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On some types of slant curves
in contact pseudo-Hermitian 3-manifolds

by CiHAN OzGUR and SABAN GUVENG (Bahkesir)

Abstract. We study slant curves in contact Riemannian 3-manifolds with pseudo-
Hermitian proper mean curvature vector field and pseudo-Hermitian harmonic mean cur-
vature vector field for the Tanaka—Webster connection in the tangent and normal bundles,
respectively. We also study slant curves of pseudo-Hermitian AW (k)-type.

1. Introduction. A Riemannian submanifold with vanishing Laplacian
AH of the mean curvature vector is called a biharmonic submanifold (see
B.-Y. Chen [Chen]). In [Dim], Dimitri¢ proved that the only biharmonic
curves in a Euclidean space are straight lines. In [BG], curves satisfying
A+H = )\H in a Euclidean space were classified, where A+ denotes the
Laplacian of the curve in the normal bundle and A is a real valued function.
In [ABQ], a classification of curves satisfying AH = A\H and A*H = \H
in a real space form was given by J. Arroyo, M. Barros and O. J. Garay.
In [KA], B. Kili¢ and K. Arslan studied connected submanifolds satisfying
A+H =0 in a Euclidean space.

A curve in a contact 3-manifold is said to be slant if its tangent vector
field has a constant angle with the Reeb vector field. In particular, if the
contact angle is equal to /2, then the curve is called a Legendre curve. Slant
curves appear naturally in differential geometry of Sasakian manifolds. In
[CL], J. T. Cho and J. E. Lee studied contact pseudo-Hermitian geometry
in a 3-dimensional Sasakian space form whose holomorphic sectional curva-
ture with respect to the Tanaka—Webster connection V is 2c. They proved
that if a non-geodesic curve for V in a 3-dimensional contact Riemannian
manifold is a slant curve, then the ratio of K and 7 is a constant, where
® and 7 denote the curvature and torsion of the curve with respect to the
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connection V. Furthermore, in [Lee], J. E. Lee studied Legendre curves in
contact pseudo-Hermitian 3-manifolds. She considered Legendre curves with
pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian
proper mean curvature vector field and pseudo-Hermitian proper mean cur-
vature vector field in the normal bundle.

In [AQ], K. Arslan and the first author studied curves of AW (k)-type. In
[OT], the first author and M. M. Tripathi considered AW (k)-type Legendre
curves in a-Sasakian manifolds. J. E. Lee [Lee] defined and studied Le-
gendre curves of pseudo-Hermitian AW (k)-type in a 3-dimensional Sasakian
manifold.

In the present paper, we study slant curves with pseudo-Hermitian par-
allel mean curvature vector field, pseudo-Hermitian proper mean curvature
vector field and pseudo-Hermitian proper mean curvature vector field in the
normal bundle. We also study slant curves of pseudo-Hermitian AW (k)-type
in contact pseudo-Hermitian 3-manifolds. Since a Legendre curve is a special
type of a slant curve, our results generalize the results of [Lee].

2. Preliminaries. A (2n + 1)-dimensional manifold M is called a con-
tact manifold if there exists a global 1-form 7 such that n A (dn)™ # 0
everywhere on M. Given a contact form 7, there exists a unique vector field
&, the characteristic vector field, which satisfies n(§) = 1 and dn(X,&) =0
for any vector field X on M. There exists an associated Riemannian metric
g and a (1,1)-type tensor field ¢ satisfying

(21) X =-X+nX)¢, nX)=g9(X,9, dnX,Y)=g(X, eY),
for all X,Y € x(M). From (2.1)), it follows that
(2.2) wE=0, nop=0, g(eX,pY)=g(X,Y)—-nX)nY).

