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Non-uniruledness and the anellation problem (II)by Robert Dryło (Kraków)Abstrat. We study the following anellation problem over an algebraially losed�eld K of harateristi zero. Let X, Y be a�ne varieties suh that X ×Km ∼= Y ×Km forsome m. Assume that X is non-uniruled at in�nity. Does it follow that X ∼= Y ? We provea result implying the a�rmative answer in ase X is either unirational or an algebrai linebundle. However, the general answer is negative and we give as a ounterexample somea�ne surfaes.1. Introdution. Let K be an algebraially losed �eld of harateristizero. The anellation problem asks whether two a�ne varieties X, Y areisomorphi if there exists an isomorphism X × Km ∼= Y × Km for some m.To study this problem the following terminology will be useful. A variety Xhas the anellation property if every variety Y with a given isomorphism
X × Km ∼= Y × Km is isomorphi to X. Furthermore, a variety X has thestrong anellation property if every isomorphism f : X×Km → Y ×Km satis-�es the ondition: for eah x ∈ X there exists y ∈ Y suh that f({x}×Km) =
{y} × Km (then f learly indues an isomorphism between X and Y ).It is well known and easy to prove that a�ne urves have the anella-tion property (in fat, a muh more general algebrai result was proved byAbhyankar, Eakin and Heinzer in [1℄). However, surfaes need not have thisproperty, whih was showed by Danielewski in [3℄ (see also [6℄ and [13℄).Zariski's anellation problem asks whether Kn has the anellation prop-erty. The a�rmative answer for K2 is due to Fujita [7℄ and Miyanishi�Sugie [17℄. This problem remains open for all n ≥ 3.Iitaka and Fujita proved in [10℄ that every variety of non-negative log-arithmi Kodaira dimension has the strong anellation property. Further-more, it was shown in [4℄ that also every non-K-uniruled a�ne variety, andevery unirational a�ne variety non-uniruled at in�nity of dimension greaterthan one, have this property. The aim of the present paper is to extend thelast result. First we �x some terminology.2000 Mathematis Subjet Classi�ation: Primary 14R10.Key words and phrases: uniruled variety, anellation problem, algebrai line bundle.[41℄ © Instytut Matematyzny PAN, 2007



42 R. DryªoBy a variety we will always mean an algebrai variety.A variety X of positive dimension n is alled uniruled (resp. K-uniruled)if there exists a variety Y of dimension n − 1 and a dominant rational map
Y ×P1

99K X (resp. a dominant morphism Y ×K → X). A losed subset of avariety is alled uniruled (resp. K-uniruled) if all its irreduible omponentsare uniruled (resp. K-uniruled).We say that an a�ne variety X is non-uniruled at in�nity if for someompati�ation X of X the set X \ X is non-uniruled. (Note that by aompati�ation of a variety X we mean any projetive variety ontaining
X as an open subset. It is well known that for any ompati�ation X of ana�ne variety X the set X \ X is of pure odimension one in X.)Reall that a variety X is alled unirational if there exists a dominantrational map Pn

99K X.The main result of this paper isTheorem 1. Let X be an a�ne variety whih is either non-K-uniruledor non-uniruled at in�nity , unirational and of dimension > 1. Then X hasthe strong anellation property , and any algebrai line bundle over X hasthe anellation property.In this ontext it is natural to ask whether an a�ne variety non-uniruledat in�nity has the anellation property. Clearly, the above theorem gives ana�rmative answer under some additional assumptions. Furthermore, it wasnotied in [4℄ that the answer is a�rmative for every a�ne variety havingat least two omponents non-uniruled at in�nity, sine suh a variety isnon-K-uniruled, whih was showed by Jelonek in [12℄. However, the generalanswer turns out to be negative. Namely, using ideas of Danielewski [3℄ andFieseler [6℄ we onstrut a�ne surfaes non-uniruled at in�nity without theanellation property. This example may seem quite surprising if we ompareit with Theorem 1 and the following result, whih arose by onsidering thestable equivalene problem (see [5℄): if H is a non-uniruled hypersurfae ina smooth a�ne variety X and f : X × Km → Y × Km is an isomorphismsatisfying f(H×Km) = H ′×Km, where H ′ is a hypersurfae in the variety Y ,then for eah x ∈ X there exists y ∈ Y suh that f({x}×Km) = {y}×Km.2. Proof of Theorem 1. In this setion πX denotes the projetion
X × Km ∋ (x, t) 7→ x ∈ X.Lemma 2. Let f : Y × Km → X be a dominant morphism of a�nevarieties and assume that dim f({b} × Km) > 0 for some b ∈ Y . Then X is
K-uniruled. Furthermore, if Y is unirational then X is uniruled at in�nity.Proof. Let L be a line in Km suh that dim f({b} × L) > 0 and g :
(Y ×Km−1)×K → Y ×Km an isomorphism satisfying g({b′}×K) = {b}×L



