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A proof of the valuation property and preparation theoremby Krzysztof Jan Nowak (Kraków)Abstra
t. The purpose of this arti
le is to present a short model-theoreti
 proofof the valuation property for a polynomially bounded o-minimal theory T . The valuationproperty was 
onje
tured by van den Dries, and proved for the polynomially bounded 
aseby van den Dries�Speissegger and for the power bounded 
ase by Tyne. Our proof usesthe transfer prin
iple for the theory Tconv (i.e. T with an extra unary symbol denotinga proper 
onvex subring), whi
h�together with quanti�er elimination�is due to vanden Dries�Lewenberg. The main tools applied here are saturation, the Marker�Steinhorntheorem on parameter redu
tion and heir-
oheir amalgams.The signi�
an
e of the valuation property lies to a great extent in its geometri
 
on-tent: it is equivalent to the preparation theorem whi
h says, roughly speaking, that everyde�nable fun
tion of several variables depends pie
ewise on any �xed variable in a 
er-tain simple fashion. The latter originates in the work of Parusi«ski for subanalyti
 fun
-tions, and of Lion�Rolin for logarithmi
-exponential fun
tions. Van den Dries�Speisseggerhave proved the preparation theorem in the o-minimal setting (for fun
tions de�nablein a polynomially bounded stru
ture or logarithmi
-exponential over su
h a stru
ture).Also, the valuation property makes it possible to establish quanti�er elimination for poly-nomially bounded expansions of the real �eld R with exponential fun
tion and loga-rithm.1. Preliminaries. Throughout this arti
le we deal with a polynomiallybounded o-minimal theory T in a �rst-order language L with �eld of expo-nents K (whi
h is a sub�eld of the �eld R of reals). The word �de�nable� ina stru
ture R always means �de�nable with parameters from R�; �de�nablewith no parameters� is 
alled �0-de�nable�. It is well known that one 
analways extend L and T by de�nitions to:
Ldf := L augmented by a new fun
tion symbol fϕ(x) for ea
h L-formula

ϕ(x, y) su
h that T ⊢ ∀x ∃y ϕ(x, y),
T df := T extended by the new de�ning axioms ϕ(x, fϕ(x)).2000 Mathemati
s Subje
t Classi�
ation: 03C64, 14P15, 32B20.Key words and phrases: o-minimal stru
tures, valuation property, preparation theo-rem.Resear
h partially supported by KBM grant 1P03A 00527 and the RAAG Network.[75℄ 
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76 K. J. NowakEvery model R of T expands uniquely to a model Rdf of T df . Sin
e thetheory T has de�nable 
ell de
omposition, T df has quanti�er elimination,and sin
e T has de�nable Skolem fun
tions (whi
h follows from 
ell de
om-position as well), T df has universal axiomatization. Consequently, T has aprime model P whi
h has a unique elementary embedding into every model
R of T ; the image of P in R 
onsists of the interpretations of all 
onstantsymbols of the language Ldf .If R is an elementary substru
ture of a model S of T : R ≺ S, then Rdfis a substru
ture of Sdf in the language Ldf : Rdf ⊂ Sdf . For a subset A ⊂ S,
R〈A〉 denotes the de�nable 
losure of A over R in S, i.e. the substru
ture of
Sdf generated by R∪A in the language Ldf ; of 
ourse R〈A〉 is an elementarysubstru
ture of S. The operation of de�nable 
losure satis�es the ordinaryaxioms for the span operation (in parti
ular the Steinitz ex
hange property),when
e one 
an de�ne rank, rkR, or relative rank, rk(S/R), in an ordinaryfashion.Consider two ordered �elds R ⊂ S. We say that R is Dedekind 
ompleteor tame in S if one of the three equivalent 
onditions is satis�ed:(i) the tra
e on R of every interval in S is an interval in R;(ii) the 
ut made in R by every element s ∈ S is rational;(iii) for ea
h R-bounded element s ∈ S, there is a unique element r ∈ Rsu
h that s− r is an R-in�nitesimal; we 
all r := st(s) the standardpart of the element s.
Marker–Steinhorn Theorem on Parameter Reduction. Consi-der o-minimal stru
tures R ≺ S with R Dedekind 
omplete in S. Then thetra
e X ∩ Rn of every de�nable set X ⊂ Sn in Sn is de�nable in Rn. Inother words, the tra
e X ∩ Rn 
an be de�ned by means of parameters from

