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Extension and normality of meromorphic mappings
into complex projective varieties

by Si Duc Quang (Hanoi)

Abstract. The purpose of this article is twofold. The first is to show a criterion
for the normality of holomorphic mappings into Abelian varieties; an extension theorem
for such mappings is also given. The second is to study the convergence of meromorphic
mappings into complex projective varieties. We introduce the concept of d-convergence
and give a criterion of d-normality of families of meromorphic mappings.

1. Introduction. Let Ω be a domain in Cm and let X be a complex
manifold.

We say that a sequence of holomorphic mappings {fn}∞n=1 from Ω into X
converges to a holomorphic mapping f on Ω if for any compact set K ⊂ Ω
there is a compact set P ⊂ X such that f(K), fn(K) ⊂ P for all n and
limn→∞ supx∈K d(fn(x), f(x)) = 0. HereX is equipped with some Hermitian
metric. Note that this notion of convergence does not depend on the choice
of the Hermitian metric.

A family F of holomorphic mappings from Ω into X is said to be normal
on Ω if any sequence {fn}∞n=1 ⊂ F has a subsequence convergent on Ω.

It is known that if D is an analytic subset of a compact complex manifold
X such that X \ D is hyperbolically imbedded into X then the family F
of all holomorphic mappings from Ω into X omitting D is a normal family.
The following question arises naturally.

Question. Are there any criteria for the normality of a family of holo-
morphic mappings F from Ω into X in the case where either each f ∈ F
may intersect D, or X \D is not hyperbolically imbedded in X?

Concerning this question, H. Fujimoto [Fu2] introduced the concept of a
meromorphically normal family of meromorphic mappings with values in a
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complex projective space and gave the following result.

Theorem A. Let F be a family of meromorphic mappings from a do-
main Ω ⊂ Cm into Pn(C) and let {Hj}2n+1

j=1 be hyperplanes in Pn(C) in

general position such that for each f ∈ F , f(Ω) 6⊂ Hj (j = 1, . . . , 2n + 1)
and for any fixed compact subset K of Ω, the 2(m−1)-dimensional Lebesgue
areas of f−1(Hj)∩K (j = 1, . . . , 2n+1) counted with multiplicities for all f
in F are bounded from above. Then F is a meromorphically normal family
on Ω.

Let f be a holomorphic mapping from a domain Ω ⊂ Cm into a complex
space X and let D be a divisor on X. We say that the mapping f intersects
D with multiplicity at least k (k ∈ Z+) on Ω if the image f(Ω) intersects D
with multiplicity at least k at every point of their intersection.

In 1999, Tu [Tu] proved the following.

Theorem B. Let F be a family of holomorphic mappings of a domain
Ω ⊂ Cm into Pn(C) and let {Hj}qj=1 be q (≥ 2n+1) hyperplanes of Pn(C) in
general position such that each f in F intersects Hj on Ω with multiplicity
at least mj (j = 1, . . . , q), where m1, . . . ,mq are positive integers or +∞,
with

∑q
j=1 1/mj < (q − n− 1)/n. Then F is a normal family on Ω.

Since that time, the above results of H. Fujimoto and Z. H. Tu have been
generalized to the case of moving hyperplanes or moving hypersurfaces by
many authors, such as D. D. Thai, P. N. Mai and P. N. T. Trang [MTT],
S. D. Quang and T. V. Tan [QT], Z. H. Tu and P. Li [Tu], [TL] and others.
But so far, there are very few results on this problem in the case where X
is not the complex projective space but a general projective variety.

Our aim in the present paper is twofold. Our first purpose is to study
the normality of meromorphic mappings into Abelian varieties (cf. §3). We
will prove the following.

Theorem 1.1. Let F be a family of holomorphic mappings from a do-
main Ω ⊂ Cm into an Abelian variety X and let D be a reduced ample di-
visor such that D intersects transversely any translate of any closed proper
subgroup of X. Assume that each f in F intersects D with multiplicity at
least 2. Then F is a normal family on Ω.