A Riemannian manifold equipped with the structure tensors (¢, &,n,g)
satisfying is called a contact Riemannian manifold. It is denoted by
M ={M,p,& n,g}. Using the Lie differentiation operator in the character-
istic direction &, the operator h is defined by h = %ngo . From the definition,
h is symmetric and satisfies the equations below (see [Blair|), where V de-
notes the Levi-Civita connection:

(2.3) hé =0, hp=—ph, Vxé=—pX—phX.
For a (2n + 1)-dimensional contact manifold M = {M,¢,£,n, g}, the

almost complex structure J on M x R is defined by

2.4 s(x.05) = (#x - ren00 %),

where X is a vector field tangent to M, t is the coordinate function of R
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and f is a C'*° function on M x R. The contact Riemannian manifold M is
called a Sasakian manifold if J is integrable.
On a Sasakian manifold, the covariant derivative Vi is given by

(2.5) (Vxp)Y =g(X,V)§—n(Y)X, X,V €x(M).
Let v be a non-geodesic curve in a 3-dimensional Riemannian manifold

M and {T, N, B} its Frenet frame field. Then the Frenet frame field satisfies
the following Frenet—Serret equations:

V1T = kN,
(2.6) VN = —kT + 1B,
VrB = —7N,

where r = |[|[V1T|| is the geodesic curvature of v and 7 its geodesic torsion.
Let {M,p,&,n,9} be a 3-dimensional contact Riemannian manifold.
Then the tangent space T, M of M at a point p € M decomposes as

T,M = D, ®RE,, D, ={veT,M|nv)=0}

Here D : p — D, defines a two-dimensional distribution orthogonal to &,
which is called the contact distribution. The restriction of ¢ to D, J = ¢|p,
defines an almost complex structure on D. The associated almost CR-struc-
ture of M is given by the holomorphic subbundle

H={X-iJX|X €D}

of the complexified tangent bundle 7'M C Each fiber Hy, is of complex di-
mension 1, H N H = {0}, and D ® C = H & H. Furthermore, denoting the
space of all smooth sections of H by x(H), the integrability condition

[X(H), x(H)] € x(H)
is satisfied, so the associated almost CR-structure is always integrable. For
H the Levi form L is defined by
L:DxD— C*M,R), L(X,Y)=—-dnX,JY),

where C°°(M,R) denotes the algebra of smooth functions on M. The Levi
form is Hermitian and positive definite. We call the pair (,L) a contact
pseudo-convex pseudo-Hermitian structure on M, and we call M a contact
strongly pseudo-convex pseudo-Hermitian (or almost CR-) manifold [Blaix].

The Tanaka—Webster connection ([Tan], [Web]) V (or the pseudo-Hermi-
tian connection) on a contact pseudo-convex pseudo-Hermitian manifold

M = {M,n, L} is defined by
VxY = VxY +n(X)eY + (Vxn)(Y)E —n(Y)Vxé
for all X, Y € x(M). Using (2.3), V can be rewritten as
(27) VxY =VxY +n(X)Y +n(Y) (X + ohX) — g(¢X + phX,Y)E.
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The Tanaka~Webster connection V has the torsion
(2:8) T(X,Y) = 29(X, ¥ )€ +n(Y)phX —n(X)phY.
In particular, since h = 0 for Sasakian manifolds (see [Blair]), equations
(2.7) and (2.8)) reduce to
VXY = VxV +0(X)eY +n(Y)eX = g(pX,Y)E,
T(X,Y) =29(X,pY)E.
PropoOSITION 2.1 ([Tann]). The Tanaka—Webster connection on a 3-di-

mensional contact Riemannian manifold M = {M,p,&,n,g} is the unique
linear conmection satisfying the following four conditions:

(i) V=0, VE=0;

(i) Vg =0, Vo = 0;
(iif) T(X,Y) = —n([X,Y])¢, X,Y € D;
(iv) T(¢, s@Y) = —¢T(,Y), Y eD.

'ﬂ>'ﬂ>

3. Slant curves in contact pseudo-Hermitian geometry. Let M
be a contact Riemannian 3-manifold and assume that v : I — M is a
curve parametrized by arc-length in M. In [CL], J. T. Cho and J. E. Lee
defined the Frenet frame field {7, N, B} along ~ for the pseudo-Hermitian
connection %, which satisfies the following Frenet—Serret equations for v:

VT = RN,
(3.1) VrN = —RT + 7B,
VrB = —7N,
where & = |V T is the pseudo-Hermitian curvature of v and 7 its pseudo-

Hermitian torsion. A pseudo-Hermitian heliz is a curve whose pseudo-Her-
mitian curvature and pseudo-Hermitian torsion are non-zero constants. In
particular, curves with constant non-zero pseudo-Hermitian curvature and
zero pseudo-Hermitian torsion are called pseudo-Hermitian circles. Pseudo-
Hermitian geodesics are pseudo-Hermitian helices whose pseudo-Hermitian
curvature and pseudo-Hermitian torsion are zero [CL].

