Non-uniruledness and the cancellation problem (II)

by Robert DryŁo (Kraków)

Abstract

We study the following cancellation problem over an algebraically closed field \mathbb{K} of characteristic zero. Let X, Y be affine varieties such that $X \times \mathbb{K}^{m} \cong Y \times \mathbb{K}^{m}$ for some m. Assume that X is non-uniruled at infinity. Does it follow that $X \cong Y$? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.

1. Introduction. Let \mathbb{K} be an algebraically closed field of characteristic zero. The cancellation problem asks whether two affine varieties X, Y are isomorphic if there exists an isomorphism $X \times \mathbb{K}^{m} \cong Y \times \mathbb{K}^{m}$ for some m. To study this problem the following terminology will be useful. A variety X has the cancellation property if every variety Y with a given isomorphism $X \times \mathbb{K}^{m} \cong Y \times \mathbb{K}^{m}$ is isomorphic to X. Furthermore, a variety X has the strong cancellation property if every isomorphism $f: X \times \mathbb{K}^{m} \rightarrow Y \times \mathbb{K}^{m}$ satisfies the condition: for each $x \in X$ there exists $y \in Y$ such that $f\left(\{x\} \times \mathbb{K}^{m}\right)=$ $\{y\} \times \mathbb{K}^{m}$ (then f clearly induces an isomorphism between X and Y).

It is well known and easy to prove that affine curves have the cancellation property (in fact, a much more general algebraic result was proved by Abhyankar, Eakin and Heinzer in [1]). However, surfaces need not have this property, which was showed by Danielewski in [3] (see also [6] and [13]).

Zariski's cancellation problem asks whether \mathbb{K}^{n} has the cancellation property. The affirmative answer for \mathbb{K}^{2} is due to Fujita [7] and MiyanishiSugie [17]. This problem remains open for all $n \geq 3$.

Iitaka and Fujita proved in [10] that every variety of non-negative logarithmic Kodaira dimension has the strong cancellation property. Furthermore, it was shown in [4] that also every non- \mathbb{K}-uniruled affine variety, and every unirational affine variety non-uniruled at infinity of dimension greater than one, have this property. The aim of the present paper is to extend the last result. First we fix some terminology.

Key words and phrases: uniruled variety, cancellation problem, algebraic line bundle.

By a variety we will always mean an algebraic variety.
A variety X of positive dimension n is called uniruled (resp. \mathbb{K}-uniruled) if there exists a variety Y of dimension $n-1$ and a dominant rational map $Y \times \mathbb{P}^{1} \rightarrow X$ (resp. a dominant morphism $Y \times \mathbb{K} \rightarrow X$). A closed subset of a variety is called uniruled (resp. \mathbb{K}-uniruled) if all its irreducible components are uniruled (resp. \mathbb{K}-uniruled).

We say that an affine variety X is non-uniruled at infinity if for some compactification \bar{X} of X the set $\bar{X} \backslash X$ is non-uniruled. (Note that by a compactification of a variety X we mean any projective variety containing X as an open subset. It is well known that for any compactification \bar{X} of an affine variety X the set $\bar{X} \backslash X$ is of pure codimension one in \bar{X}.)

Recall that a variety X is called unirational if there exists a dominant rational map $\mathbb{P}^{n} \rightarrow X$.

The main result of this paper is
Theorem 1. Let X be an affine variety which is either non- \mathbb{K}-uniruled or non-uniruled at infinity, unirational and of dimension >1. Then X has the strong cancellation property, and any algebraic line bundle over X has the cancellation property.

