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A symmetry problem

by A. G. Ramm (Manhattan, KS)

Abstract. Consider the Newtonian potential of a homogeneous bounded body
D ⊂ R

3 with known constant density and connected complement. If this potential equals
c/|x| in a neighborhood of infinity, where c > 0 is a constant, then the body is a ball. This
known result is now proved by a different simple method. The method can be applied to
other problems.

1. Introduction. Consider a bounded domain D ⊂ R
3 with a con-

nected complement and C1,λ-smooth boundary S. The smoothness assump-
tions on S can be weakened, but this is not the point of this paper. Let BR

be a ball of radius R, containing D, and B′

R be its complement in R
3. We

denote by S2 a unit sphere, and by ℓ a unit vector. Let N be the outer unit
normal to S. Denote by χ the characteristic function of D, and by N the
set of harmonic functions in BR. Let the center O of BR be the origin, and
suppose it lies at the center of mass of D.

Consider the Newtonian potential

u(x) :=
\
D

dy

|x − y|
, (1)

where we have assumed that the density of the mass distribution in D is 1.

Assume that

u(x) = c|x|−1 in B′

R,

where c = const. Then the question is:

Does this imply that D is a ball?

It is well known and easy to prove that if D is a ball Ba of radius a,
then u(x) = c|x|−1 in B′

a, and c = |Ba|, where |Ba| is the volume of this
ball, |Ba| = 4πa3/3, so a = (3c/4π)1/3. In [1] and [5] one can find different
proofs of the fact that the answer to the above question is yes. An especially
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simple proof, due to D. Zagier, is given at the end of this paper (see also
review [5], where one can find this proof).

Our goal is to give a simple new proof of this result by a method which
can be used in other problems (see, e.g., [4]). The literature on potential
theory and inverse potential theory is quite large, and we only mention a
few references [1]–[3], [5], where the reader can find additional bibliography,
and [4], where an argument similar to the one we use was applied to the
study of the Pompeiu problem.

We do not attempt to make the weakest assumption about the smooth-
ness of the boundary of D. In Zagier’s proof, given at the end of this paper,
no smoothness of the boundary is assumed.

We prove the following theorem:

Theorem 1. Under the above assumptions, if u(x) = c|x|−1 in B′

R, then

D is a ball of radius a = (3c/4π)1/3.

This result is proved in Section 2.

2. Proofs

Proof of Theorem 1. We have

∆u = −4πχ in R
3. (2)

Multiply (2) by a harmonic function h ∈ N and integrate over BR to get

−4π
\
D

h(x) dx =
\

BR

h∆udx =
\

BR

u∆hdx + I, (3)

where we have used Green’s formula, and set

I :=
\

∂BR

(hur − uhr) ds, ur :=
∂u

∂r
=

∂u

∂N

∣

∣

∣

∣

∂BR

,

where ∂BR is the boundary of BR. By our assumption,

ur = −cR−2, u = cR−1 on ∂BR.

We also have \
∂BR

hr ds = 0,
1

4πR2

\
∂BR

h ds = h(0),

where we have used the mean value theorem for harmonic functions and the
formula \

∂BR

hr ds =
\

BR

∆hdx = 0,

which is valid for harmonic functions h. Therefore, I = c1h(0), where c1 is
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a constant, and (3) implies\
D

h(x) dx = c2h(0) ∀h ∈ N , c2 := −
c1

4π
. (4)

If h ∈ N , then h(gx) ∈ N for any rotation g. Let us check that if g = g(φ)
is the rotation through the angle φ about the straight line passing through
the origin in the direction ℓ, then

d(g(φ)x)

dφ

∣

∣

∣

∣

φ=0

= [ℓ, x], (5)

where [ℓ, x] is the cross product. To check (5), choose the coordinate system
with z-axis along ℓ, and write the matrix g of the φ-rotation about the
z-axis:

g := g(φ) =







cos φ − sinφ 0

sinφ cos φ 0

0 0 1






.

Then

dg

dφ

∣

∣

∣

∣

φ=0

=







0 −1 0

1 0 0

0 0 0






:= G.

Thus, Gx = [ℓ, x] in the chosen coordinate system. This formula does not
depend on the choice of coordinate system, so (5) is verified.

A proof of (5), similar to the one used in mechanics for the proof of the
conservation of angular momentum, is also possible.

Replacing h(x) by h(g(φ)x) in (4), differentiating with respect to φ, then
setting φ = 0, and using (5), one gets\

D

∇h · [ℓ, x] dx = 0, (6)

where · is the dot product of two vectors. Note that

∇h(x) · [ℓ, x] = ∇ · h(x)[ℓ, x].