Non-uniruledness and the anellation problem 43for some b′ ∈ Y ×Km−1. Then taking the omposition f ◦ g we may assumethat m = 1. Now we use indution on r := dim Y . Let n := dimX.If r = n − 1 then X is K-uniruled by de�nition. Furthermore, if Y isunirational with a dominant rational map g : Pr
99K Y then we have a dom-inant morphism f ◦ (g × idK) : U × K → X, where U is the domain of g.So it follows from [11, Th. 4℄ (see also [4, Lem.1℄) that X is uniruled atin�nity, sine Pr × P1 is a smooth ompati�ation of U × K suh that theset (Pr × P1) \ (U × K) is uniruled.Assume now that r ≥ n. Observe that the set of all y ∈ Y for whih

dim f({y} × K) = 0 is losed in Y , sine if X is ontained in KN and
f = (f1, . . . , fN ) then the set in question equals ⋂i=1,...,N

⋂
s,t∈K

{y ∈ Y :
fi(y, s) − fi(y, t) = 0}. Hene after removing some losed subset from Y wemay assume that dim f({y}×K) > 0 for all y ∈ Y . Furthermore, if Y is unira-tional, we may also assume that there is an open subset U of Pr together witha �nite morphism from U to Y . Now hoose x ∈ X suh that dim f−1(x) =
r + 1 − n and a hypersurfae H in Y satisfying 0 ≤ dim(H ∩ πY (f−1(x)))
< dim f−1(x), whih an be unirational in ase Y is unirational. Then
res f : H ×K → Y is a dominant morphism, sine its �ber over x has dimen-sion r − n. So the lemma follows from the indution hypothesis.Lemma 3. Let pi : Ei → X be an algebrai line bundle over a variety X,
i = 1, 2. Then E1 and E2 are isomorphi as algebrai line bundles over Xprovided there exists an isomorphism f : E1 ×Km → E2 ×Km for whih thefollowing diagram is ommutative:

E1 × Km

πE1

��

f
// E2 × Km

πE2

��

E1

p1

$$IIIIIIIIII
E2

p2

zzuuuuuuuuuu

XProof. Assume that Ei is given on an open over {Uα} of X by transitionfuntions gi
α,β : Uα∩Uβ → K∗, i = 1, 2. Observe that one an identify Ei×Kmwith the diret sum of Ei and the trivial bundle X × Km. Hene

Gi
α,β =

(
gi
α,β 0

0 Im

)

are transition funtions for Ei ×Km on Uα ∩Uβ, where Im is the identity inGL(Km). Therefore f indues a family of morphisms fα : Uα×Km+1 → Km+1suh that fα(u, ·) is an automorphism of Km+1 for eah u ∈ Uα and
fα(u, ·)G1

α,β(u) = G2
α,β(u)fβ(u, ·) for all u ∈ Uα ∩ Uβ.



44 R. DryªoDenote by hα(u) the Jaobian of fα(u, ·) for u ∈ Uα. Then
hα(u)g1

α,β(u) = g2
α,β(u)hβ(u) for all u ∈ Uα ∩ Uβ,whih means that the family {hα} determines an isomorphism between E1and E2.We will also need a solution of the following problem: assuming that R isa ring and A is an R-algebra together with an R-isomorphism of polynomialrings R[T1, . . . , Tn+1] ∼= A[T1, . . . , Tn], we ask if A is R-isomorphi to R[T1].This problem was studied in several papers. Abhyankar, Eakin and Heinzergave in [1℄ an a�rmative solution in ase R is loally fatorial. A little laterAsanuma showed in [2℄ that the answer is a�rmative if R is normal, butnegative in general. In fat, he showed that the ring k[Tn, Tn+1], where

n > 1 and k is a �eld of positive harateristi, is a ounterexample to thisproblem. On the other hand, Hamann gave in [8℄ an a�rmative solution forany Q-algebra R. Now we formulate the geometri version of his result andwe show how it an be proved diretly for smooth varieties.Lemma 4. Let q : Y → X be a morphism of a�ne varieties and f : X ×
Km+1 → Y × Km an isomorphism satisfying πX = q ◦ πY ◦ f . Then thereexists an isomorphism g : X × K → Y suh that q ◦ g = πX .