By using Theorem 1.1 we shall prove an extension theorem for holomor-
pic mappings into an Abelian variety:

Theorem 1.2. Let f be a holomorphic mapping from Ω \ S into an
Abelian variety X, where S is an analytic subset of codimension 1 of Ω⊂Cm.
Let D be a reduced ample divisor on X as in Theorem 1.1. Assume that f
intersects D with multiplicity at least 2. Then f extends to a holomorphic
mapping f̃ from Ω into X.
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In §4, we are going to discuss the normality of families of meromorphic
mappings with values in an arbitrary complex projective variety. We in-
troduce the notion of d-convergence of meromorphic mappings, which is a
generalization of the notion of m-convergence of H. Fujimoto. We also give
a criterion (cf. Theorem 4.13) of d-normality of families of meromorphic
mappings. This is the second main purpose of the present paper.

2. Preliminaries. Let F be a nonzero holomorphic function on a do-
main Ω in Cm. For a sequence α = (α1, . . . , αm) of nonnegative integers, we
set |α| = α1 + · · · + αn and DαF = ∂|α|F/∂zα1

1 · · · ∂zαm
m . We define a map

νF : Ω → Z by

νF (z) := max{l : DαF (z) = 0 for all α with |α| < l} (z ∈ Ω).

By a divisor on a domain Ω in Cm we mean a map ν : Ω → Z such
that, for each a ∈ Ω, there are nonzero holomorphic functions F and G
on a connected neighborhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z)
for each z ∈ U outside an analytic set of dimension ≤ m− 2. Two divisors
are regarded as the same if they are identical outside of an analytic set of
dimension ≤ m− 2. For a divisor ν on Ω we set |ν| := {z : ν(z) 6= 0}, which
is a purely (m− 1)-dimensional analytic subset of Ω or an empty set.

Take a nonzero meromorphic function ϕ on a domain Ω in Cm. For each
a ∈ Ω, we choose nonzero holomorphic functions F and G on a neighborhood
U ⊂ Ω such that ϕ = F/G on U and dim(F−1(0)∩G−1(0)) ≤ m−2, and we
define the divisors νϕ, ν

∞
ϕ by νϕ := νF , ν

∞
ϕ := νG; these are independent

of the choices of F and G and so globally well-defined on Ω.
For a divisor ν on C and for positive integers k or k =∞, we define the

counting functions

ν(k)(z) := min{k, ν(z)}, n(t) :=
∑
|z|≤t

ν(z), n(k)(t) :=
∑
|z|≤t

ν(k)(z).

Set

N(r, ν) :=

r�

1

n(t)

t
dt, N (k)(r, ν) :=

r�

1

n(k)(t)

t
dt (1 < r <∞).

Let f : C→M be a holomorphic curve in a compact complex manifold
M and let D be a divisor on M . Denote by L the line bundle defined by D.
Take a Hermitian metric H on L, and denote by ‖ · ‖ the norm on the fibers
Lx defined by H. The curvature form ω of the Hermitian line bundle L is
defined as follows: for each a ∈ M , we choose a local holomorphic section
σ ∈ H0(U,L), where U is an open neighborhood of a, and define the (1, 1)
form ω on U by

ω :=
i

2π
∂∂̄ log ‖σ‖,

which is independent of the choice of σ and so globally well-defined on M .
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We assume that ω ≥ 0 and f(C) 6⊂ suppD.

The characteristic function of f with respect to D is defined by

Tf (r;D) :=

r�

1

dt

t

�

|z|<t

f∗ω.

We choose σ ∈ Γ (M,L) with div(σ) = D which satisfies ‖σ(x)‖ < 1
(x ∈M). We define the proximity function of f with respect to D by

mf (r;D) :=
1

2π

�

|z|=r

log
1

‖σ ◦ f‖
dθ.

The First Main Theorem [NO] for holomorphic curves in the compact
complex manifold M states that

Tf (r;D) = N(r, f∗D) +mf (r;D) +O(1).

