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Gauge natural onstrutions onhigher order prinipal prolongationsby Miroslav Doupovec (Brno) and
Włodzimierz M. Mikulski (Kraków)Abstrat. Let W

r

mP be a prinipal prolongation of a prinipal bundle P → M .We lassify all gauge natural operators transforming prinipal onnetions on P → Mand rth order linear onnetions on M into general onnetions on W
r

mP → M . We alsodesribe all geometri onstrutions of lassial linear onnetions on W
r

mP from prinipalonnetions on P →M and rth order linear onnetions on M .Introdution. Let G be a Lie group and denote by PBm(G) the ate-gory of prinipal G-bundles with m-dimensional bases and their loal prin-ipal G-bundle isomorphisms with the identity isomorphisms of G. Givena prinipal bundle P → M , we denote by W r
mP its prinipal prolongation(see Setion 1 below). The aim of this paper is to study the prolongation ofprinipal onnetions on P →M to general and lassial linear onnetionson W r

mP . In [2℄ and [16℄ it is lari�ed that in suh geometri onstrutionsthe use of some additional geometri objet annot be avoided. Moreover,many geometri onstrutions on the prolongations of �bered manifolds usein an essential way an auxiliary linear onnetion on the base manifold M(see e.g. [6℄, [9℄ and [13℄). So a linear onnetion onM is a useful tool, whihenables a number of geometri onstrutions. Using that point of view, wehave the following open problems:Problem 1. Classify all PBm(G)-gauge natural operators transformingprinipal onnetions on P →M and rth order linear onnetions onM intogeneral onnetions on W r
mP →M .Problem 2. Classify all PBm(G)-gauge natural operators transformingprinipal onnetions on P →M and rth order linear onnetions onM intolassial linear onnetions on W r

mP .2000 Mathematis Subjet Classi�ation: 58A05, 58A20.Key words and phrases: onnetion, prinipal prolongation, gauge bundle funtor.The �rst author was supported by the GA �R grant no. 201/05/0523.[87℄ © Instytut Matematyzny PAN, 2007



88 M. Doupove and W. M. MikulskiUp till now, Problem 1 has been solved only in some partiular ases.For the �rst order di�erential group G = G1
m, I. Kolá° [10℄ has lassi�edall PBm(G)-gauge natural operators transforming prinipal onnetions Γon P → M and linear onnetions Λ on M into prinipal onnetions on

W 1
mP → M . Moreover, I. Kolá° and G. Virsik [14℄ have solved a similarproblem for an arbitrary Lie group G and for symmetri Λ.We point out that gauge natural bundles and operators form the geo-metri bakground for �eld theories and many other areas of mathematialphysis (see e.g. [4℄, [5℄, [7℄, [8℄, [15℄, [18℄). We also underline that the prinipalprolongation W r

mP plays a fundamental role in the theory of gauge naturalbundles and operators and this spae is also a useful tool and powerful re-urrene model for higher order geometry in general (see [1℄, [10℄, [13℄). Themost important result from this �eld is that every gauge bundle funtor on
PBm(G) is assoiated toW r

mP (see [13℄). Further, the jet prolongations of as-soiated bundles are assoiated bundles to the prinipal prolongations of theorresponding prinipal bundles. Moreover, denoting by P rM the rth orderframe bundle of M , we have the anonial inlusion P rM ⊂ W 1
m(P r−1M).We also reall that the theory of prolongations of prinipal bundles andonnetions has its origins in the works of C. Ehresmann [3℄.In Setion 2 we determine all gauge natural operators transforming prin-ipal onnetions on P → M and rth order linear onnetions on M intomaps W r