In this context it is natural to ask whether an affine variety non-uniruled at infinity has the cancellation property. Clearly, the above theorem gives an affirmative answer under some additional assumptions. Furthermore, it was noticed in [4] that the answer is affirmative for every affine variety having at least two components non-uniruled at infinity, since such a variety is non- \mathbb{K}-uniruled, which was showed by Jelonek in [12]. However, the general answer turns out to be negative. Namely, using ideas of Danielewski [3] and Fieseler [6] we construct affine surfaces non-uniruled at infinity without the cancellation property. This example may seem quite surprising if we compare it with Theorem 1 and the following result, which arose by considering the stable equivalence problem (see [5]): if H is a non-uniruled hypersurface in a smooth affine variety X and $f: X \times \mathbb{K}^{m} \rightarrow Y \times \mathbb{K}^{m}$ is an isomorphism satisfying $f\left(H \times \mathbb{K}^{m}\right)=H^{\prime} \times \mathbb{K}^{m}$, where H^{\prime} is a hypersurface in the variety Y, then for each $x \in X$ there exists $y \in Y$ such that $f\left(\{x\} \times \mathbb{K}^{m}\right)=\{y\} \times \mathbb{K}^{m}$.
2. Proof of Theorem 1. In this section π_{X} denotes the projection $X \times \mathbb{K}^{m} \ni(x, t) \mapsto x \in X$.

Lemma 2. Let $f: Y \times \mathbb{K}^{m} \rightarrow X$ be a dominant morphism of affine varieties and assume that $\operatorname{dim} f\left(\{b\} \times \mathbb{K}^{m}\right)>0$ for some $b \in Y$. Then X is \mathbb{K}-uniruled. Furthermore, if Y is unirational then X is uniruled at infinity.

Proof. Let L be a line in \mathbb{K}^{m} such that $\operatorname{dim} f(\{b\} \times L)>0$ and g : $\left(Y \times \mathbb{K}^{m-1}\right) \times \mathbb{K} \rightarrow Y \times \mathbb{K}^{m}$ an isomorphism satisfying $g\left(\left\{b^{\prime}\right\} \times \mathbb{K}\right)=\{b\} \times L$
for some $b^{\prime} \in Y \times \mathbb{K}^{m-1}$. Then taking the composition $f \circ g$ we may assume that $m=1$. Now we use induction on $r:=\operatorname{dim} Y$. Let $n:=\operatorname{dim} X$.

If $r=n-1$ then X is \mathbb{K}-uniruled by definition. Furthermore, if Y is unirational with a dominant rational map $g: \mathbb{P}^{r} \rightarrow Y$ then we have a dominant morphism $f \circ\left(g \times \mathrm{id}_{\mathbb{K}}\right): U \times \mathbb{K} \rightarrow X$, where U is the domain of g. So it follows from [11, Th. 4] (see also [4, Lem.1]) that X is uniruled at infinity, since $\mathbb{P}^{r} \times \mathbb{P}^{1}$ is a smooth compactification of $U \times \mathbb{K}$ such that the set $\left(\mathbb{P}^{r} \times \mathbb{P}^{1}\right) \backslash(U \times \mathbb{K})$ is uniruled.

Assume now that $r \geq n$. Observe that the set of all $y \in Y$ for which $\operatorname{dim} f(\{y\} \times \mathbb{K})=0$ is closed in Y, since if X is contained in \mathbb{K}^{N} and $f=\left(f_{1}, \ldots, f_{N}\right)$ then the set in question equals $\bigcap_{i=1, \ldots, N} \bigcap_{s, t \in \mathbb{K}}\{y \in Y$: $\left.f_{i}(y, s)-f_{i}(y, t)=0\right\}$. Hence after removing some closed subset from Y we may assume that $\operatorname{dim} f(\{y\} \times \mathbb{K})>0$ for all $y \in Y$. Furthermore, if Y is unirational, we may also assume that there is an open subset U of \mathbb{P}^{r} together with a finite morphism from U to Y. Now choose $x \in X$ such that $\operatorname{dim} f^{-1}(x)=$ $r+1-n$ and a hypersurface H in Y satisfying $0 \leq \operatorname{dim}\left(H \cap \pi_{Y}\left(f^{-1}(x)\right)\right)$ $<\operatorname{dim} f^{-1}(x)$, which can be unirational in case Y is unirational. Then res $f: H \times \mathbb{K} \rightarrow Y$ is a dominant morphism, since its fiber over x has dimension $r-n$. So the lemma follows from the induction hypothesis.