Assume that dimH0(M,L) ≥ 2 and take a linearly independent system
σ0, . . . , σn of H0(M,L). Then we get a meromorphic mapping

ΦL : x ∈M 7→ [σ0(x), . . . , σn(x)] ∈ Pn(C).

If ΦL gives rise to a holomorphic embedding, L is said to be very ample. If
there is a number k ∈ N such that Lk is very ample line bundle, then L is
said to be ample. The divisor D is said to be ample if the line bundle L is
ample. One remarks that if D is ample then L is positive in the sense that
we can find a Hermitian metric on L with positive curvature.

Definition 2.1 (cf. [TL, Definition 4.4]). Let {νi}∞i=1 be a sequence
of nonnegative divisors on a domain D in Cm. It is said to converge to a
nonnegative divisor ν on D if any a ∈ D has a neighborhood U such that
there exist nonzero holomorphic functions h and hi on U with νi = νhi and
ν = νh on U such that {hi}∞i=1 converges to h uniformly on compact subsets
of U .

The next lemma is a generalization of the classical lemma of Zalcman
on normality criteria for holomorphic mappings.

Lemma 2.2 (cf. [AK], [TTH]). Let Ω be a domain in Cm and M be a
compact complex Hermitian space. Let F ⊂ Hol(Ω,M). Then the family F is
not normal if and only if there exist sequences {pj} ⊂ D with pj → p0 ∈ Ω,
{fj} ⊂ F , {ρj} ⊂ R with ρj > 0 and ρj → 0 and ξj ∈ Cm Euclidean unit
vectors such that the sequence

gj(z) := fj(pj + ρjξjz)

converges to a nonconstant holomorphic mapping g : C → M uniformly on
compact subsets of C.
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3. Holomorphic mappings into Abelian varieties

Definition 3.1. Let V be a complex vector space of dimension n and
let Λ be a lattice of rank 2n. The quotient space X = V/Λ is called an
n-dimensional complex torus. X is an Abelian variety if it is a complex
projective algebraic variety.

Let X be an Abelian variety and let D be a reduced ample divisor on X.
In 2004, K. Yamanoi [Y] proved the following Second Main Theorem.

Theorem 3.2. Let X and D be as above and let f be an algebraically
nondegenerate holomorphic curve f : C→ X. Then for every ε > 0,

‖ Tf (r;D) ≤ N (1)(r, f∗D) + εTf (r;D).

Here, the curve f is said to be algebraically nondegenerate if f(C) is
not contained in any proper algebraic subset of X. Also the notation “‖ P”
means that the assertion P holds for all r ∈ (1,+∞) except a finite Lebesgue
measure subset.

Applying the above result of K. Yamanoi, we deduce the following.

Lemma 3.3. Let X be an Abelian variety and let D be a reduced ample
divisor on X such that D intersects transversely any translate of any closed
algebraic proper subgroup of X. Then there is no nonconstant holomorphic
curve f : C→ X which intersects D with multiplicity at least 2.

Proof. Suppose that there exists such an f . Denote by Z the Zariski
closure of f(C). According to [NW2], Z is a translate of some closed algebraic
subgroup of X. Then we can regard Z as an Abelian variety.

By assumption, D′ = D ∩ Z is a reduced ample divisor on Z. Since

f(C)
Z

= Z, we may regard f as an algebraically nondegenerate holomorphic
curve f : C→ Z which intersects D′ with multiplicity at least 2.

By Theorem 3.2, for ε < 1/2 we have

‖ Tf (r;D′) ≤ N (1)(r, f∗D′) + εTf (r;D′) ≤ 1
2N(r, f∗D′) + εTf (r;D′)

≤ (1/2 + ε)Tf (r;D′).

Letting r → +∞, we get ε ≥ 1/2. This is a contradiction.

Proof of Theorem 1.1. Without loss of generality, we may assume that
Ω is a polydisc in Cm, Ω = ∆m.