Let M be a contact metric 3-manifold and 7(s) a Frenet curve in M
parametrized by arc-length. The contact angle a(s) is defined by cos[a(s)] =
9(T'(s),£). The curve 7 is called a slant curve if its contact angle is constant.
Slant curves with contact angle /2 are traditionally called Legendre curves.

In the present paper, we assume that all curves are non-geodesic Frenet
curves, that is, & # 0.

PROPOSITION 3.1 ([CL]). A curve v for V is a slant curve if and only

if n(N) =
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ProprosITION 3.2 ([CL]). Let~ be a slant curve for ¥V in a 3-dimensional
contact Riemannian manifold M. Then the ratio of T and K is a constant.

Note that
(3.2) T/R = cot oy,
where «q is the contact angle of ~.

In [CL], J. T. Cho and J. E. Lee proved the following proposition:

PROPOSITION 3.3. If a curve in a 3-dimensional contact Riemannian
manifold is a Legendre curve for the Tanaka—Webster connection V, then
7=0.

We have the following corollary:

COROLLARY 3.4. Let 7y be a slant curve for the Tanaka—Webster con-

nection V with contact angle ag in a 3-dimensional contact Riemannian
manifold M. Then v is a Legendre curve if and only if T = 0.

4. Pseudo-Hermitian mean curvature vector field. The pseudo-
Hermitian mean curvature vector field H of a curve v in a 3-dimensional
contact Riemannian manifold is defined by

(4.1) H=V;T =&N
(see [Lee).

In a 3-dimensional contact Riemannian manifold M with the Tanaka-
Webster connection V, a vector field X normal to the curve v is called
pseudo-Hermitian parallel [Lee] if V5X = 0.

Differentiating (4.1)), we get
(4.2) Vi#H =7 N +#7B.

PROPOSITION 4.1. v is a curve with pseudo-Hermitian parallel mean
curvature vector field if and only if it is a pseudo-Hermitian circle.

Proof. Let v be a curve with @%ﬁ = 0. Using || we get
(4.3) KN +®TB = 0.

So & is a non-zero constant and 7 = 0. Hence + is a pseudo-Hermitian circle.

Conversely, let v be a pseudo-Hermitian circle. Then K 1S a non-zero
constant and 7 = 0. This implies V3H = (V7 H)t = ®¥'N + #7B = 0, as
desired. =

In view of Corollary we get the following corollary:

COROLLARY 4.2. 7 is a slant curve with pseudo-Hermitian parallel mean
curvature vector field if and only if it is a pseudo-Hermitian Legendre circle.
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For a curve v in a 3-dimensional contact Riemannian manifold M with
the Tanaka—Webster connection V,

(4.4) AH = —VpVrVrT,

where H is the pseudo-Hermitian mean curvature vector field of ~ [Lee].
The Laplacian of the pseudo-Hermitian mean curvature vector field in the
normal bundle is defined by

(4.5) AYH = —VFVHV#T,
where V1 denotes the the normal connection in the normal bundle [Lee].
A curve v in a 3-dimensional contact Riemannian manifold M is called
a curve with pseudo-Hermitian proper mean curvature vector field if AH
= \H , where \ is a non-zero C*° function. In particular if AH = 0, then
it is a curve with pseudo-Hermitian harmonic mean curvature vector field
[Lee].
A curve v in a 3-dimensional contact Riemannian manifold M is called
a curve with pseudo-Hermitian proper mean curvature vector field in the
normal bundle if ALH = \H , Where Al is the Laplacian of the pseudo-
Hermitian mean curvature vector field in the normal bundle, where A is a
non-zero C* function [Lee]. In particular if A+H = 0, then it is a curve

with pseudo-Hermitian harmonic mean curvature vector field in the normal
bundle.