R only.In this se
tion we shall make use of the following well-known
Corollary (
f. [8, 1℄). Under the previous assumptions, if f : Sn → Sis a de�nable fun
tion, then the sets

E−∞ := {x ∈ Rn : f(x) < R}, E+∞ := {x ∈ Rn : f(x) > R}are de�nable, and the fun
tion
st(f(x)) : Rn \ (E−∞ ∪ E+∞) → Ris de�nable.Consider now the theory Tconv of pairs (R, V ), where V is a 
onvexsubring of a model R of T , in the language L with an extra unary relationsymbol to denote V (
f. [2℄). Every maximal elementary substru
ture R′of R 
ontained in V is Dedekind 
omplete and 
o�nal in R, and isomorphi
to the residue �eld V of V ; furthermore, V is the 
onvex hull of R′ in R. Van



Valuation property and preparation theorem 77den Dries�Lewenberg [2℄ proved a relative version of quanti�er eliminationfor Tconv:If T has quanti�er elimination and universal axiomatization, then Tconvhas quanti�er elimination.Hen
e Tconv is a 
omplete theory and we have at our disposal the transferprin
iple: in order to prove a theorem expressible in the �rst-order language
Lconv for all models of Tconv, it su�
es to prove it for one parti
ular model.The 
onvex subring V is a valuation ring in R with maximal ideal
m = mV and valuation group Γ = ΓV ; let v denote the indu
ed valua-tion of the �eld R. We now give a simple proof for the following propositionon stabilization of valuation due to van den Dries [1℄. Our proof makes useof the transfer prin
iple and pie
ewise uniform asymptoti
s only.Proposition 1 (on stabilization of valuation). If f : R → R is a de-�nable fun
tion, then there exists u ∈ V su
h that for all x ∈ V , x ≥ u, wehave

v(f(x)) = v(f(u)) or equivalently f(x)

f(u)
∈ V \ m.Proof. The fun
tion f is of the form

f(x) = g(x, r1, . . . , rm),where g is a 0-de�nable fun
tion and r ∈ Rm are parameters. So we shallprove the statement for all parameters r from the model under 
onsideration,
g being �xed. Sin
e the assertion is expressible in the �rst-order language ofthe theory Tconv, we may assume that R = P〈a〉, where |P| < a and V = P̂is the 
onvex hull of P in R. Then every parameter ri equals hi(a) for a0-de�nable fun
tion hi : P → P. Putting

k(x, y) := g(x, h1(y), . . . , hm(y)),we are thus redu
ed to 
onsidering 0-de�nable fun
tions f(x) = k(x, a),
k : P × P → P.In this 
ase, in view of pie
ewise uniform asymptoti
s for polynomiallybounded o-minimal theories, there exist an exponent µ ∈ K, a u ∈ P and a0-de�nable fun
tion c(x) su
h that for every x ∈ P, x ≥ u, we have

k(x, y)

c(x)yµ
→ 1 as y → ∞, y ∈ P.Hen
e for every x, ε ∈ P, x ≥ u, ε > 0, we have

∣∣∣∣
k(x, y)

c(x)yµ
− 1

∣∣∣∣ < ε when y ∈ P, y ≫ 0.