Suppose that F is not normal on Ω. Then, by Lemma 2.2, there exist
a subsequence of F denoted by {fj}∞j=1 and p0 ∈ Ω, {pj}∞j=1 ⊂ Ω with

pj → p0, {ρj} ⊂ (0,+∞) with ρj → 0 and ξj ∈ Cm Euclidean unit vectors
such that the sequence of holomorphic mappings

gj := fj(pj + ρjξj ·) : ∆rj → X (rj ↑ ∞)
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converges uniformly on compact subsets of C to a nonconstant holomorphic
mapping g : C→ X.

For any fixed z0 ∈ Supp g∗D, there exist a relative compact neighborhood
U of z0 in C, an open neighborhood V of g(z0) in X, a holomorphic function
ϕ on V and a positive number j0 such that U⊂∆rj , gj(U) ⊂ V for all j ≥ j0
and ϕ is a defining function of D on V . By the convergence of {gj}j≥j0 , we
see that {ϕ◦gj}j≥j0 converges uniformly on compact subsets of U to ϕ◦g. It
is clear that all zeros of ϕ◦gj have multiplicities at least 2. So, by Hurwitz’s
theorem, all zero points of ϕ◦g have multiplicities at least 2 (or +∞). Thus,
by Lemma 3.3, g must be constant. This is a contradiction.

In order to prove Theorem 1.2, we need the following preparations.

Definition 3.4 (cf. [TL, Definition 3.1]). Let Ω be a hyperbolic domain
and let M be a complete complex Hermitian manifold with metric ds2M .
A holomorphic mapping f(z) from Ω into M is said to be normal if there
exists a positive constant C such that for all z ∈ Ω and all ξ ∈ Tz(Ω),

ds2M (f(z), df(z)(ξ)) ≤ CKΩ(z, ξ),

where KΩ denotes the infinitesimal Kobayashi metric on Ω.

Lemma 3.5 (cf. [TL]). Let f be a holomorphic mapping from a bounded
domain Ω in Cm into a complete complex Hermitian manifold M such that
for every sequence of holomorphic mappings ϕj from the unit disc ∆ in C
into Ω, the sequence {f ◦ϕj}∞k=1 of maps from ∆ into M is a normal family
on ∆. Then f is a normal holomorphic mapping from Ω into M .

Proof of Theorem 1.2. Denote by Reg(S) (resp. Sing(S)) the regular
(resp. singular) part of the set S. We will prove that f extends over Reg(S)
to a holomorphic mapping from Ω \ Sing(S) into X.

For z0 ∈ Reg(S), we take a sufficiently small relatively compact subdo-
main U of Ω containing z0 such that U ∩ Sing(S) = ∅. It suffices to prove
that f extends over S ∩ U to a holomorphic mapping.

Firstly, we shall prove that f is normal on U \ S. Indeed, suppose it
is not. Then there exists a sequence {ϕi : ∆ → U \ S}∞j=1 of holomorphic
mappings such that {f ◦ ϕj} is not normal.

We now show that f ◦ ϕj intersects D with multiplicity at least 2 for
each ϕj . Indeed, take a ∈ f ◦ ϕj(∆) ∩ D, x0 ∈ ∆ and ξ0 ∈ U \ S so that
ϕj(x0) = ξ0 and f(ξ0) = a. We choose a holomophic function h defining
D on a neighborhood of a. Denote by (ξ1, . . . , ξm) the standard complex
coordinates on Ω. Since f intersects D with multiplicity at least 2, we have

∂(h ◦ f)

∂ξi
(ξ0) = 0 (1 ≤ i ≤ m).
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It follows that

(h ◦ f ◦ ϕj)′(x0) =
m∑
i=1

∂(h ◦ f)

∂ξi
(ξ0) · (ϕij)′(x0) = 0,

where ϕj = (ϕ1
j , . . . , ϕ

m
j ). This shows that f ◦ ϕj intersects D with multi-

plicity at least 2.

Then, Theorem 1.1 implies that the sequence {f ◦ϕj} is normal. This is
a contradiction.

Hence f is normal on U \ S.

We see that S ∩ U is a smooth analytic subset of U of codimension 1.
Then f extends to a holomorphic mapping from U into X by Theorem 2.3(1)
of Joseph and Kwack [JK2].