mP → R. Setion 3 is devoted to the solution of Problem 1. Weshow that all gauge natural operators in question are determined by the�ow prolongation and by some natural di�erene tensor �elds on W r
mP . Thesolution of Problem 2 is desribed in Setion 4. In what follows we use thenotation and terminology from the book [13℄. All manifolds and maps areassumed to be in�nitely di�erentiable.1. The foundations. We reall that a general onnetion on a �beredmanifold Y → M is a smooth setion Γ : Y → J1Y of the �rst jet prolon-gation of Y . If P → M is a prinipal G-bundle, then we have a anonialright ation b : J1P × G → J1P , and a onnetion Γ : P → J1P is alledprinipal if it is b-invariant. Moreover, an rth order linear onnetion on Mmeans a linear splitting ∆ : TM → JrTM of the projetion JrTM → TM .Clearly, for r = 1 we obtain the lassial linear onnetion on M .Given a prinipal bundle P → M with m-dimensional basis, its rthprinipal prolongation W r

mP is the spae of all r-jets jr
(0,e)ϕ of loal prinipalbundle isomorphisms ϕ : R

m × G → P , where e ∈ G is the unit. By [13℄,
W r

mP →M is a prinipal bundle with the struture group
W r

mG := Jr
(0,e)(R

m ×G,Rm ×G)(0,−).Moreover, the �bered manifold W r
mP → M oinides with the �bered



Gauge natural onstrutions 89produt
W r

mP = P rM ×M JrP,where P rM := inv Jr
0 (Rm,M) is the rth order frame bundle of M . Usingnonholonomi or semiholonomi jets, one an de�ne the nonholonomi orsemiholonomi prinipal prolongations W̃ r

mP or W r
mP , respetively.Obviously, W r

mP is a gauge bundle funtor on PBm(G) in the followingsense. Denote by B : FM → Mf the base funtor, where FM is theategory of �bered manifolds and �ber respeting mappings and Mf is theategory of smooth manifolds and all smooth maps. A gauge bundle funtoron PBm(G) is a ovariant funtor F : PBm(G) → FM suh that(a) every PBm(G)-objet π : P → BP is transformed into a �beredmanifold qP : FP → BP over BP ,(b) every PBm(G)-morphism f : P → P is transformed into a �beredmorphism Ff : FP → FP over Bf ,() for every open subset U ⊂ BP the inlusion i : π−1(U) → P istransformed into the inlusion Fi : q−1
P (U) → FP .The general onept of gauge natural operators an be found in the book[13℄. In partiular, a PBm(G)-gauge natural operator D transforming prini-pal onnetions Γ on P →M and rth order linear onnetions Λ on M intogeneral onnetions D(Γ,Λ) onW r

mP →M is a system of PBm(G)-invariantregular operators (funtions)
DP : ConG(P ) × Conr(M) → Con(W r

mP )for any PBm(G)-objet P → M , where ConG(P ) is the set of all prin-ipal onnetions on P → M , Conr(M) is the set of all rth order linearonnetions on M and Con(W r
mP ) is the set of all general onnetions on

W r
mP → M . The invariane means that if (Γ,Λ) ∈ ConG(P ) × Conr(M)and (Γ1, Λ1) ∈ ConG(P1) × Conr(M1) are f -related by a PBm(G)-map

f : P → P1 overing f : M →M1, then DP (Γ,Λ) and DP1
(Γ1, Λ1) areW r

mf -related. The regularity means that DP transforms smoothly parametrizedfamilies of pairs of onnetions into smoothly parametrized families of on-netions. Quite similarly one an de�ne PBm(G)-gauge natural operators Dtransforming prinipal onnetions Γ on P → M and rth order linear on-netions Λ into lassial linear onnetions D(Γ,Λ) on W r
mP (or funtions

