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Stokes’ formula for stratified forms

by GUILLAUME VALETTE (Krakow)

Abstract. A stratified form is a collection of forms defined on the strata of a strati-
fication of a subanalytic set and satisfying a continuity property when we pass from one
stratum to another. We prove that these forms satisfy Stokes’ formula on subanalytic
singular simplices.

1. Introduction. In [P], W. Pawtucki establishes that C! forms satisfy
Stokes’ formula for subanalytic (singular) leaves. A variation of this result
is given in [L] where the author deals with the subanalytic bounded (not
necessarily C'!) forms. In this article, we prove a Stokes theorem for a more
general class of forms.

We introduce the notion of stratified forms. A stratified form on a sub-
analytic set X is, roughly speaking, a collection of forms (wg)ses, where
X is a stratification of X, fulfilling a certain continuity property when we
pass from one stratum S to an adjacent stratum S’. We define integration of
stratified forms and show that they satisfy Stokes’ formula (Theorem .
Our differential forms are not assumed to be subanalytic.

Since every smooth differential form and every subanalytic bounded dif-
ferential form gives rise to a stratified form, our theorem implies the Stokes
theorems given in [Pl [£]. This more general approach is useful in showing for
instance that pull-backs of differential forms under subanalytic bi-Lipschitz
mappings satisfy Stokes’ formula. Such a mapping is not smooth everywhere
but just almost everywhere. However, it can be stratified in such a way that
the pull-back of a stratified form is a stratified form [V]. The novelty is
also that our theorem holds not only for leaves but for subanalytic singular
simplices.

2. Stratified forms. We shall work with subanalytic sets (see [DS] for
their definition and basic properties). Let S,, denote the set of all subanalytic
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subsets of R™. A subanalytic family of subsets of R™ is a family (A;)ep,
B € S, of subanalytic subsets such that (J,cp{t} x A; is a subanalytic
subset of R™*7,

Given X € &, the singular k-simplices of X will be the subanalytic
continuous mappings o : A — X, where Ay, is the oriented standard simplex
of R¥. We denote by Cj(X) the group of singular k-chains with coefficients
in R.

By Xyeg and Xging, we respectively denote the regular and singular locus
of X. The regular locus is the set constituted by the points of X at which
X is a C* manifold of dimension dim X. The singular locus of X is the
complement of X,ee in X.

We will write int(X) for the interior of X, while cl(X) will stand for its
topological closure. We then set fr(X) := cl(X) \ X. Given a point x € R”
and « > 0, we write B(z,«) for the ball of radius « centered at z (for the
Euclidean metric).

If w is a differential k-form on a submanifold S C R™, we denote by |w(z)|
the norm of the linear form w(z) : ®*T,S — R, where S is equipped with
the Riemannian metric inherited from the ambient space.

A stratification of X is a locally finite partition X' of X into subanalytic
C* submanifolds of R™, called strata. We then denote by X¥) the collection
of all the strata of X of dimension k (the union of all the elements of (),
denoted | J X®) is thus a k-dimensional manifold). A refinement of a strat-
ification X of a set X is a stratification X’ of X such that every stratum
of X is the union of some strata of X’. Two stratifications have a common
refinement [DS].

DEFINITION 2.1. Let X € §,, and let X be a stratification of X. A strat-
ified differential 0-form on (X, X) is a collection of functions wg : S — R,
S € X that glue together into a continuous function on X. A stratified dif-
ferential k-form on (X, X), k > 0, is a collection (wg)secx where, for every S,
ws is a continuous differential k-form on S such that for any (z;,&;) € @*TS,
with z; tending to x € S’ € ¥ and &; tending to £ € @*T,S’, we have

limw5($i7 5@) = Wwgr (.’,U, f)
We say that w = (wg)sey is differentiable if wg is C! for every S € X and
if dw := (dwg)sey is a stratified form.

PROPOSITION 2.2. Let (X, X) be a stratified set with X closed. If w =
(ws)sex is a stratified form then, for every S € X, |wg(x)| is bounded on
every bounded subset of S.

Proof. 1If w is a 0-form, this is clear since wg is the restriction of a con-
tinuous function on X which is closed. Take a k-form w with £ > 0, and
assume that the result fails for w. This means that there is a bounded se-
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quence (z;,&) € @*TS, S € X, such that wg(x;,&;) goes to infinity. Since ;
is a bounded sequence, we may assume that it is convergent to some element
zes, S eX Let

é‘.