X × Km+1

πX

##GGGGGGGGGGGGGGGGGGGGGG

f

∼=
// Y × Km

πY

��

Y

q

��

X × K
g

∼=
oo

πX

xxrrrrrrrrrrr

XProof. (As mentioned above, the proof is given under the assumptionthat X is smooth.) Observe that all �bers of q are isomorphi to K, sine
f arries π−1

X (x) ∼= Km+1 onto q−1(x) × Km, and a�ne urves have theanellation property. Furthermore, if s0 : X ∋ x 7→ (x, 0) ∈ X × Km+1 isthe null setion then the map s : X ∋ x 7→ πY (f(s0(x))) ∈ Y is a setion of q,i.e. q ◦ s = idX . Now we laim that on Y one an introdue a struture ofan algebrai line bundle over X with projetion q and zero setion s, whihonludes the proof by Lemma 3.To see this observe that the indued map q∗ : Pic(X) → Pic(Y ) is anisomorphism, sine the maps π∗

X : Pic(X) → Pic(X × Km+1) and π∗

Y :
Pic(Y ) → Pic(Y ×Km) are isomorphisms. So for a prime divisor Γ := s(X)on Y there exists a divisor D on X suh that Γ and q∗(D) are linearly equiv-alent (reall that on a smooth variety every divisor is loally prinipal). Let
{Ui} be an open a�ne over of X suh that D ∩ Ui is prinipal in Ui. Then



Non-uniruledness and the anellation problem 45
q∗(D) ∩ q−1(Ui) is prinipal in q−1(Ui) and hene so is Γ ∩ q−1(Ui). Thisimplies that the ideal of the set Γ ∩ q−1(Ui) is prinipal in the oordinatering K[q−1(Ui)]; say it is generated by Fi ∈ K[q−1(Ui)]. Sine q−1(x) ∼= Kand Γ intersets q−1(x) transversally and at only one point, it follows thatthe restrition of Fi to q−1(x) is a oordinate for eah x ∈ Ui. Now onsiderthe map q−1(Ui) ∋ y 7→ (q(y), Fi(y)) ∈ Ui × K. It is obviously bijetive andhene an isomorphism by Zariski's Main Theorem. Now using these mapswe introdue on Y the laimed struture of a line bundle.We will need one more elementary fat: if X and Y are a�ne varietiesand an isomorphism f : X×Km → Y ×Km is given then X dominates Y (inpartiular, if X is unirational then so is Y ). To see this, hoose a point y ∈ Yand a morphism p : X → Km suh that the intersetion of its graph with
f−1({y} × Km) has a omponent of dimension zero. Then the morphism
X ∋ x 7→ πY (f(x, p(x))) ∈ Y is dominant, sine its �ber over y has aomponent of dimension zero.Proof of Theorem 1. The �rst statement is an immediate onsequene ofLemma 2. To prove the seond part take an algebrai line bundle over X,
p : E → X, and an isomorphism f : Y × Km → E × Km. By Lemma 2 theomposition p◦πE ◦f ontrats subvarieties of the form {y}×Km to a point,for all y ∈ Y . This means that there exists a morphism q : Y → X makingthe diagram

Y × Km

πY

��

f
// E × Km

πE

��

E

p

��

Y
q

// Xommutative. If E is trivial over an open a�ne subset U of X then
res q : q−1(U) → U is a trivial bundle by Lemma 4. Furthermore, as in theproof of Lemma 4 we show that q has a setion s : X → Y . These imply thaton Y one an introdue a struture of an algebrai line bundle over X withprojetion q and zero setion s. Now Lemma 3 onludes the proof.Remark 5. Theorem 1 remains true if we assume that Reg X is eithernon-K-uniruled or unirational of dimension greater than 1 and has a non-uniruled hypersurfae at in�nity. (Here and in what follows, we denote by
Reg X the set of all nonsingular points of a variety X. Furthermore, we saythat a variety X has a non-uniruled hypersurfae at in�nity if for some om-pati�ation X of X the set X \X has a non-uniruled irreduible omponentof odimension one in X.) The above proof works also in this ase, we only



46 R. Dryªoneed to modify Lemma 1 slightly. Furthermore, the following obvious fatwill be needed: every isomorphism f : Y ×Km → X×Km indues the isomor-phism res f : Reg Y ×Km → Reg X ×Km. The details are left to the reader.3. Final remarks. Now applying ideas of Danielewski�Fieseler we givethe announed example of a�ne surfaes non-uniruled at in�nity withoutthe anellation property.Example 6. Let X be a smooth non-rational a�ne urve. Assume that
f and g are regular funtions on X vanishing only at a point x0 ∈ X. Put
X1 = X2 = X and U1 = U2 = X \ {x0}. Let V be the surfae obtainedby gluing X1 × K and X2 × K via the isomorphism U1 × K ∋ (x, t) 7→
(x, t+1/f(x)) ∈ U2×K. Let W be the surfae obtained in the same manneras V by using g instead of f . Then V and W are a�ne surfaes non-uniruledat in�nity, V ×K ∼= W ×K, but V is not isomorphi to W in ase ordx0