D(Γ,Λ) : W r
mP → R or tensor �elds D(Γ,Λ) on W r

mP or into other geomet-ri objets).2. Constrution of funtions on W r
mP . Write

θ = j10(idRm) ∈ (P 1
R

m)0, (P r
R

m)θ = {jr
0ϕ ∈ (P r

R
m)0|j

1
0ϕ = θ}



90 M. Doupove and W. M. Mikulskiand
Θ = j∞0 (idRm , e) ∈ J∞

0 (Rm ×G), where e is the neutral element in G.For s = 0, 1, . . . ,∞ let Ss be the spae of all s-jets js
0(Λ) at 0 ∈ R

m, where
Λ is an rth order linear onnetion on R

m suh that the underlying lassiallinear onnetion Λ1 of Λ has the Christo�el symbols (Λ1)
i
jk : R

m → Rsatisfying ∑m
j,k=1(Λ1)

i
jk(x)x

jxk = 0 for i = 1, . . . ,m. Equivalently, Ss isthe spae of all s-jets js
0(Λ) at 0, where Λ is an rth order linear onnetionon R

m suh that the usual oordinate system x1, . . . , xm on R
m is a normaloordinate system with entre 0 for the underlying lassial linear onnetion

Λ1 of Λ. Then Ss are manifolds di�eomorphi to some �nite-dimensionalvetor spaes for s = 0, 1, . . . .For s = 0, 1, . . . ,∞ let Zs be the spae of all s-jets js
0(Γ ) at 0 ∈ R

m,where Γ is a prinipal onnetion on R
m ×G→ R

m. Clearly, Zs is an a�nespae (�nite-dimensional if s is �nite). Of ourse, Z∞ has the inverse limittopology from · · · → Zs → Zs−1 → · · · → Z1 and Zs has the usual topologyfor �nite s. Consider a funtion(1) µ : Z∞ × S∞ × (P r
R

m)θ → Rwith the following two properties I and II:I. For any κ ∈ Z∞, ̺ ∈ S∞, σ ∈ (P r
R

m)θ and any PBm(G)-map
H : R

m ×G→ R
m ×G overing idRm and preserving Θ we have

(2) µ(H∗κ, ̺, σ) = µ(κ, ̺, σ),where H∗κ = j∞0 (H∗Γ ), κ = j∞0 Γ .II. For any κ ∈ Z∞, ̺ ∈ S∞ and σ ∈ (P r
R

m)θ we an �nd an openneighbourhood W ⊂ Z∞ of κ, an open neighbourhood U ⊂ S∞ of ̺,an open neighbourhood V ⊂ (P r
R

m)θ of σ, a natural number s anda smooth map f : πs(W ) × πs(U) × V → R suh that
µ = f ◦ (πs × πs × idV )on W × U × V , where πs : J∞ → Js is the jet projetion.A simple example of a µ satisfying I and II an be obtained as follows.Let µ̃ : Ss → R be a smooth map for some �nite s. We an de�ne µ :

Z∞ × S∞ × (P r
R

m)θ → R by µ(j∞0 Γ, j
∞
0 Λ, σ) = µ̃(js

0Λ).Given a prinipal onnetion Γ on P → M and an rth order linearonnetion Λ on M with the underlying lassial linear onnetion Λ1, wede�ne a smooth map D〈µ〉(Γ,Λ) : W r
mP = P rM ×M JrP → R by(3) D〈µ〉(Γ,Λ)(σ, η) := µ(j∞0 (Φ∗Γ ), j∞0 (ϕ∗Λ1), P

rϕ(σ))for σ ∈ (P rM)x, η ∈ Jr
x(P ), x ∈M , where ϕ is a normal oordinate systemon M for Λ1 with entre x suh that ϕ(x) = 0 and P rϕ(σ) ∈ (P r

R
m)θ,and Φ is a prinipal oordinate system on P overing ϕ and sending η into Θ.