& = ——,
ws (@i, &)

so that wg(x;, &) = 1, for all i.

As |wg(z;,&)| is going to infinity and &; is bounded away from infinity,
the multivector & clearly goes to zero. Because w is a stratified form, this
implies that

limwg (4, &) = wgr (z,0) = 0,
contradicting wg(z;, &) =1. m

DEFINITION 2.3. Let w = (wg)sex be a stratified form. Let X’ be a
refinement of X' and take T' € X’. By definition of refinements, there is a
unique S € X which contains T'. Let wr denote the differential form induced
by wg on T. It is a routine to check that w’' := (wy)resr is also a stratified
form. We then say that ' is a refinement of w.

2.1. Integration of stratified forms. Let (X, Y) be a stratified set,
X € S, compact. Let w = (wg)gex be a stratified k-form on (X, Y) and
let Y C X be a subanalytic subset of X of dimension k such that Y;e is
oriented. We are going to define the integral of w on Y, denoted SY w.

Let X’ be a refinement of X such that Y;eg is a union of some strata of 3
(such a stratification exists because Y;g is subanalytic [DS]). This refinement
induces a refinement w’ of w (as explained in Definition . We naturally

define
o 3 fus

Y Sexi(k) S
where every stratum is endowed with the orientation induced by Y. That
this integral is finite follows from the fact that wg is bounded (by Propo-
sition on a set of finite measure (bounded subanalytic manifolds have
finite measure |[LR]).

Let us check that this definition is independent of the refinement X’
chosen. Since two stratifications have a common refinement [DS], it is enough
to make sure that the integral will be the same if we use a refinement X" of
Y (instead of X'). As X" is a refinement itself, dim |J X' \ |J 2"*) < k
(which entails that this set is negligible) so that

> Jws= > er
Sex!(k) S Tex!k) T

This shows that the integral is independent of the refinement chosen.
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Integration on singular simplices. We now turn to define the integral
of the stratified k-form w over an oriented singular simplex o : A — X. As
o is subanalytic, there exist stratifications P of Ay and Q of X such that for
any S in P there is T' € Q such that the mapping o5 : S — T', induced by
the restriction of o, is a C? surjective submersion. Since two stratifications
have a common refinement, possibly refining w (see Definition , we may
assume that w is a stratified form on P. We now set

Sw: Z Sa*wa(s).

o Sep®) 8

Again, since the manifold | J P%) is independent of the stratification P up to
a negligible set, this definition is clearly independent of the stratifications
chosen. The integral over a subanalytic chain ¢ € Ck(X) is then defined
naturally.

NoTE. The form (0*wy(g))sep is not necessarily a stratified form on
(Ag, P). In particular, 0*w,(g) is not necessarily bounded (o is not assumed
to have bounded first derivative).

3. Stokes theorem for stratified forms. In this section we establish
the main result of this note:

THEOREM 3.1. Let (X, X) be a subanalytic stratified set. If w is a differ-
entiable stratified (j — 1)-form on (X, X), then for all ¢ € C;(X),

de = S w.
c de
The proof of this theorem requires some preliminary lemmas.

DEFINITION 3.2. Let L € S, be a compact set of dimension k. We say
that L is a leaf if there is a dense subanalytic subset Z C fr(Lyeg) such that
cl(Lyeg) is a C'! submanifold with boundary (of R"™) at every point of Z. We
then set OL := fr(Lyeg). A leaf L is orientable if Lyeg is. Observe that any
orientation of Lyes induces an orientation of OL.

LEMMA 3.3. Let L € S, be a leaf of dimension k. Any subanalytic closed
subset L' C L of dimension k is a leaf.

Proof. Let L' C L be as in the statement of the lemma and observe that

Lieg C Lyeg. Let x be a generic regular point of fr(Li,). If x lies in Lyeg

then, as fr(Ly.,) is a C! submanifold of Ly at z (z is generic), it is clear

that cl(Lie,) is a C' manifold with boundary at = (the closure of an open

subanalytic set in a manifold is a manifold with boundary at every regular
point of the frontier). We thus can suppose that € OL. As z is generic in
fr(Ljeg), we can assume that o ¢ fr(fr(Lje,) N Lreg) (this set has dimension

strictly less than & — 1). This means that if z lies in fr(L,eg) then, for
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generic, fr(Lyeg) and fr(Lj.,) coincide locally near x, and the result follows

from the fact that L is itself a leaf. =
We denote by H’ the j-dimensional Hausdorff measure.