Lemma 3. Let $p_{i}: E_{i} \rightarrow X$ be an algebraic line bundle over a variety X, $i=1,2$. Then E_{1} and E_{2} are isomorphic as algebraic line bundles over X provided there exists an isomorphism $f: E_{1} \times \mathbb{K}^{m} \rightarrow E_{2} \times \mathbb{K}^{m}$ for which the following diagram is commutative:

Proof. Assume that E_{i} is given on an open cover $\left\{U_{\alpha}\right\}$ of X by transition functions $g_{\alpha, \beta}^{i}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{K}^{*}, i=1,2$. Observe that one can identify $E_{i} \times \mathbb{K}^{m}$ with the direct sum of E_{i} and the trivial bundle $X \times \mathbb{K}^{m}$. Hence

$$
G_{\alpha, \beta}^{i}=\left(\begin{array}{cc}
g_{\alpha, \beta}^{i} & 0 \\
0 & I_{m}
\end{array}\right)
$$

are transition functions for $E_{i} \times \mathbb{K}^{m}$ on $U_{\alpha} \cap U_{\beta}$, where I_{m} is the identity in $\mathrm{GL}\left(\mathbb{K}^{m}\right)$. Therefore f induces a family of morphisms $f_{\alpha}: U_{\alpha} \times \mathbb{K}^{m+1} \rightarrow \mathbb{K}^{m+1}$ such that $f_{\alpha}(u, \cdot)$ is an automorphism of \mathbb{K}^{m+1} for each $u \in U_{\alpha}$ and

$$
f_{\alpha}(u, \cdot) G_{\alpha, \beta}^{1}(u)=G_{\alpha, \beta}^{2}(u) f_{\beta}(u, \cdot) \quad \text { for all } u \in U_{\alpha} \cap U_{\beta}
$$

Denote by $h_{\alpha}(u)$ the Jacobian of $f_{\alpha}(u, \cdot)$ for $u \in U_{\alpha}$. Then

$$
h_{\alpha}(u) g_{\alpha, \beta}^{1}(u)=g_{\alpha, \beta}^{2}(u) h_{\beta}(u) \quad \text { for all } u \in U_{\alpha} \cap U_{\beta}
$$

which means that the family $\left\{h_{\alpha}\right\}$ determines an isomorphism between E_{1} and E_{2}.

We will also need a solution of the following problem: assuming that R is a ring and A is an R-algebra together with an R-isomorphism of polynomial rings $R\left[T_{1}, \ldots, T_{n+1}\right] \cong A\left[T_{1}, \ldots, T_{n}\right]$, we ask if A is R-isomorphic to $R\left[T_{1}\right]$. This problem was studied in several papers. Abhyankar, Eakin and Heinzer gave in [1] an affirmative solution in case R is locally factorial. A little later Asanuma showed in [2] that the answer is affirmative if R is normal, but negative in general. In fact, he showed that the ring $k\left[T^{n}, T^{n+1}\right]$, where $n>1$ and k is a field of positive characteristic, is a counterexample to this problem. On the other hand, Hamann gave in [8] an affirmative solution for any \mathbb{Q}-algebra R. Now we formulate the geometric version of his result and we show how it can be proved directly for smooth varieties.

Lemma 4. Let $q: Y \rightarrow X$ be a morphism of affine varieties and $f: X \times$ $\mathbb{K}^{m+1} \rightarrow Y \times \mathbb{K}^{m}$ an isomorphism satisfying $\pi_{X}=q \circ \pi_{Y} \circ f$. Then there exists an isomorphism $g: X \times \mathbb{K} \rightarrow Y$ such that $q \circ g=\pi_{X}$.

Proof. (As mentioned above, the proof is given under the assumption that X is smooth.) Observe that all fibers of q are isomorphic to \mathbb{K}, since f carries $\pi_{X}^{-1}(x) \cong \mathbb{K}^{m+1}$ onto $q^{-1}(x) \times \mathbb{K}^{m}$, and affine curves have the cancellation property. Furthermore, if $s_{0}: X \ni x \mapsto(x, 0) \in X \times \mathbb{K}^{m+1}$ is the null section then the map $s: X \ni x \mapsto \pi_{Y}\left(f\left(s_{0}(x)\right)\right) \in Y$ is a section of q, i.e. $q \circ s=\mathrm{id}_{X}$. Now we claim that on Y one can introduce a structure of an algebraic line bundle over X with projection q and zero section s, which concludes the proof by Lemma 3 .