LEMMA 4.3. Let v be a curve in a 3-dimensional contact Riemannian
manifold M. Then
(4.6) VeVeVeT = —38R'T + (R — &% — ®72)N + (28’7 + #7) B,
(4.7)  VEVEVET = (7" — #7%)N + (2R'7 + #7) B,
AH = —VVV T,
(48) B oleLelL
A H = _VTVTVTT

Proof. From (3.1),

(4.9) ViT =&N.

Differentiating with respect to V and using , we find
(4.10) VeVeT = —R*T + ®'N + #i7B

and

VrVrVrT = =3RR'T + (" — & — R7*)N + (28’7 + R7')B.
From (3.1)), we obtain
(4.11) VAT = &N.
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If we apply vito and use , we get
(4.12) Va&V#T = 7N + #7B.
Finally and give
VEVEVET = (R" — R72)N + (2R'7 + #7)B.
By the use of , and , we get . "
Using Lemma we have the following theorem:

THEOREM 4.4. A curve v has pseudo-Hermitian proper mean curvature
vector field if and only if it is a pseudo-Hermitian circle satisfying A\ = R>
or a pseudo-Hermitian heliz satisfying A = B2 + 72.

Proof. Assume that 7 has pseudo-Hermitian proper mean curvature vec-
tor field. Then from 1} the condition AH = AH gives

3RR'T + (R3 + ”72 —R")N — (2R'7 + ®R7))B = ARN.

Hence
(4.13) 3RR' =0, R +RT2—R'=XR, —(2R7T4+r7)=0.
Since 7 is a non-geodesic curve, & # 0. Then & is a non-zero constant and 7
is a constant. From the second equation of (4.13)), we find A = #2+72. Hence
7 is a pseudo-Hermitian circle satisfying A = k2 or a pseudo-Hermitian helix
satisfying A\ = &2 + 72.

The converse is trivial. =

COROLLARY 4.5. A slant curve v has pseudo-Hermitian proper mean

curvature vector field if and only if it is a pseudo-Hermitian Legendre circle
satisfying X\ = R? or a pseudo-Hermitian slant heliz satisfying A = R? + 72.

Proof. Let v be a non-geodesic slant curve in a 3-dimensional contact
Riemannian manifold M. Then from Corollary [3.4] + is a Legendre curve if
and only if 7 = 0. Substituting 7 = 0 in (4.13) we obtain the result. m

COROLLARY 4.6. There does not exist a slant curve with pseudo-Her-
mitian harmonic mean curvature vector field.

Riemannian manifold M. From (4.8)), if AH = 0, then
3RR'T + (7%3 +R72 — ®'\N — (2R'T + "7 )B = 0,

which gives 2 +72 = 0. Hence & = 0 and 7 is a geodesic, a contradiction. =

Proof. Assume that v is a non-geodesic curve in a 3-dimensional contact
‘

THEOREM 4.7. 7 is a slant curve with pseudo-Hermitian proper mean
curvature vector field in the normal bundle if and only if it is either a Legen-
dre curve satisfying A = —R" /K, R(s) # as+b (where a and b are constants),

or a pseudo-Hermitian slant heliz satisfying A = 72.
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Proof. Assume that v is a non-geodesic slant curve with contact angle ag
and has pseudo-Hermitian proper mean curvature vector field in the normal
bundle. Then by definition, A*H = AH. Using lb we get

(4.14) (77* —R")N — (2’7 + ®7) B = ARN,
which gives

(4.15) RT2—R"=XR, —(2R74+R7)=0.
In view of (3.2)), using (4.15)) we can write

(4.16) Ricot?ap — R = AR, —3RR cotag = 0.

Finally we solve (4.16)) in two cases:

(i) If ap = 7/2, then v is a Legendre curve and cotag = 0. Hence
—k" = XK. Since A\ # 0 and ® # 0, we have K’ # 0. In this case, 7 is a
Legendre curve satisfying A = —k"/R, K(s) # as + b where a and b are
constants.