Therefore, f extends over Reg(S) to a holomorphic mapping from Ω \
Sing(S) into X (denoted again by f). Since Sing(S) is an analytic subset of
codimension at least two, by the result of Adachi, Suzuki and Yoshida [ASY],
the map f extends over Sing(S) to a holomorphic mapping from Ω into X.

The proof of Theorem 1.2 is complete.

4. Convergence of meromorphic mappings. In this section we re-
call the notions of convergence introduced by S. Ivashkovich [I] and H. Fuji-
moto [Fu2]. Then we introduce the notion of d-convergence and give some
criteria of d-normality of meromorphic mappings.

Recall that a meromorphic mapping f from Ω to X is defined by a
holomorphic map f[F ] : Ω \ F → X, where F is an analytic subset of

codimension at least 2, such that the closure Γ̄f[F ]
of its graph is an analytic

subset of Ω ×X. From now on this subset is denoted by Γf (without bar)
and called the graph of the map f .

Definition 4.1. We shall say that a family {fn}∞n=1 of meromorphic
mappings from a domain Ω ⊂ Cm into a complex space X strongly converges
(s-converges) to a meromorphic mapping f : Ω → X if for any compact
subset K ⊂ Ω,

H-lim
n→+∞

Γfn ∩ (K ×X) = Γf ∩ (K ×X).

Here H-lim denotes the limit in the Hausdorff metric, supposing that
both Ω and X are equipped with some Hermitian metrics. Note that this
notion of convergence does not depend on the choice of Hermitian metrics
on Ω and X.

In [I] S. Ivashkovich proved the following theorem.

Theorem 4.2. Let {fn} be a sequence of meromorphic mappings from
Ω to X that strongly converges to a meromorphic mapping f . Then:
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(a) If f is holomorphic then for any relatively compact open U ⊂ Ω,
all restrictions fn|U are holomorphic for n large enough, and {fn}
converges to f on D in the usual sense.

(b) If fn are holomorphic then f is also holomorphic and {fn} converges
to f on U in the usual sense.

Denote by I(f) the indeterminacy locus of f , defined to the smallest
subset of Ω such that the restriction f|Ω\I(f) of f on Ω\I(f) is holomorphic.
Then I(f) is an analytic set of codimension at least 2.

In fact, Theorem 4.2 helps us to state the notion of weak convergence
introduced by S. Ivashkovich [I] simply as follows.

Definition 4.3. We shall say that a sequence {fn}∞n=1 of meromorphic
mappings from a domain Ω ⊂ Cm to a complex space X weakly converges
(w-converges) on Ω to a meromorphic mapping f : Ω → X if {fn}∞n=1

converges strongly to f on Ω \ I(f).

It is obvious that strong convergence implies the weak one, but not vice
versa. To see this, we consider the following example given by S. Ivashkovich
in [I].

Example 4.4. Let fn(z1, z2) = (z1 : z2 : 1/n) be holomorphic mappings
of C2 into P2(C) for n = 1, 2, . . . . Then the sequence fn weakly converges to
f = (z1 : z2 : 0), but does not strongly converge because I(f) = {(0, 0)} 6= ∅.

In the case of meromorphic mappings with values in a complex projective
space, we have the following.

Proposition 4.5 (cf. [IN, Theorem 2]). A sequence {fn} of meromor-
phic mappings from Ω into PN (C) weakly converges to f iff each z ∈ Ω has a
neighborhood U on which f has a reduced representation f = (f0 : · · · : fN )

and each fn has a reduced representation fn = (f0n : · · · : fNn ) such that f jn
converges to fj as holomorphic functions for all j = 0, . . . , N .

Hence even in the case whereX is PN (C), we do not have any information
on the indeterminacy locus of f . In fact, to solve this problem, let us recall
the notion of meromorphic convergence introduced by H. Fujimoto [Fu2] as
follows.