To see this observe that the induced map $q^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)$ is an isomorphism, since the maps $\pi_{X}^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X \times \mathbb{K}^{m+1}\right)$ and π_{Y}^{*} : $\operatorname{Pic}(Y) \rightarrow \operatorname{Pic}\left(Y \times \mathbb{K}^{m}\right)$ are isomorphisms. So for a prime divisor $\Gamma:=s(X)$ on Y there exists a divisor D on X such that Γ and $q^{*}(D)$ are linearly equivalent (recall that on a smooth variety every divisor is locally principal). Let $\left\{U_{i}\right\}$ be an open affine cover of X such that $D \cap U_{i}$ is principal in U_{i}. Then
$q^{*}(D) \cap q^{-1}\left(U_{i}\right)$ is principal in $q^{-1}\left(U_{i}\right)$ and hence so is $\Gamma \cap q^{-1}\left(U_{i}\right)$. This implies that the ideal of the set $\Gamma \cap q^{-1}\left(U_{i}\right)$ is principal in the coordinate ring $\mathbb{K}\left[q^{-1}\left(U_{i}\right)\right]$; say it is generated by $F_{i} \in \mathbb{K}\left[q^{-1}\left(U_{i}\right)\right]$. Since $q^{-1}(x) \cong \mathbb{K}$ and Γ intersects $q^{-1}(x)$ transversally and at only one point, it follows that the restriction of F_{i} to $q^{-1}(x)$ is a coordinate for each $x \in U_{i}$. Now consider the map $q^{-1}\left(U_{i}\right) \ni y \mapsto\left(q(y), F_{i}(y)\right) \in U_{i} \times \mathbb{K}$. It is obviously bijective and hence an isomorphism by Zariski's Main Theorem. Now using these maps we introduce on Y the claimed structure of a line bundle.

We will need one more elementary fact: if X and Y are affine varieties and an isomorphism $f: X \times \mathbb{K}^{m} \rightarrow Y \times \mathbb{K}^{m}$ is given then X dominates Y (in particular, if X is unirational then so is Y). To see this, choose a point $y \in Y$ and a morphism $p: X \rightarrow \mathbb{K}^{m}$ such that the intersection of its graph with $f^{-1}\left(\{y\} \times \mathbb{K}^{m}\right)$ has a component of dimension zero. Then the morphism $X \ni x \mapsto \pi_{Y}(f(x, p(x))) \in Y$ is dominant, since its fiber over y has a component of dimension zero.

Proof of Theorem 1. The first statement is an immediate consequence of Lemma 2. To prove the second part take an algebraic line bundle over X, $p: E \rightarrow X$, and an isomorphism $f: Y \times \mathbb{K}^{m} \rightarrow E \times \mathbb{K}^{m}$. By Lemma 2 the composition $p \circ \pi_{E} \circ f$ contracts subvarieties of the form $\{y\} \times \mathbb{K}^{m}$ to a point, for all $y \in Y$. This means that there exists a morphism $q: Y \rightarrow X$ making the diagram

commutative. If E is trivial over an open affine subset U of X then res $q: q^{-1}(U) \rightarrow U$ is a trivial bundle by Lemma 4 . Furthermore, as in the proof of Lemma 4 we show that q has a section $s: X \rightarrow Y$. These imply that on Y one can introduce a structure of an algebraic line bundle over X with projection q and zero section s. Now Lemma 3 concludes the proof.

Remark 5. Theorem 1 remains true if we assume that $\operatorname{Reg} X$ is either non- \mathbb{K}-uniruled or unirational of dimension greater than 1 and has a nonuniruled hypersurface at infinity. (Here and in what follows, we denote by $\operatorname{Reg} X$ the set of all nonsingular points of a variety X. Furthermore, we say that a variety X has a non-uniruled hypersurface at infinity if for some compactification \bar{X} of X the set $\bar{X} \backslash X$ has a non-uniruled irreducible component of codimension one in \bar{X}.) The above proof works also in this case, we only
need to modify Lemma 1 slightly. Furthermore, the following obvious fact will be needed: every isomorphism $f: Y \times \mathbb{K}^{m} \rightarrow X \times \mathbb{K}^{m}$ induces the isomorphism res $f: \operatorname{Reg} Y \times \mathbb{K}^{m} \rightarrow \operatorname{Reg} X \times \mathbb{K}^{m}$. The details are left to the reader.
3. Final remarks. Now applying ideas of Danielewski-Fieseler we give the announced example of affine surfaces non-uniruled at infinity without the cancellation property.