Gauge natural onstrutions 91The de�nition of D〈µ〉 is orret. Clearly, germx(ϕ) is uniquely determined.Moreover, if Φ1 is another oordinate system with the properties of Φ, thenwe have loally Φ1 = H ◦ Φ for some H : R
m × G → R

m × G overing theidentity map idRm and preserving Θ.The orrespondene D〈µ〉 : (Γ,Λ) 7→ D〈µ〉(Γ,Λ) is a PBm(G)-gauge natu-ral operator transforming prinipal onnetions Γ on P →M and rth orderlinear onnetions Λ on M into maps D〈µ〉(Γ,Λ) : W r
mP → R.Proposition 1. Any PBm(G)-gauge natural operator D transformingprinipal onnetions Γ on P → M and rth order linear onnetions Λ on

M into maps D(Γ,Λ) : W r
mP → R is equal to D〈µ〉 for a unique funtion

µ : Z∞ ×S∞ × (P r
R

m)θ → R satisfying I and II. Moreover , the spae N ofall suh PBm(G)-gauge natural operators D is an algebra.Proof. Let D be an operator in question. De�ne µ : Z∞×S∞× (P r
R

m)θ

→ R by
µ(j∞0 Γ, j

∞
0 (Λ), σ) = D(Γ,Λ)(σ,Θ).Using the naturality of D we an easily see that µ has property I. By thenonlinear Peetre theorem [13℄, µ also has property II. Finally, taking intoaount naturality, one diretly veri�es D = D〈µ〉.Remark 1. One an onstrut the map µ with properties I and II suhthat D〈µ〉 is of stritly in�nite order. For example, let µ : Z∞ × S∞ ×

(P r
R

m)θ → R be given by µ(κ, ̺, σ) = µ̃(̺) for some µ̃ : S∞ → R. Thenondition I is trivially satis�ed. Condition II and the stritly in�nite orderof D〈µ〉 an be obtained by hoosing suitable µ̃ : S∞ → R as follows. Thesystem · · · → Ss → Ss−1 → · · · → S1 is di�eomorphi to · · · → R
ks →

R
ks−1 → · · · → R

k1 . On S1 ∼= R
k1 we hoose smooth maps λs : R

k1 → Rwhih are equal to 1 in the ring Rs = {x ∈ R
k1 | s − 1/4 ≤ |x| ≤ s + 1/4}and to 0 outside the ring R′

s = {x ∈ R
k1 | s − 1/3 ≤ |x| ≤ s + 1/3}. Let

µ̃s : Ss ∼= R
ks → R be a nonzero linear map whih is zero on R

ks−1 ⊂ R
ks .Then we put µ̃(j∞0 Λ) =

∑
s∈N λs(j

1
0Λ)µ̃s(j

s
0Λ). Clearly, ondition I is satis-�ed. Moreover, D〈µ〉 is of stritly in�nite order beause µ̃ does not fatorize(globally) through Ss → R with �nite s.3. Solution of Problem 1. The following assertion justi�es the use ofa linear onnetion Λ in the formulation of Problem 1.Proposition 2 ([2℄). Let F be any of the funtors W r

m, W̃ r
m, W r

m. Thenthere is no PBm(G)-gauge natural operator A transforming prinipal onne-tions Γ on P →M into general onnetions A(Γ ) on FP →M .Example 1. Given a prinipal onnetion Γ : P → J1P and an rthorder linear onnetion Λ : TM → JrTM , one an onstrut a onnetion



92 M. Doupove and W. M. Mikulski
Wr

m(Γ,Λ) on W r
mP as follows (see [13℄). Take a vetor �eld X on M and de-note by ΓX : P → TP its Γ -lift to P . Then the �ow prolongation Wr

m(ΓX)is a vetor �eld on W r
mP depending on r-jets of X only. This an be inter-preted as a bundle map W r

mP ×M JrTM → TW r
mP . Then the ompositionwith Λ is the lifting map W r

mP ×M TM → TW r
mP of the required onne-tion Wr

m(Γ,Λ) and Wr
m : (Γ,Λ) 7→ Wr

m(Γ,Λ) is a PBm(G)-gauge naturaloperator.It is well known that J1Y → Y is an a�ne bundle with the assoiatedvetor bundle V Y ⊗ T ∗M (see [13℄). Taking into aount the operator Wr
mfrom Example 1, we haveTheorem 1. Any PBm(G)-gauge natural operator A transforming prin-ipal onnetions Γ on P → M and rth order linear onnetions Λ on Minto general onnetions A(Γ,Λ) on W r