Definition 4.6 (cf. [Fu2, Definition 3.1]). We say that a sequence {fn}
of meromorphic mappings from Ω into PN (C) meromorphically converges
(m-converges) to f if each z ∈ Ω has a neighborhood U on which f has a
representation f = (f0 : · · · : fN ) and each fn has a reduced representation

fn = (f0n : · · · : fNn ) such that f jn converges to fj as holomorphic functions
on U for all j = 0, . . . , N .

A natural question arises: What is the relation between the notions of
weak convergence and meromorphic convergence in the case of mappings
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into the complex projective space? To answer this question, we need the
following.

For a domain G in Cm, denote by D+(G) the space of all nonnegative
divisors on G. Let S be an analytic subset of codimension at least 2 in G.
It is known that any divisor ν ∈ D+(G \ S) can be uniquely extended to
ν̂ ∈ D+(G). Moreover, we have

Lemma 4.7 (cf. [Fu2, p. 26]). If {νp : p = 1, 2, . . .} in D+(G\S) converges
to ν on G\S, then {ν̂p} converges to ν̂ in D+(G), where {ν̂p} and ν̂ are the
extensions of νp and ν in G respectively.

Lemma 4.8 (cf. [Fu2, Proposition 3.5]). Let {fi} be a sequence from
meromorphic mappings of a domain Ω in Cm into PN (C) and let S be a
thin analytic subset of Ω. Suppose that {fi} meromorphically converges on
Ω \S to a meromorphic mapping f from Ω \S into PN (C). If there exists a
hyperplane H in PN (C) such that f(Ω \S) 6⊂ H and {f∗i H} is a convergent
sequence of divisors on Ω, then {fi} is meromorphically convergent on Ω.

We now show that weak convergence implies the meromorphic one.

Proposition 4.9. Let {fn} be a sequence of meromorphic mappings
from a domain Ω ⊂ Cm into PN (C). Assume that {fn} weakly converges
to a meromorphic mapping f : Ω → PN (C). Then {fn} meromorphically
converges to f on Ω.

Proof. Take a hyperplane H in PN (C) such that f(Ω \ S) 6⊂ H. We
may assume that H = {ω0 = 0}, where (ω0 : · · · : ωN ) are homogeneous
coordinates of PN (C). By Proposition 4.5, the sequence {f∗nH|Ω\I(f)} of
divisors converges to f∗H|Ω\S . Then by Lemma 4.7, {f∗nH} converges to
f∗H on Ω. Hence {fn} meromorphically converges to f on Ω by Lem-
ma 4.8.

However, the next example shows that meromorphic convergence does
not imply the weak one.

Example 4.10. Let fn = (z : z + 1/n) and f = (z : z) be holomorphic
mappings of C into P1(C). Then f0n = z (resp. f1n = z + 1/n) converges to
f0 = z (resp. f1 = z) as holomorphic functions, but {fn} does not converge
to f , since fn(0) = (0 : 1) 6= f(0) = (1 : 1) for every n ≥ 1.

Thus we have the following relatios between convergence notions: strong
convergence⇒ weak convergence⇒ meromorphic convergence (see also [IN,
Theorem 2]). Of course Examples 4.4 and 4.10 show that all ⇐ directions
are untrue.

Let X be a complex projective variety and let D be an ample divisor
on X. We now generalize the notion of meromorphic convergence of H. Fu-
jimoto to the case of meromorphic mappings from Ω into X as follows.
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Definition 4.11. We say that a sequence {fn}∞n=1 of meromorphic map-
pings from a domain Ω ⊂ Cm to X d-converges on Ω to a meromorphic
mapping f : Ω → X with respect to D if {fn}∞n=1 converges strongly to f
on Ω \ Supp(f∗D) and the divisors f∗nD converge to f∗D.