Example 6. Let X be a smooth non-rational affine curve. Assume that f and g are regular functions on X vanishing only at a point $x_{0} \in X$. Put $X_{1}=X_{2}=X$ and $U_{1}=U_{2}=X \backslash\left\{x_{0}\right\}$. Let V be the surface obtained by gluing $X_{1} \times \mathbb{K}$ and $X_{2} \times \mathbb{K}$ via the isomorphism $U_{1} \times \mathbb{K} \ni(x, t) \mapsto$ $(x, t+1 / f(x)) \in U_{2} \times \mathbb{K}$. Let W be the surface obtained in the same manner as V by using g instead of f. Then V and W are affine surfaces non-uniruled at infinity, $V \times \mathbb{K} \cong W \times \mathbb{K}$, but V is not isomorphic to W in case $\operatorname{ord}_{x_{0}}(f) \neq$ $\operatorname{ord}_{x_{0}}(g)$.

To show that V is affine consider the function

$$
H(x, t):= \begin{cases}f(x) t+1, & (x, t) \in X_{1} \times \mathbb{K} \\ f(x) t, & (x, t) \in X_{2} \times \mathbb{K}\end{cases}
$$

It induces a morphism $h: V \rightarrow \mathbb{K}$ such that the sets $V \backslash h^{-1}(0) \cong X_{1} \times \mathbb{K} \backslash$ $\{(x, t): f(x) t+1=0\}$ and $V \backslash h^{-1}(1) \cong X_{2} \times \mathbb{K} \backslash\{(x, t): f(x) t=1\}$ are affine. This implies that h is an affine morphism and consequently V is an affine surface.

From [11, Th. 4] it follows that V is non-uniruled at infinity.
To show that $V \times \mathbb{K} \cong W \times \mathbb{K}$ denote by \widetilde{X} the curve X with a doubled x_{0}, i.e. \widetilde{X} is obtained by gluing X_{1} and X_{2} along U_{1} and U_{2} via the identity. Clearly, V and W with the natural projections onto the prevariety \widetilde{X} are principal \mathbb{K}^{+}-bundles over \widetilde{X}. Since the fiber product $V \times_{\widetilde{X}} W$ is a principal \mathbb{K}^{+}-bundle over both V and W, we have isomorphisms $V \times \mathbb{K} \cong V \times_{\tilde{X}} W \cong$ $W \times \mathbb{K}$ (this follows from the fact that isomorphism classes of principal \mathbb{K}^{+}_ bundles over a variety Y are in one-to-one correspondence with elements of the group $H^{1}\left(Y, \mathcal{O}_{Y}\right)$, which is trivial in case Y is affine).

Now suppose that an isomorphism $\varphi: V \rightarrow W$ is given. Since X is nonrational we have the induced automorphism $\widetilde{\varphi}$ of \widetilde{X} for which the diagram

is commutative. Let x_{i} denote the image of x_{0} under the canonical embedding of X_{i} into $\widetilde{X}, i=1,2$. Observe that each automorphism of \widetilde{X} carries the
set $\left\{x_{1}, x_{2}\right\}$ onto itself, since every open subset of \widetilde{X} not containing $\left\{x_{1}, x_{2}\right\}$ is separated.