78 K. J. NowakIt follows by overspill that
∣∣∣∣
k(x, a)

c(x)aµ
− 1

∣∣∣∣ < ε for every x ∈ V, x ≥ u.Consequently, v(f(x)) = v(k(x, a)) = µv(a) for all x ∈ V , x ≥ u, as desired.Let f, g : R → R be de�nable fun
tions, and π : V → V the 
anoni
almapping onto the residue �eld V of V . We say that f and g are asymptoti
on V , f ∼
V

g, if either f(x) = g(x) = 0 for x ∈ V , x ≫ 0, or
f(x)

g(x)
∈ V for x ∈ V, x ≫ 0, and π

(
f(x)

g(x)

)
→ 1 as x → ∞, x ∈ V.

Corollary. There exist λ ∈ K and c ∈ R su
h that f(x) ∼
V

cxλ.Consequently, for any ε = 1/v with v ∈ V, v > 0, there exist u, w ∈ R,
u ∈ V, w > V, su
h that |f(x)/(cxλ) − 1| < ε for all x ∈ [u, w].Proof. Indeed, the maximal elementary substru
ture R′ ≃ V of R 
on-tained in V is Dedekind 
omplete in R. Taking u ∈ R′ as in Proposition 1, itfollows from the Corollary to the Marker�Steinhorn theorem that the fun
-tion

st

(
f(x)

f(u)

)
: R′ → R′

is R′-de�nable. Then it is asymptoti
 to c′xλ for some λ ∈ K and c′ ∈ R′:
st

(
f(x)

f(u)c′xλ

)
→ 1 as x → ∞, x ∈ R′.Putting c := f(u)c′ 
ompletes the proof.Consider now a model (R, V ) of the theory Tconv whose valuation v hasrank d < ∞. This means that the value group Γ = ΓV has d + 1 isolatedsubgroups of the form

Γ0 = (0) ⊂ Γ1 ⊂ Γ1 ⊕ Γ2 ⊂ · · · ⊂ Γ = Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γd,where the subgroups Γi are ar
himedian su
h that Γ+
1 < Γ+

2 < · · · < Γ+

d .We have, of 
ourse, a one-to-one 
orresponden
e between these isolated sub-groups and the prime ideals pi in V , as well as the 
onvex subrings Vi su
hthat V ⊂ Vi ⊂ R:
pi = {x ∈ R : v(x) > Γi}, Vi = {x ∈ R : v(x) > −Γi+1} = Vpi

,

p0 = m ⊃ p1 ⊃· · ·⊃ pd−1 ⊃ pd = (0), V0 = V ⊂ V1 ⊂· · ·⊂ Vd−1 ⊂ Vd = R.The valuation group of Vi is isomorphi
 to Γi+1 ⊕ · · · ⊕ Γd; the valuationgroup of Vd = R is (0).
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Observation. There exists an elementary extension (R∗, V ∗) of (R, V )the value group Γ ∗ of whi
h is of the form

Γ ∗ = R ⊕ · · · ⊕ R︸ ︷︷ ︸
d times

.

Su
h an elementary extension 
an be obtained by a su

essive adjun
tion ofelements from an ℵ0-saturation of (R, V ). Here we sket
h that pro
edure.Every ar
himedian group Γi may be regarded as a subgroup of the addi-tive group R of real numbers; we may assume that 1 ∈ Γi. Take any number
δ ∈ R\Γi; then δ makes an irrational 
ut C in Γi. One 
an lift C to a unique
ut C̃ := {x ∈ R : x ≤ 0 or (x > 0, v(x) > C)} in R, and next adjoin to
R an element a whi
h realizes the 
ut C̃. We get an elementary extension
(R〈a〉, W ) of (R, V ); 
learly, w(a) realizes the 
ut C in Γi as well. One mustshow that the valuation w with value group ΓW obtained in this fashionis also of rank d. This is due to the 
ontrol over de�nable fun
tions in thevi
inity of the 
uts made by the 
onvex subrings Vi in R, as des
ribed in theCorollary to Proposition 1. Indeed, every de�nable fun
tion f : R → R isasymptoti
 in ea
h Vi to a fun
tion cxλ. Hen
e |f(x)/(cxλ)−1| < 1/2 for all
x from an interval [u, w] with u ∈ Vi, w > Vi, and this inequality extends tothe 
uts made by the subrings Vi in R. Therefore, for every R-de�nable fun
-tion g, the element b = g(a) 
an realize none of those 
uts, and 
onsequently
w(b) = w(g(a)) 
an realize no 
ut in Γ made by the isolated subgroups Γi.Otherwise the element w(b) would generate yet another isolated subgroupof ΓW . Further, if a = f(b), we would get |f(a)/(caλ) − 1| < 1/2, and thus