Denote by L the line bundle defined by D on X. Take a holomorphic
section σ ∈ Γ (X,L) such that div(σ) = D. Since D is ample, there exists a
positive number l such that Ll is very ample. Take a basis (σ0, . . . , σN ) of the
C-vector space Γ (X,Ll) such that σ0 = σl. Hence there is a holomorphic em-
bedding Φ : X → PN (C) of X into PN (C) defined by Φ(x) = (σ0 : · · · : σN )
in homogeneous coordinates (ω0 : · · · : ωN ) of PN (C). Put H = {ω0 = 0}.
Then H is a hyperplane of PN (C) satisfying Φ∗H = lD.

Assume that fn d-converges to f on Ω with respect to D. We regard
fn and f as holomorphic mappings from Ω \ D into PN (C). By assump-
tion, {f∗nH} converges to f∗H. Hence, by Lemma 4.8, {fn} converges to f
meromorphically on Ω.

In the case whereX is the complex projective space, Ivashkovich and Neji
[IN] proved the equivalence of meromorphic convergence and Γ -convergence.
In the next proposition, we will show that they coincide with d-conver-
gence.

Proposition 4.12. Let {fn} be a sequence of meromorphic mapings
from a domain Ω ⊂ Cm into PN (C) and let D be an arbitrary divisor on
PN (C). Then {fn} d-converges to a meromorphic mapping f on Ω with
respect to D if and only if it converges to f meromorphically on Ω.

Proof. The “if” part is clear. We now prove the “only if” part. Assume
that {fn} d-converges to f on Ω with respect to D.

For fixed homogeneous coordinates (ω0 : · · · : ωN ) of PN (C), let Q be a
homogeneous polynomial in ω0, . . . , ωN defining D.

We define meromorphic mappings {Fn}∞n=1 of Ω into PN+1(C) as follows:
for any z ∈ Ω, if fn has a reduced representation fn = (fn0 : · · · : fnN ) on a
neighborhood Uz ⊂ Ω then Fn has a reduced representation Fn = (fdn0 : . . . :
fdnN : Q(fn)) on Uz, where d is the degree of Q. Let H be the hyperplane

in PN+1(C) defined by H = {ωN+1 = 0}, where (ω0 : · · · : ωN : ωN+1) are
homogeneous coordinates of PN+1(C).

It is easy to see that {Fn} converges to a meromorphic mapping F
from Ω \ Supp f∗D into PN+1(C), and if f has a reduced representation
f = (f0 : · · · : fn) on an open subset U ⊂ Ω then F has reduced representa-
tion F = (fd0 : · · · : fdn : Q(f)) on U . Since {f∗nD} converges to f∗D, we see
that {F ∗nH} converges to F ∗H. By Lemma 4.8, {Fn} converges to F mero-
morphically on Ω. This implies that {fn} converges to f meromorphically
on Ω.
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As usual, we say a family F of meromorphic mappings from a domain
Ω into X is d-normal if every sequence {fn}∞n=1 ⊂ F has a subsequence
d-convergent on Ω.

Let {Di}li=1 be l divisors on X. Assume that dimX = n. We say that
{Di}li=1 is in general position if for any distinct indices 1 ≤ i1, . . . , ik ≤ l, the

codimension of any irreducible component of
⋂k
j=1 SuppDij is k for k ≤ n,

and
⋂k
j=1 SuppDij = ∅ for k > n. Denote by c1(Di) the Chern class of the

line bundle defined by Di.

We now give a criterion of d-normality of meromorphic mappings:

Theorem 4.13. Let F be a family of meromorphic mappings from a
domain Ω ⊂ Cm into a complex projective variety X of dimension n, and
let D1, . . . , Dl (l > n rankZ{c1(Di)}) be l ample divisors on X in general
position such that:

(i) For any fixed compact subset K of Ω, the 2(n − 1)-dimensional
Lebesgue areas of f−1(Di) ∩K (1 ≤ j ≤ n+ 1) counted with multi-
plicities for all f in F are bounded from above.

(ii) For any fixed compact subset K of Ω, the 2(m − 1)-dimensional
Lebesgue areas of f−1(Qj) ∩K (n + 2 ≤ i ≤ l) regardless of multi-
plicities for all f in F are bounded from above.

Then F is a d-normal family on Ω with respect to some Di (1 ≤ i ≤ n+ 1).

