a principal \mathbb{K}^+ -bundle over both V and W, we have isomorphisms $V \times \mathbb{K} \cong V \times_{\widetilde{X}} W \cong W \times \mathbb{K}$ (this follows from the fact that isomorphism classes of principal \mathbb{K}^+ -bundles over a variety Y are in one-to-one correspondence with elements of the group $H^1(Y, \mathcal{O}_Y)$, which is trivial in case Y is affine).

Now suppose that an isomorphism $\varphi \colon V \to W$ is given. Since X is nonrational we have the induced automorphism $\widetilde{\varphi}$ of \widetilde{X} for which the diagram

is commutative. Let x_i denote the image of x_0 under the canonical embedding of X_i into \widetilde{X} , i = 1, 2. Observe that each automorphism of \widetilde{X} carries the set $\{x_1, x_2\}$ onto itself, since every open subset of \widetilde{X} not containing $\{x_1, x_2\}$ is separated.

In case $\widetilde{\varphi}(x_i) = x_i$ we have two induced automorphisms $\widetilde{\varphi}_i$ of X_i such that $\widetilde{\varphi}_i(x_0) = x_0$, i = 1, 2, and two other automorphisms φ_i of $X_i \times \mathbb{K}$ sending (x,t) to $(\widetilde{\varphi}_i(x), \alpha_i(x)t + \beta_i(x))$, where $\beta_i \in \mathbb{K}[X_i]$ and α_i is a unit in $\mathbb{K}[X_i]$, and making the diagram

$$\begin{array}{c|c} U_1 \times \mathbb{K} & \xrightarrow{(x,t) \mapsto (x,t+1/f(x))} & U_2 \times \mathbb{K} \\ & \varphi_1 \\ & & & & & & & \\ U_1 \times \mathbb{K} & \xrightarrow{(x,t) \mapsto (x,t+1/g(x))} & U_2 \times \mathbb{K} \end{array}$$

commutative. This gives the equality

$$\alpha_1(x)t + \beta_1(x) + \frac{1}{g(\tilde{\varphi}_1(x))} = \alpha_2(x)\left(t + \frac{1}{f(x)}\right) + \beta_2(x),$$

whence

$$\frac{1}{g(\tilde{\varphi}_1(x))} - \frac{\alpha_2(x)}{f(x)} = \beta_2(x) - \beta_1(x) \in \mathbb{K}[X].$$

Since α_2 is a unit we get

$$\operatorname{ord}_{x_0}(f) = \operatorname{ord}_{x_0}(g).$$

Similarly, in case $\widetilde{\varphi}(x_1) = x_2$ two isomorphisms $\varphi_1 \colon X_1 \times \mathbb{K} \to X_2 \times \mathbb{K}$ and $\varphi_2 \colon X_2 \times \mathbb{K} \to X_1 \times \mathbb{K}$ are induced for which the diagram

$$\begin{array}{c|c} U_1 \times \mathbb{K} & \xrightarrow{(x,t) \mapsto (x,t+1/f(x))} & U_2 \times \mathbb{K} \\ & & \varphi_1 \\ & & & & \varphi_2 \\ U_2 \times \mathbb{K} & \xrightarrow{(x,t) \mapsto (x,t-1/g(x))} & U_1 \times \mathbb{K} \end{array}$$

is commutative. It again follows that $\operatorname{ord}_{x_0}(f) = \operatorname{ord}_{x_0}(g)$. So we have shown that our example is correct.

Finally, we want to ask the following question: given an affine variety X with the strong cancellation property, does it follow that $X \times \mathbb{K}$ has the cancellation property? Clearly, the answer is affirmative if X satisfies the assumptions of Theorem 1. This question was considered by Asanuma in [2], who gave a negative answer in the case of positive characteristic. His counterexample is the already mentioned rational curve with the coordinate ring $k[T^n, T^{n+1}]$, where n > 1. On the other hand, in characteristic zero we have the following

PROPOSITION 7. If X and Y are affine curves then the surface $X \times Y$ has the cancellation property.

Proof. The hardest case $X \cong Y \cong \mathbb{K}$ is done, since \mathbb{K}^2 has the cancellation property. If X is not isomorphic to \mathbb{K} then Reg X is non- \mathbb{K} -uniruled,

since every smooth affine and K-uniruled curve is isomorphic to K, and every non-constant morphism from K to an affine curve is finite and hence surjective. So $X \times \mathbb{K}$ has the cancellation property by Remark 5. Similarly, if neither $X \cong \mathbb{K}$ nor $Y \cong \mathbb{K}$ then the set $\operatorname{Reg}(X \times Y) = (\operatorname{Reg} X) \times (\operatorname{Reg} Y)$ is non-K-uniruled and hence $X \times Y$ has the strong cancellation property, again by Remark 5.

References

- [1] S. S. Abhyankar, P. Eakin and W. J. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
- [2] T. Asanuma, On the strongly invariant coefficient rings, Osaka J. Math. 11 (1974), 587-593.
- [3] W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warszawa, 1989.
- R. Dryło, Non-uniruledness and the cancellation problem, Ann. Polon. Math. 87 (2005), 93–98.
- [5] —, On the stable equivalence problem, preprint IMUJ, 2005/14.
- [6] K. H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. 69 (1994), 5-27.
- [7] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A. Math. Sci. 55 (1979), 106-110.
- [8] E. Hamann, On the R-invariance of R[X], J. Algebra 35 (1975), 1–16.
- [9] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
- [10] S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123-127.
- Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617.
- [12] —, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1–35.
- [13] L. Makar-Limanov, On the group of automorphisms of a surface xⁿy = P(z), Israel J. Math. 121 (2001), 113–123.
- [14] L. Makar-Limanov, P. van Rossum, V. Shpilrain and J. T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341–349.
- $[15] \quad \mathrm{M.\ Miyanishi}, Some\ remarks\ on\ polynomial\ rings, \mathrm{Osaka\ J.\ Math.\ 10\ (1973), 617-624}.$
- [16] M. Miyanishi and Y. Nakai, Some remarks on strongly invariant rings, ibid. 12 (1975), 1–17.
- M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11-42.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: R.Drylo@impan.gov.pl

> Received 10.5.2006 and in final form 29.12.2006