w(a) = v(c) + λw(b) ∈ Γ + Kw(b),when
e w(b) ∈ Γ +Kw(a). But this is impossible sin
e the group Γ +Kw(a),on a par with the group Γ , has exa
tly d + 1 isolated subgroups whenever
w(a) de�nes an irrational 
ut in Γ .Repeating su

essively the above pro
edure for ea
h subgroup Γi and allreal numbers, we obtain an in
reasing 
hain of elementary extensions (of
ardinality ≤ power of the 
ontinuum). By the Tarski�Vaught lemma, theunion of this 
hain is the desired elementary extension (R∗, V ∗) of (R, V ).Applying the transfer prin
iple and saturated models, we shall prove thefollowingProposition 2. If a de�nable fun
tion f : R → R is 
onstant on nointerval in R, then there exist s ∈ R, λ ∈ K \ {0} and c ∈ R su
h that

f(x) − s ∼
V

cxλ.Consequently , for any ε = 1/v with v ∈ V , v > 0, there exist u, w ∈ R,
u ∈ V , w > V , su
h that |f(x) − s/(cxλ) − 1| < ε for all x ∈ [u, w].



80 K. J. NowakProof. In view of the Corollary to Proposition 1, our statement is equiv-alent to the following �rst-order senten
e:
∃s ∈ R ∀u ∈ V ∃x1, x2 ∈ V, x1, x2 > u

∣∣∣∣
f(x1) − s

f(x2) − s

∣∣∣∣ > 2;here the number 2 may be repla
ed by any real number > 1. Via the transferprin
iple, it su�
es to 
onsider one model of the theory Tconv. Take a model
(R, V ) with V = P̂ = 
onvex hull of the prime model P in R, where R is an
α+-saturated model of the theory T with α = 
o�nality of P. For simpli
itywe 
on�ne ourselves to the 
ase α = ℵ0; the general 
ase goes the same way,but with trans�nite indu
tion instead of an ordinary indu
tion argument.We prove Proposition 2 for the above model by redu
tio ad absurdum.Suppose the 
ontrary, i.e. for any s ∈ R the fun
tion f(x)− s ∼

V
c is asymp-toti
 to a 
onstant fun
tion c, i.e. λ = 0; obviously, c 6= 0.We then assert that f(x) − s ∈ c(1 + m) for all x ∈ V , x ≫ 0. Forotherwise, if R′ ≃ V is a maximal elementary substru
ture of R 
ontainedin V , the fun
tion

st

(
f(x) − s

c

)
: R′ → R′would be asymptoti
 to 1 but 6= 1 ultimately in R′. So (f(x) − s)/c − 1would be asymptoti
 to dxλ with d ∈ R′, λ ∈ K, λ < 0, and 
onsequently

f(x) − s − c ∼
V

cdxλ,
ontrary to our hypothesis. Therefore st((f(x) − s)/c) = 1 ultimately in R′,and thus f(x) − s ∈ c(1 + m) for all x ∈ V , x ≫ 0, as asserted.Take any a0 ∈ V ; then there is some c0 ∈ R su
h that
f(x) − f(a0) ∼

V
c0, f(x) − f(a0) ∈ c0(1 + m)for all x ∈ V , x ≥ a1 with a1 ∈ V . The last 
ondition is equivalent to

|(f(x) − f(a0) − c0)/c0| < εk for all k, where the 1/εk form a 
o�nal sequen
ein V . Ea
h of these inequalities extends (by overspill) to an interval [a1, b1k]with b1k > V . Sin
e R is α+-saturated, there is an element b1 ∈ R su
h that
1/εk < b1 < b1k for all k ∈ N. Clearly, V < b1 and

f(x) − f(a0) ∈ c0(1 + m) for all x ∈ [a1, b1].Next we get f(x) − f(a1) ∈ c0 · m for x ∈ [a1, b1], when
e, as before,
f(x) − f(a1) ∼