(f) 6=
ordx0

(g).To show that V is a�ne onsider the funtion
H(x, t) :=

{
f(x)t + 1, (x, t) ∈ X1 × K,
f(x)t, (x, t) ∈ X2 × K.It indues a morphism h : V → K suh that the sets V \ h−1(0) ∼= X1 × K \

{(x, t) : f(x)t + 1 = 0} and V \ h−1(1) ∼= X2 × K \ {(x, t) : f(x)t = 1} area�ne. This implies that h is an a�ne morphism and onsequently V is ana�ne surfae.From [11, Th. 4℄ it follows that V is non-uniruled at in�nity.To show that V ×K ∼= W ×K denote by X̃ the urve X with a doubled
x0, i.e. X̃ is obtained by gluing X1 and X2 along U1 and U2 via the identity.Clearly, V and W with the natural projetions onto the prevariety X̃ areprinipal K+-bundles over X̃. Sine the �ber produt V ×

X̃
W is a prinipal

K+-bundle over both V and W , we have isomorphisms V ×K ∼= V ×X̃ W ∼=
W ×K (this follows from the fat that isomorphism lasses of prinipal K+-bundles over a variety Y are in one-to-one orrespondene with elements ofthe group H1(Y,OY ), whih is trivial in ase Y is a�ne).Now suppose that an isomorphism ϕ : V → W is given. Sine X is non-rational we have the indued automorphism ϕ̃ of X̃ for whih the diagram

V
ϕ

//

pr

��

W

pr

��

X̃
ϕ̃

// X̃is ommutative. Let xi denote the image of x0 under the anonial embed-ding of Xi into X̃, i = 1, 2. Observe that eah automorphism of X̃ arries the



Non-uniruledness and the anellation problem 47set {x1, x2} onto itself, sine every open subset of X̃ not ontaining {x1, x2}is separated.In ase ϕ̃(xi) = xi we have two indued automorphisms ϕ̃i of Xi suhthat ϕ̃i(x0) = x0, i = 1, 2, and two other automorphisms ϕi of Xi × Ksending (x, t) to (ϕ̃i(x), αi(x)t + βi(x)), where βi ∈ K[Xi] and αi is a unitin K[Xi], and making the diagram
U1 × K

(x,t) 7→(x,t+1/f(x))
//

ϕ1

��

U2 × K

ϕ2

��

U1 × K
(x,t) 7→(x,t+1/g(x))

// U2 × Kommutative. This gives the equality
α1(x)t + β1(x) +

1

g(ϕ̃1(x))
= α2(x)

(
t +

1

f(x)

)
+ β2(x),whene

1

g(ϕ̃1(x))
−

α2(x)

f(x)
= β2(x) − β1(x) ∈ K[X].Sine α2 is a unit we get

ordx0
(f) = ordx0

(g).Similarly, in ase ϕ̃(x1) = x2 two isomorphisms ϕ1 : X1 × K → X2 × Kand ϕ2 : X2 × K → X1 × K are indued for whih the diagram
U1 × K

(x,t) 7→(x,t+1/f(x))
//

ϕ1

��

U2 × K

ϕ2

��

U2 × K
(x,t) 7→(x,t−1/g(x))

// U1 × Kis ommutative. It again follows that ordx0
(f) = ordx0

(g). So we have shownthat our example is orret.Finally, we want to ask the following question: given an a�ne variety
X with the strong anellation property, does it follow that X × K hasthe anellation property? Clearly, the answer is a�rmative if X satis�esthe assumptions of Theorem 1. This question was onsidered by Asanumain [2℄, who gave a negative answer in the ase of positive harateristi. Hisounterexample is the already mentioned rational urve with the oordinatering k[Tn, Tn+1], where n > 1. On the other hand, in harateristi zero wehave the followingProposition 7. If X and Y are a�ne urves then the surfae X × Yhas the anellation property.Proof. The hardest ase X ∼= Y ∼= K is done, sine K2 has the anel-lation property. If X is not isomorphi to K then Reg X is non-K-uniruled,



48 R. Dryªosine every smooth a�ne and K-uniruled urve is isomorphi to K, and everynon-onstant morphism from K to an a�ne urve is �nite and hene sur-jetive. So X × K has the anellation property by Remark 5. Similarly, ifneither X ∼= K nor Y ∼= K then the set Reg(X × Y ) = (Reg X)× (Reg Y ) isnon-K-uniruled and hene X×Y has the strong anellation property, againby Remark 5.
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