mP →M is of the form
A(Γ,Λ) = Wr

m(Γ,Λ) + C(Γ,Λ)for a unique PBm(G)-gauge natural operator C transforming Γ and Λ intotensor �elds C(Γ,Λ) of the type T ∗M ⊗ VW r
mP on W r

mP .In the rest of this setion we desribe all gauge natural operators C fromTheorem 1. First we introdue some anonial (more preisely, natural inthe sense of [13℄) tensor �elds on W r
mP . Let

ϕ ∈ (T0R
m)∗ ⊗ Lie(W r

mG).De�ne a natural tensor �eld Cϕ ∈ T ∗M⊗VW r
mP as follows. Take an element

(σ, η) ∈ (W r
mP )x = (P rM)x × Jr

xP,

x ∈M , v ∈ TxM and let σ̃ ∈ (P 1M)x be the element underlying σ. Choose ahart ψ onM near x suh that P 1ψ(σ̃) = θ. Then Txψ is uniquely determinedand we have ϕ(Txψ(v)) ∈ Lie(W r
mG). We put(4) Cϕ(v)(σ,η) = (ϕ(Txψ(v)))∗(σ, η),where A∗ means the fundamental vertial vetor �eld on the prinipalW r

mG-bundleW r
mP →M for any A ∈ Lie(W r

mG). Let Aα, α ∈ T , be a basis over Rof the vetor spae Lie(W r
mG). Let d0x

i, i = 1, . . . ,m, be the usual basis in
(T0R

m)∗. Then d0x
i ⊗Aα ∈ (T0R

m)∗ ⊗ Lie(W r
mG) and we easily obtainLemma 1. The natural tensor �elds(5) Cα,i = Cd0xi⊗Aαfor α ∈ T and i = 1, . . . ,m (de�ned above for ϕ := d0x

i ⊗Aα) form a basisof the C∞(W r
mP,R)-module of tensor �elds of the type T ∗M ⊗ VW r

mP on
W r

mP over the algebra C∞(W r
mP,R) of smooth maps W r

mP → R.Proof. We make use of the fat that the (Aα)∗ for α ∈ T form a basisover C∞(W r
mP,R) of the vertial vetor �elds on W r

mP .



Gauge natural onstrutions 93Obviously, the spae M of all PBm(G)-gauge natural operators C trans-forming prinipal onnetions Γ on P →M and rth order linear onnetions
Λ on M into tensor �elds C(Γ,Λ) of the type T ∗M ⊗ VW r

mP on W r
mP is amodule over the algebra N from Proposition 1.Proposition 3. The above N -module M is free and �nite-dimensional.The natural tensor �elds Cα,i for α ∈ T and i = 1, . . . ,m form a basis of thismodule over N .Proof. Let C ∈ M be a natural operator in question. By Lemma 1, forany prinipal onnetion Γ on P → M and an rth order linear onnetion

Λ on M we an write
C(Γ,Λ) =

∑
Dα,i(Γ,Λ)Cα,i,where Dα,i(Γ,Λ) : W r

mP → R are some uniquely determined maps. Beauseof the invariane of C with respet to PBm(G)-maps and the naturality of Cα,iwe get Dα,i ∈ N .Example 2. Clearly, if G={e} is a singleton, then we have P =M×{e},
W r

mP = P rM , W r
mG = Gr

m := inv Jr
0 (Rm,Rm)0 is the di�erential group oforder r and the onnetion Wr

m(Γ,Λ) from Example 1 is nothing but Λ.Moreover, the vetor �elds Aα from Lemma 1 are basis of the vetor spae
Lie(Gr