V
c1 ∈ c0 · m and f(x) − f(a1) ∈ c1(1 + m)for all x ∈ [a2, b2] with a2, b2 ∈ R, a2 ∈ V , b2 > V .By indu
tion we 
an 
onstru
t three sequen
es (an), (bn), (cn) of elementsof R su
h that an ∈ V , an > 1/εn are 
o�nal in V , bn > V , the sequen
e
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(v(cn)) is stri
tly in
reasing, and

v(f(x) − f(an)) = v(cn) for all x ∈ [an+1, bn+1].Sin
e R is α+-saturated, we 
an �nd an element b ∈ R su
h that an < b < bnfor all n ∈ N. Then v(f(b)− f(an)) = v(cn) is a stri
tly in
reasing sequen
e,and thus the valuation v(g(x)) of the fun
tion g(x) := f(b) − f(x) does notstabilize. This 
ontradi
tion with Proposition 1 
ompletes the proof.2. Valuation group of a simple extensionProposition 3. Let R be a �nitely generated and polynomially boundedstru
ture, V ⊂ R a 
onvex subring of R, and v : R \ {0} → Γ = ΓV theindu
ed valuation. Then(i) rk v ≤ dimK Γ ≤ rkR.(ii) If (R, V ) ⊂ (R〈a〉, W ), then dimK ΓW ≤ dimK Γ +1; more pre
isely ,
ΓW = Γ ⊕ Kw(a) whenever w(a) 6∈ Γ .Proof. We pro
eed by indu
tion on rkR and prove point (ii), whi
h isthe indu
tion step. By indu
tion hypothesis, rk v =: d ≤ rkR < ∞. Then

Γ = ΓV = Γ1 ⊕ · · · ⊕ Γd, and we 
an �nd�as des
ribed in the observationof Se
tion 1�an elementary extension (R∗, V ∗) of (R, V ) su
h that
Γ ∗ = R ⊕ · · · ⊕ R︸ ︷︷ ︸

d times

.

Consider now an heir-
oheir amalgam of elementary extensions

(R, V )

(R∗〈a〉, W ∗)

@
@

@
@I

�
�

�
��

@
@

@
@I

�
�

�
��

≺

≺ ≺

≺

(R〈a〉, W ) (R∗, V ∗)

Clearly, w∗(a) 6∈ Γ ∗ if w(a) 6∈ Γ . Indeed, were w∗(a) ∈ Γ ∗, then
∃c∗ ∈ R∗ w∗(a) = w∗(c∗), i.e. a

c∗
∈ W ∗ \ mW ∗ ,and thus, by the heir-
oheir property,

∃c ∈ R w(a) = w(c), i.e. a

c
∈ W \ mW ,whi
h is a 
ontradi
tion.



82 K. J. NowakIt su�
es to establish (ii) for the elementary extension
(R∗, V ∗) ⊂ (R∗〈a〉, W ∗).Indeed, let b = f(a), where f : R → R is a de�nable fun
tion. Suppose

w∗(b) ∈ Γ ∗ + λw∗(a) for a λ ∈ K, when
e
∃c∗ ∈ R∗ w∗(b) = w∗(c∗aλ), i.e. f(a)

c∗aλ
∈ W ∗ \ mW ∗ .It follows from the heir-
oheir property that

∃c ∈ R w(b) = w(caλ), i.e. f(a)

caλ
∈ W \ mW ,and thus w(b) ∈ Γ + λw(a), as required.Now we shall show that if w∗(a) 6∈ Γ ∗, then for every b ∈ R∗〈a〉 we have