In order to prove Theorem 1.4, we need the following preparations.

Lemma 4.14 (cf. [St, Proposition 4.12]). Let {Ni}∞i=1 be a sequence of
purely (m − 1)-dimensional analytic subsets of a domain D in Cm. If the
2(m − 1)-dimensional Lebesgue areas of Ni ∩K regardless of multiplicities
(i = 1, 2, . . .) are bounded from above for any fixed compact subset K of D,
then {Ni} is normal in the sense of convergence of closed subsets in D.

Lemma 4.15 (cf. [St, Theorem 2.24]). A sequence {νi}∞i=1 of nonnegative
divisors on a domain D in Cm is normal in the sense of convergence of
divisors on D if and only if the 2(m − 1)-dimensional Lebesgue areas of
νi ∩ E (i = 1, 2, . . .) counted with multiplicities are bounded from above for
any compact subset E of D.

Proof of Theorem 4.13. Without loss of generality, we may assume that
Ω is a polydisc in Cm, Ω = ∆m.

Let {fk}∞k=1 ⊂ F be an arbitrary sequence. By Lemma 4.14, there exists
a subsequence (again denoted by {fk}∞i=k ) such that

(4.1) lim
k→∞

Supp f∗kDi = Si (i = 1, . . . , l)
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as a sequence of closed subsets of Ω, where each Si (i = 1, . . . , q) is either
an empty set or a purely (m− 1)-dimensional analytic subset of Ω.

Set E :=
⋃l
i=1 Si. Then E is a thin analytic subset of Ω. For any fixed

z0 ∈ Ω \E, there exist a relatively compact Stein neighborhood Uz0 of z0 in
Ω \ E and a positive integer k0 such that for all k ≥ k0,

Supp f∗kDi ∩ Uz0 = ∅.(4.2)

It is easy to see that I(fk) ⊂ Supp f∗kDi for all k; then {fk|Uz0
}∞k=k0 ⊂

Hol(Uz0 , X). We now prove that {fk|Uz0
}∞k=k0 is a normal family on Uz0 .

Indeed, suppose it is not; then by Lemma 2.2 there exist a subsequence
(again denoted by {fk|Uz0

}∞k=k0) and p0 ∈ Uz0 , {pk}
∞
k≥k0 ⊂ Uz0 with pk →

p0, {ρk} ⊂ (0,+∞) with ρk → 0 and ξk ∈ Cm Euclidean unit vectors such
that the sequence of holomorphic maps

gk := fk(pk + ρkξk ·) : ∆rk → X, k ≥ k0 (rk →∞)

converges uniformly on compact subsets of C to a nonconstant holomorphic
map g : C → X. Then by (4.2) and by Hurwitz’s theorem, it is easy to see
that for each i ∈ {1, . . . , l} we have either

• g(C) ∩ SuppDi = ∅, or
• g(C) ⊂ SuppDi.

Denote by Z the Zariski closure of g(C) which is a subvariety of X. Then we
can regard g as a nonconstant holomorphic curve g : C→ Z\

⋃
Di 6⊃Z Di with

Zariski dense image. Since {Di}li=1 are in general position in X, by Theorem
1.2(ii) in [NW1], we find that l ≤ n rankZ{[c1(Di)]}. This is a contradiction,
hence {fk|Uz0

}∞k=k0 is a normal family on Uz0 .

By the usual diagonal argument, we can find a subsequence (again de-
noted by {fk}∞k=1) which converges uniformly on compact subsets of Ω \ E
to a holomorphic map f . Since {Di}n+1

i=1 are in general position, there exists
a fixed index i0 (1 ≤ i0 ≤ n+ 1) such that f(Ω \E) 6⊃ SuppDi. By assump-
tion (ii) and by Lemma 4.15, f∗kDi0 converges in the sense of convergence
of divisors on Ω to a divisor. This implies that {fk}k≥k0 d-converges to f
on Ω. Thus F is a d-normal family on Ω. We have completed the proof of
Theorem 4.13.
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