In case $\widetilde{\varphi}\left(x_{i}\right)=x_{i}$ we have two induced automorphisms $\widetilde{\varphi}_{i}$ of X_{i} such that $\widetilde{\varphi}_{i}\left(x_{0}\right)=x_{0}, i=1,2$, and two other automorphisms φ_{i} of $X_{i} \times \mathbb{K}$ sending (x, t) to $\left(\widetilde{\varphi}_{i}(x), \alpha_{i}(x) t+\beta_{i}(x)\right)$, where $\beta_{i} \in \mathbb{K}\left[X_{i}\right]$ and α_{i} is a unit in $\mathbb{K}\left[X_{i}\right]$, and making the diagram

commutative. This gives the equality

$$
\alpha_{1}(x) t+\beta_{1}(x)+\frac{1}{g\left(\widetilde{\varphi}_{1}(x)\right)}=\alpha_{2}(x)\left(t+\frac{1}{f(x)}\right)+\beta_{2}(x)
$$

whence

$$
\frac{1}{g\left(\widetilde{\varphi}_{1}(x)\right)}-\frac{\alpha_{2}(x)}{f(x)}=\beta_{2}(x)-\beta_{1}(x) \in \mathbb{K}[X]
$$

Since α_{2} is a unit we get

$$
\operatorname{ord}_{x_{0}}(f)=\operatorname{ord}_{x_{0}}(g)
$$

Similarly, in case $\widetilde{\varphi}\left(x_{1}\right)=x_{2}$ two isomorphisms $\varphi_{1}: X_{1} \times \mathbb{K} \rightarrow X_{2} \times \mathbb{K}$ and $\varphi_{2}: X_{2} \times \mathbb{K} \rightarrow X_{1} \times \mathbb{K}$ are induced for which the diagram

is commutative. It again follows that $\operatorname{ord}_{x_{0}}(f)=\operatorname{ord}_{x_{0}}(g)$. So we have shown that our example is correct.

Finally, we want to ask the following question: given an affine variety X with the strong cancellation property, does it follow that $X \times \mathbb{K}$ has the cancellation property? Clearly, the answer is affirmative if X satisfies the assumptions of Theorem 1. This question was considered by Asanuma in [2], who gave a negative answer in the case of positive characteristic. His counterexample is the already mentioned rational curve with the coordinate ring $k\left[T^{n}, T^{n+1}\right]$, where $n>1$. On the other hand, in characteristic zero we have the following

Proposition 7. If X and Y are affine curves then the surface $X \times Y$ has the cancellation property.

Proof. The hardest case $X \cong Y \cong \mathbb{K}$ is done, since \mathbb{K}^{2} has the cancellation property. If X is not isomorphic to \mathbb{K} then $\operatorname{Reg} X$ is non- \mathbb{K}-uniruled,
since every smooth affine and \mathbb{K}-uniruled curve is isomorphic to \mathbb{K}, and every non-constant morphism from \mathbb{K} to an affine curve is finite and hence surjective. So $X \times \mathbb{K}$ has the cancellation property by Remark 5. Similarly, if neither $X \cong \mathbb{K}$ nor $Y \cong \mathbb{K}$ then the set $\operatorname{Reg}(X \times Y)=(\operatorname{Reg} X) \times(\operatorname{Reg} Y)$ is non- \mathbb{K}-uniruled and hence $X \times Y$ has the strong cancellation property, again by Remark 5.

References

[1] S. S. Abhyankar, P. Eakin and W. J. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] T. Asanuma, On the strongly invariant coefficient rings, Osaka J. Math. 11 (1974), 587-593.
[3] W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warszawa, 1989.
[4] R. Dryło, Non-uniruledness and the cancellation problem, Ann. Polon. Math. 87 (2005), 93-98.
[5] -, On the stable equivalence problem, preprint IMUJ, 2005/14.
[6] K. H. Fieseler, On complex affine surfaces with \mathbb{C}^{+}-action, Comment. Math. Helv. 69 (1994), 5-27.
[7] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A. Math. Sci. 55 (1979), 106-110.
[8] E. Hamann, On the R-invariance of $R[X]$, J. Algebra 35 (1975), 1-16.
[9] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
[10] S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123-127.
[11] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617.
[12] -, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
[13] L. Makar-Limanov, On the group of automorphisms of a surface $x^{n} y=P(z)$, Israel J. Math. 121 (2001), 113-123.
[14] L. Makar-Limanov, P. van Rossum, V. Shpilrain and J. T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341-349.
[15] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math. 10 (1973), 617-624.
[16] M. Miyanishi and Y. Nakai, Some remarks on strongly invariant rings, ibid. 12 (1975), 1-17.
[17] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11-42.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: R.Drylo@impan.gov.pl