(ii) If g # 7/2, then cot oy # 0. Using the second equation of (4.16)), we
see that % is a constant. Then &’ = 0, so the first equation of urns
into %3 cot? ap = AR. Hence A = (% cot a)? = 72. So vy is a pseudo-Hermitian
slant helix satisfying A = 72.

Conversely, let v be a Legendre curve satisfying A = —&" /R, K(s) # as+b
where a and b are constants, or a pseudo-Hermitian slant helix satisfying
A = 72. In both cases, is satisfied. Hence « is a curve with pseudo-

Hermitian proper mean curvature vector field in the normal bundle. =

REMARK 4.8. In [Lee, Theorem 3.9], Lee studied the same problem for
a constant A and ap = 7/2. So our theorem is a generalization of her result.

COROLLARY 4.9. v is a curve with pseudo-Hermitian harmonic mean
curvature vector field in the normal bundle if and only if it is a Legendre
curve satisfying k(s) = as + b, where a and b are constants.

COROLLARY 4.10. There does not exist a pseudo-Hermitian slant heliz

with pseudo-Hermitian harmonic mean curvature vector field in the normal
bundle.

5. Slant curves of pseudo-Hermitian AW (k)-type. In [AO], K. Ar-
slan and the first author studied curves of AW (k)-type. Lee defined curves
of pseudo-Hermitian AW (k)-type in [Lee]. In this section, we study non-
geodesic slant curves of pseudo-Hermitian AW (k)-type in 3-dimensional
contact Riemannian manifolds.

DEFINITION 5.1 ([Lee]). Let M be a 3-dimensional contact Rieman-
nian manifold with the Tanaka—Webster connection V. Curves of pseudo-
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Hermitian AW (1)-type satisfy
(VoVerVrT)*t =0,
of pseudo-Hermitian AW (2)-type satisfy
(VeVrVrT)t A (VeVrT)*t =0,
and of pseudo-Hermitian AW (3)-type satisfy
(VrVrVeT)E A (VD) =0,

where (VpVpVpT)E, (VpVrT)L and (VT)L are the normal parts of
, and , respectively.

Let v be a curve in a 3-dimensional contact Riemannian manifold M
and {7, N, B} its Frenet frame field. Using , and , we find

(VoT)*: = &N,
(5.1) (VrVrT)t =7 N + 778,
(VrVrVrT)t = (& —® — 572N + (2R'7 + #7)B.

Firstly, we give the following theorem:

THEOREM b5.2. Let v be a slant curve with contact angle ag. Then ~
is of pseudo-Hermitian AW (1)-type if and only if it is a Legendre curve

with pseudo-Hermitian curvature K, which satisfies the differential equation
R' =R =0.
Proof. Assume that v is of pseudo-Hermitian AW (1)-type. By definition

(@;p@;p@;pT)L = 0. Hence, we use the third equation of with to
find
(5.2) R — w3 —R3cot?ag =0, 3RR cotag=0.
The second equation implies that % is a constant or oy = 7/2. If K is a
constant, then & = 0. So the first equation turns into (—&%) - (1 + cot? o)
= 0. Thus Kk = 0, which is a contradiction. If oy = 7/2, then 7 is a Legendre
curve and cot oy = 0, so the first equation becomes 5" — &% = 0. Hence ~y
is a Legendre curve with pseudo-Hermitian curvature &, which satisfies the
differential equation &’ — &3 = 0.

Conversely, let v be a Legendre curve with pseudo-Hermitian curvature
R, which satisfies the differential equation & — &3 = 0. Since 7 is a Legendre
curve, ag = m/2 and cot ag = 0. Then the equations of are satisfied.
Thus (V7 V7 VeT): = 0, so by definition, v is of pseudo-Hermitian AW (1)-
type. m

For Legendre curves, we can state the following corollary which was given
in [Lee].
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COROLLARY 5.3 ([Lee]). Let v be a Legendre curve with pseudo-Hermi-
tian curvature K(s) = +v/2/(s +¢). Then vy is of pseudo-Hermitian AW (1)-
type.