w∗(b) ∈ Γ ∗ + Kw∗(a).Sin
e Γ ∗ is the dire
t sum of a �nite number of 
opies of R, and the orderedset R of real numbers is Dedekind 
omplete, there exists an element γ =
v∗(r) ∈ Γ ∗, r ∈ R∗, su
h that w∗(a) − w∗(r) realizes the 
ut made by anisolated subgroup of Γ ∗ in Γ ∗. For, if the 
ut made by w∗(a) lies inside ofa Γ ∗

i ≃ R, we take the real number δ ∈ Γ ∗

i whi
h is 
losest to w∗(a). Hen
e
|w∗(a) − δ| < (Γ ∗

i )+, and either we are done or we repeat the reasoning fora Γ ∗

j with j < i.Therefore the element a/r realizes the 
ut made by a 
onvex subring of
R∗ in R∗. Clearly, b = f(a/r) for some de�nable fun
tion f : R∗ → R∗. Itfollows from the Corollary to Proposition 1 that

w∗(b) = w∗(f(a/r)) = w∗(c(a/r)λ)

= w∗(c) − λw∗(r) + λw∗(a) ∈ Γ ∗ + Kw∗(a),
on
luding the proof.
Corollary. Consider a polynomially bounded, o-minimal theory T anda simple extension (R, V ) ⊂ (R〈a〉, W ) of models of the theory Tconv. Then

dimK ΓW ≤ dimK ΓV + 1; more pre
isely, ΓW = ΓV ⊕ Kw(a) whenever
w(a) 6∈ ΓV .Proof. Indeed, if b ∈ R〈a〉, then b ∈ R′〈a〉 for a �nitely generated sub-stru
ture R′ ≺ R, rkR′ < ∞; let V ′ := V ∩ R′ and ΓV ′ be its valuationgroup. By Proposition 3, we get w(b) ∈ ΓV ′ + Kw(a) ⊂ ΓV + Kw(a), asasserted.
Remark. Proposition 3 immediately implies a stronger inequality (
f.[1, Se
tion 5℄):If rkR < ∞ and V is the residue �eld of the 
onvex subring V, then

rkV + dimK ΓV ≤ rkR.



Valuation property and preparation theorem 83From the above one 
an derive the following Wilkie inequality (lo
. 
it.)through an argument of Wilkie (
f. [12℄), based on saturated models and aniteration pro
edure:Suppose T is a polynomially bounded theory and (R, V ) ≺ (S, W ) aremodels of Tconv with rk(S/R) ≤ ∞. Then
dimK(ΓW /ΓV ) + rk(W/V ) ≤ rk(S/R).3. Valuation property and preparation theorem

Valuation Property. Consider a polynomially bounded , o-minimaltheory T and a simple extension
(R, V ) ⊂ (R〈a〉, W )of models of the theory Tconv with valuation groups ΓV and ΓW , respe
tively.If ΓV 6= ΓW , then there is an r ∈ R for whi
h w(a − r) 6∈ ΓV .Proof. We may assume that rkR < ∞, be
ause w(b) 6∈ ΓV for some

b ∈ R′〈a〉, where R′ is a �nitely generated substru
ture of R. Now, if forsome r ∈ R′ the valuation w′(a− r) does not belong to the valuation group
ΓV ′ of the restri
tion v′ := v|R′, it follows from Proposition 3 that

w′(a − r) = γ + λw′(b)for some λ ∈ K, λ 6= 0, and γ ∈ ΓV ′ . Hen
e w(a − r) 6∈ ΓV .Consider, as in the proof of Proposition 3, an heir-
oheir amalgam ofelementary extensions

(R, V )

(R∗〈a〉, W ∗)

@
@

@
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@

@
@I
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�
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≺

≺ ≺

≺

(R〈a〉, W ) (R∗, V ∗)

It su�
es to establish the valuation property for the simple extension
(R∗, V ∗) ⊂ (R∗〈a〉, W ∗). Indeed, w∗(b) 6∈ ΓV ∗ , for otherwise