m). By [12℄, there is a anonial bijetion between rth order linearonnetions Λ : TM → JrTM and prinipal onnetions on P rM . So The-orem 1 for G = {e} desribes all natural operators transforming prinipalonnetions Λ on P rM into general onnetions on P rM . All suh naturaloperators are of the form
Λ 7→ Λ+ C(Λ)for a unique natural operator C transforming Λ into tensor �elds C(Λ) of thetype T ∗M ⊗ V P rM on P rM . Moreover, all tensor �elds C(Λ) are lassi�edin Propositions 1 and 3 for G = {e}.Remark 2. The rth order nonholonomi prinipal prolongation an alsobe de�ned by the iteration W̃ r

mP = W 1
m(W̃ r−1

m P ) and we have W̃ r
m(W̃ s

m) =

W̃ r+s
m . By [19℄, the same method an be used to onstrut onnetionson W̃ r

mP → M . Indeed, if A is a PBm(G)-gauge natural operator trans-forming prinipal onnetions Γ on P → M and lassial linear onne-tions Λ on M into onnetions on W 1
mP → M , we an write A1(Γ,Λ) =

A(Γ,Λ) and Ar(Γ,Λ) = A(Ar−1(Γ,Λ), Λ). Then Ar(Γ,Λ) is the onne-tion on W̃ r
mP → M . Moreover, quite analogously to Example 1 we havethe operator W̃r

m. We remark that P. Va²ík [19℄ has also introdued otheronstrutions of onnetions on nonholonomi and semiholonomi prinipalprolongations.



94 M. Doupove and W. M. Mikulski4. Solution of Problem 2. Aording to the following general resultfrom [16℄, to obtain a lassial linear onnetion on W r
mP from a prinipalonnetion Γ on P →M , the use of an auxiliary linear onnetion Λ on Mis unavoidable.Proposition 4. Let F be a gauge bundle funtor on PBm(G). Thenthere is no PBm(G)-gauge natural operator A transforming prinipal on-netions Γ on P →M into lassial linear onnetions A(Γ ) on FP .Example 3. By [13℄, a prinipal onnetion Γ on π : P → M and alassial linear onnetion Λ1 on M determine a lassial linear onnetion

NP (Γ,Λ1) on P in the following way. Given a tangent vetor A ∈ TyP , denoteby vA its vertial omponent and by bA its projetion toM . Consider now avetor �eld X on M suh that j1xX = Λ1(bA), x = π(y). Further, let XΓ bethe Γ -lift of X and denote by ϕ(vA) the fundamental vetor �eld determinedby vA. Then the formula
A 7→ j1y(XΓ + ϕ(vA))determines a lassial linear onnetion NP (Γ,Λ1) : TP → J1(TP → P ). Weremark that all PBm(G)-gauge natural operators of this type for symmetri

Λ1 are determined in [11℄ and a similar problem in the ase of a vetor bundlewas solved in [6℄.Example 4. Consider the prinipal onnetion Wr
m(Γ,Λ) onW r

mP→Mfrom Example 1 and denote by Λ1 : TM → J1TM the underlying lassi-al linear onnetion of Λ : TM → JrTM . Using the operator NP fromExample 3, we have the lassial linear onnetion N r
m(Γ,Λ) on W r

mP de-termined by
N r

m(Γ,Λ) := NW r
mP (Wr

m(Γ,Λ), Λ1).Obviously, N r
m : (Γ,Λ) 7→ N r

m(Γ,Λ) is a PBm(G)-gauge natural operator.The di�erene of two lassial linear onnetions on M is a tensor of thetype TM ⊗ T ∗M ⊗ T ∗M . So we haveTheorem 2. Any PBm(G)-gauge natural operator A transforming prin-ipal onnetions Γ on P → M and rth order linear onnetions Λ on Minto lassial linear onnetions A(Γ,Λ) on W r
mP is of the form