THEOREM 5.4. Let v be a slant curve with contact angle ag. Then ~
is of pseudo-Hermitian AW (2)-type if and only if it has pseudo-Hermitian
torsion of the form T = £ cos ag /v —s% + as + b, where a and b are arbitrary
constants, a®>+4b >0 and s € Iy := ((a — Va2 +4b)/2, (a + Va2 + 4b)/2).

Proof. Assume that + is of pseudo-Hermitian AW (2)-type. By definition,
(%TﬁTﬁTT)J‘ N (€T§TT)J‘ = 0, that is, (§T§T§TT)J‘ and (ﬁTﬁTT)J‘
are linearly dependent. Using , we find

(5.3) R —R3 —RT?  2RT+RT 0
G RT
So we get
(5.4) RT(R" — R —R7Y) = R(2R'7 + R7).
Substituting in , we get
(5.5) "2 cot (R — R — B3 cot? ) = 3R(R)? cot .

From , cotag = 0 or RR" — 3(R')? = R* cosec® ap. If cot oy = 0, then
~ is slant and Legendrian, hence 7 = 0 identically and the condition ([5.3)
is also satisfied identically. On the other hand if cot g # 0, then Kr” —
3(k")? = &* cosec? ap. The general solution of this differential equation is & =
+sin o /v/—s2 + as + b, where a and b are arbitrary constants, a® + 4b > 0
and s € I, . So using , we obtain 7 = +cos /v —s + as + b.
Conversely, suppose that the curve v has pseudo-Hermitian torsion 7 =
+ cosag/v/—s2 +as + b, where a and b are constants, a® + 4b > 0 and
s € Ipp. It is easy to show that is satisfied. Hence (§T§T§TT)L A
(%gp@TT)L = 0, that is, v is of pseudo-Hermitian AW (2)-type. m

For Legendre curves, as a result of Theorem we have the following
corollary which was obtained in [Lee]:

COROLLARY 5.5 ([Le€]). Every Legendre curve in a 3-dimensional con-
tact Riemannian manifold is of pseudo-Hermitian AW (2)-type.

In a 3-dimensional contact Riemannian manifold, it is obvious that there
are pseudo-Hermitian circles of pseudo-Hermitian AW (2)-type. A simplest
example is a pseudo-Hermitian Legendre circle.

From Theorem we have the following corollary for pseudo-Hermitian
slant helices:

COROLLARY 5.6. There does not exist a pseudo-Hermitian slant helix of
pseudo-Hermitian AW (2)-type.
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Finally, we have the following theorem for slant curves of pseudo-Her-
mitian AW (3)-type.

THEOREM 5.7. Let v be a slant curve with contact angle ovg. Then y
is of pseudo-Hermitian AW (3)-type if and only if it has constant pseudo-
Hermitian torsion.

Proof. Assume that v is of pseudo-Hermitian AW (3)-type. By definition
(VrVrVrT)*+ A (V7T)*t = 0, which implies

R R _RF2 R4 AT

5.6 =0.
(5.6) R 0
Using (3.2) in (5.6)), since k # 0, we obtain

(5.7) 3K cot g = 0,

so ap = 7/2 or R is a constant. If oy = m/2, then v is a Legendre curve, so
7 = 0 identically. If oy # 7/2, then & is a constant. In this case, using ,
it is clear that 7 is a constant.

Conversely, let v have constant pseudo-Hermitian torsion 7. If v is a
Legendre curve, then 7 = 0. Hence is satisfied. If  is not a Legendre
curve, then using , we find that & is a constant. Since ¥ = 0 and 7 = 0,
is satisfied. In both cases, we obtain (§T§T§TT)L A (§TT)l =0,
which completes the proof. =

Using Corollary Theorem and (3.2) we can state the following
corollary:

COROLLARY 5.8. v is a slant curve of pseudo-Hermitian AW (3)-type if
and only if it is a Legendre curve or a pseudo-Hermitian slant heliz.

REMARK 5.9. Theorems and are generalizations of Lem-
ma 3.13(1)&(ii) in [Le€].
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