Therefore, using the divergence theorem, one rewrites (6) as\
S

h(s)Ns · [ℓ, s] ds = ℓ ·
\
S

h(s)[s, Ns] ds = 0, ∀h ∈ N , ∀ℓ ∈ S2, (7)

where Ns is the outer unit normal to S at the point s. Since ℓ is arbitrary,
equation (7) implies \

S

h(s)[s, Ns] ds = 0, ∀h ∈ N . (8)
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We claim that the set of restrictions of all harmonic functions h ∈ N to S
is dense in L2(S). For the convenience of the reader, this claim is verified
after the proof of Theorem 1 is finished. Thus, (8) implies

[s, Ns] = 0 ∀s ∈ S. (9)

Let us prove that (9) implies that S is a sphere. Let r = r(p, q) be a para-
metric equation of S. Then s = r(p, q) and Ns = [rp, rq]/|[rp, rq]|. Thus, (9)
implies

0 = [r, [rp, rq]] = rpr · rq − rqr · rp. (10)

Since the surface S is assumed C1,λ-smooth, the normal Ns is well defined
at every point s ∈ S, and the vectors rp and rq are linearly independent.
Thus, (10) implies

r · rq = r · rp = 0. (11)

It follows from (11) that
r · r = a2, (12)

where a > 0 is a constant. This is an equation of a sphere of radius a,
centered at the origin, i.e., at the center O of mass of D. So, D is a ball
of radius a centered at O. In our argument we do not assume that D is
connected.

Theorem 1 is proved.

Let us now verify the claim that the set of restrictions of all harmonic
functions h ∈ N to S is dense in L2(S). Assuming the contrary, one con-
cludes that there exists an f ∈ L2(S) such that\

S

f(s)h(s) ds = 0 ∀h ∈ N . (13)

Take

h(s) =
\

Sm

µ(x) dx

|x − s|
,

where m > R, and µ ∈ L2(Sm) is arbitrary. Then h is harmonic in BR, and
since µ is arbitrary, equation (13) implies

v(x) :=
\
S

f(s)|x − s|−1 ds = 0 ∀x ∈ Sm. (14)

The function v is a single-layer potential which vanishes on Sm. Thus, it
vanishes everywhere outside Sm, and consequently, everywhere outside S.
Since v is continuous in R

3, and vanishes everywhere outside S, it vanishes
on S. A function v which is harmonic in D and vanishes on S must vanish
in D. So, v = 0 in D and in D′ := R

3 \ D. By the jump relation for the
normal derivative of v across the boundary S, one gets

0 = (vN )+ − (vN )− = 4πf,
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where (vN )± is the limiting value of the normal derivative vN from the inside
(resp. outside) of D. So, f = 0, which proves the claim.

Remark. Equation (12) has been derived under the assumption that the
origin of the coordinate system is fixed: in this coordinate system u(x) =
c/|x| in B′

R. Therefore the surfaces satisfying (12) in which a = const > 0,
can be concentric spheres. There cannot be more than two neighboring con-
centric spheres with different mass densities, because the density of the mass
distribution in D is assumed constant. There cannot be two such spheres,
i.e., D cannot be a spherical shell, because in this case the domain D′ is
not connected, contrary to our assumption. Thus, S can only be one sphere,
and D can only be a ball.

D. Zagier’s proof ([5]). Assume that D is connected. If u(x) =T
D dy/|x − y| = c/|x| in B′

R, then u(x) = c/|x| in D′ by the unique con-
tinuation theorem for harmonic functions. Taking gradient, one gets\

D

dy (x − y)

|x − y|3
=

cx

|x|3

in D′. Taking the dot product with x, one gets\
D

dy (x2 − y · x)

|x − y|3
=

c

|x|
=
\
D

dy

|x − y|
=
\
D

dy |x − y|2

|x − y|3
, x ∈ D′.

This implies \
D

dy (−y2 + y · x)

|x − y|3
= 0 in D′.

Let B ⊂ D be the largest ball, inscribed in D and centered at the origin,
and Bc := D \ B. One has\

B

dy (−y2 + y · x)

|x − y|3
= 0 in B′.

Subtract this from the similar formula for D to get\
Bc

dy (−y2 + y · x)

|x − y|3
= 0 in D′.

Since −y2 + y · x ≤ 0 if y ∈ Bc, x ∈ D′, one concludes that |Bc| = 0, so
D = B. Here |Bc| is the Lebesgue measure (volume) of the set Bc.
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