A(Γ,Λ) = N r
m(Γ,Λ) + C(Γ,Λ)for a unique PBm(G)-gauge natural operator C transforming Γ and Λ intotensor �elds C(Γ,Λ) of the type (1, 2) on W r

mP .In the rest of this setion we desribe all gauge natural operators C fromTheorem 2. First we show that Γ and Λ indue ertain parallelism on W r
mP .Let Aα, α ∈ T , be a basis over R of Lie(W r

mG). Then we have fundamental



Gauge natural onstrutions 95vertial vetor �elds A∗
α on W r

mP . Moreover, we have vetor �elds Bi(Γ,Λ),
i = 1, . . . ,m, on W r

mP given by
Bi(Γ,Λ)(jr

0
ϕ,jr

xσ) =

(
ϕ∗

∂

∂xi

)Wr
m(Γ,Λ)

(jr
0ϕ, j

r
xσ),

(jr
0ϕ, j

r
xσ) ∈ P rM ×M JrP = W r

mP , where XWr
m

(Γ,Λ) means the horizontallift of a vetor �eld X onM toW r
mP with respet to the prinipal onnetion

Wr
m(Γ,Λ) from Example 1.Lemma 2. The vetor �elds A∗

α and Bi(Γ,Λ) form a basis of the
C∞(W r

mP,R)-module of vetor �elds onW r
mP over the algebra C∞(W r

mP,R)of smooth maps W r
mP → R.Proof. This is a simple observation.Using tensor produts and dualization of base vetor �elds from Lemma 2,we have the orresponding basis Bβ(Γ,Λ), β ∈ B, of the module of tensor�elds of the type (1, 2) on W r

mP over C∞(W r
mP,R). The spae K of all

PBm(G)-gauge natural operators C transforming prinipal onnetions Γ on
P →M and rth order linear onnetions Λ onM into tensor �elds C(Γ,Λ) ofthe type (1, 2) onW r

mP is obviously the module over the algebra N desribedin Proposition 1.Proposition 5. The above N -module K is free and (dim(W r
mG)+m)3-dimensional. Moreover , Bβ for β ∈ B is a basis of K.Proof. Let C ∈ K be a natural operator in question. For any prinipalonnetion Γ on P →M and an rth order linear onnetion Λ on M we anwrite

C(Γ,Λ) =
∑

Dβ(Γ,Λ)Bβ(Γ,Λ),whereDβ(Γ,Λ) : W r
mP → R are some uniquely determined maps. Beause ofthe invariane of C with respet to PBm(G)-maps and the invariane of sBβwe get Dβ ∈ N .By Lemma 2 we have the basis A∗

α, Bi(Γ,Λ) of the module of vetor�elds on W r
mP . Using tensor produts and dualization we also have theorresponding basis Bp,q

β (Γ,Λ), β ∈ Bp,q, of tensor �elds of the type (p, q) on
W r

mP . Similarly to Proposition 5 we haveProposition 6. The N -module Kp,q of all PBm(G)-gauge natural oper-ators C transforming prinipal onnetions Γ on P →M and rth order linearonnetions Λ on M into tensor �elds C(Γ,Λ) of the type (p, q) on W r
mP isfree and (dim(W r

mG) + m)p+q-dimensional. Moreover , Br,q
β , β ∈ Bp,q, is abasis of Kp,q over N .Example 5. Quite analogously to Example 2, Theorem 2 for G = {e}desribes all natural operators transforming prinipal onnetions Λ on P rM



96 M. Doupove and W. M. Mikulskiinto lassial linear onnetions on P rM . If we denote by Λ1 the underlyinglassial linear onnetion on M and by NP the operator from Example 3,all suh natural operators are of the form
Λ 7→ NP rM (Λ,Λ1) + C(Λ)for a unique natural operator C transforming Λ into tensor �elds C(Λ) of thetype (1, 2) on P rM . Further, all natural tensor �elds C(Λ) are desribed inPropositions 1 and 5 for G = {e}. We remark that the seond author [17℄has desribed in a similar way all natural operators transforming lassiallinear onnetions on M into lassial linear onnetions on P rM .
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