∃r∗ ∈ R∗ w∗(b) = v∗(r∗),and thus, by the heir-
oheir property, we would get a 
ontradi
tion
∃r ∈ R w(b) = v(r) ∈ ΓV .Further, if w∗(a − r∗) 6∈ ΓW ∗ , then w∗(a − r∗) ∈ ΓV ∗ + λw∗(b) for some

λ ∈ K, λ 6= 0, when
e
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∃r∗, s∗ ∈ R∗ w∗(a − r∗) = v∗(s∗) + λw∗(b).Therefore, again by the heir-
oheir property, we get the required result
∃r, s ∈ R w(a − r) = v(s) + λw(b) 6∈ ΓV .We thus have to show that if w∗(b) 6∈ ΓV ∗ , then w∗(a − r) 6∈ ΓV ∗ forsome r ∈ R∗. Sin
e the valuation group ΓV ∗ is the dire
t sum of a �nitenumber of 
opies of R (whi
h are Dedekind 
omplete), we dedu
e�as in theproof of Proposition 3�that for some v∗(r) ∈ ΓV ∗ , r ∈ R∗, the element

w∗(b) − v∗(r) realizes the 
ut made by an isolated subgroup of ΓV ∗ in ΓV ∗ .Repla
ing b by b/r we may, of 
ourse, assume that b realizes the 
ut made bya 
onvex subring of R∗ in R∗. Clearly, a = f(b) for some de�nable fun
tion
f : R∗ → R∗ whi
h is 
onstant on no interval in R∗. Now it follows fromProposition 2 that there exist s ∈ R∗, λ ∈ K, λ 6= 0, and c ∈ R∗ su
h that

w∗(a − r) = w∗(f(b) − r) = w∗(c bλ) = w∗(c) + λw∗(b) 6∈ Γ ∗

V ∗ ,whi
h 
ompletes the proof.The valuation property yields, via a routine 
ompa
tness argument, thepreparation theorem for one variable:
Corollary. Let R be a polynomially bounded, o-minimal stru
ture,

f : R → R be a de�nable fun
tion and ε ∈ Q, ε > 0. Then there exist
λ1, . . . , λk ∈ K, r1, . . . , rk, c1, . . . , ck ∈ Rsu
h that for all x ∈ R we have

f(x) = |x − ri|
λi · ci · ufor an i = 1, . . . , k and some u ∈ R with |u − 1| < ε.Proof. Indeed, by passing to the theory T df in the extended language

Ldf , we shall deal with models S whi
h are elementary extensions of R,
R ≺ S. Through 
ompa
tness, we must show that for ea
h a ∈ S there exist
λ ∈ K, r, c ∈ R and u ∈ S, |u − 1| < ε, su
h that

f(a) = |a − r|λ · c · u.Consider now, as the 
onvex subrings of R, R〈a〉 and S, respe
tively, the
onvex hulls of the �eld of real numbers R in these �elds. Then it followsfrom the valuation property and the Corollary to Proposition 3 that thereexist λ ∈ K, r, c ∈ R and u ∈ S su
h that
w(u) = 0, f(a) = |a − r|λ · c · u.Sin
e w(u) = 0, we see that u is of the form u0 + R-in�nitesimal, and thus

|u/u0 − 1| < ε. Repla
ing c and u with u0c and u/u0, respe
tively, we getthe desired result.
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an immediately be obtained through model-theoreti
 
ompa
tness and de�nable 
hoi
e:
Preparation Theorem. Under the previous assumptions, 
onsider ade�nable fun
tion f : Rn+1 → R and an ε ∈ Q, ε > 0. Then there exist

λ1, . . . , λk ∈ K and de�nable fun
tions
r1, . . . , rk, c1, . . . , ck : Rn → R, u1, . . . , uk : Rn+1 → (1 − ε, 1 + ε) ⊂ Rsu
h that for all t ∈ Rn and x ∈ R we have

f(t, x) = |x − ri(t)|
λi · ci(t) · ui(t, x) for an i = 1, . . . , k.
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