LEMMA 3.4. Let (3578)(5,6)€R2 be a subanalytic family of j-dimensional
subsets of R". Assume that \Jsoer2{(6,€)} x Bse is compact and that
dim By < j. Then

lim H/(Bs.) = 0.
(6,3)E>I(10,0) ( 6,6)
Proof. Given a vector space P C R" of dimension j we set
K[ (Bs.) :={re€P: cardwlgl(x) N Bs. =1},

where 7p is the orthogonal projection onto P and card ng(az) N Bs,. stands
for the cardinality of this set (this cardinality is finite for almost every P and
can only take finitely many values 1,..., N). In view of the Cauchy—Crofton
formula [E], we have
N
W (Bse) =Y 1 | (K (Bse)) dvjm,
=1 PEG?

where G stands for the Grassmannian of j-dimensional vector spaces in R"
and 7;,, is a Radon measure (induced by the Haar measure of the group of
orthogonal linear mappings acting on G?) It is therefore enough to show
that
i J(KP _
(5,5%33%070)7{ (K| (Bse)) = 0.

Thanks to Lebesgue’s Dominated Convergence Theorem, it suffices to
show that for almost every « € P, « ¢ mp(Bs,) for § and e small enough.
But if @ ¢ 7p(Bo,) (which is H/-negligible) then, as Us.)cpz{(0,€)} x Bse
is a closed subset, x cannot belong to mp(Bs,) if 0 and € are chosen small
enough. m

LEMMA 3.5. Ewvery compact subanalytic set may be decomposed into a
finite union of leaves (not necessarily disjoint).

Proof. Let X be a compact subanalytic set and consider a subanalytic
triangulation h : |K| — X, K a simplicial complex. For every j-dimensional
simplex o € K (j = dim X), h(0) is a C° manifold with boundary, C! at
the interior points. It is actually a C! manifold with boundary at every
generic point of the boundary (for instance, the points at which Whitney (b)
regularity holds do have this property [P]). =

LEMMA 3.6. Let M be a subanalytic C* manifold with boundary that we
endow with its canonical stratification X := {M \ OM,0M}. Take a suban-
alytic function p : M — R which is C' and nonnegative with p~'(0) = OM.
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For any differentiable stratified differential form w on (M, X) vanishing out-
side a compact subset of M we have
(3.1) 6_}(1{161>0 S w= S w.

p=¢€ oM

Proof. Up to a partition of unity we may assume that the support of
w fits in one chart of M and, up to a coordinate system, we may iden-
tify M with B(0,a) N {(x1,...,21) € R* : 2, > 0}, a > 0. The coeffi-
cients of the form wg, = wWRk-14{y,) are continuous with respect to xj.
Hence, in the case where p is the function given by p(z1,...,z;) = x for
all (z1,...,zk), the result follows from Lebesgue’s Dominated Convergence
Theorem.

As a matter of fact, it is enough to check that the limit always exists
and is independent of p. Let p be a function satisfying the assumptions
of the lemma. By Stokes’ formula we have, for relevant orientations and
0<e<é,

S w — S w = S dw.
p=¢ p=¢’ p~([ee’])

The measure of p~!([e,&]) tends to zero as (g,¢') goes to zero. As dw is
bounded, this implies that the right-hand side goes to zero. Consequently,
the limit exists for all such functions p. That the limit is independent of p
follows from an analogous argument. =

We first establish Stokes’ formula for stratified forms on a stratum whose
closure is a leaf.

LEMMA 3.7. Let X € S,, be compact and let X be a stratification of X.
Let w = (wg)sex be a differentiable stratified differential (k—1)-form on X.
Fiz a stratum S of dimension k. If cl(S) is an oriented leaf then

(3.2) des: S w,
S fr(S)

where fr(S)reg is endowed with the induced orientation.

Proof. Let p : R" — R be a C! subanalytic positive function such that
p~1(0) = fr(S) (the function x + d(x,fr(S)) has this property; one may
approximate this function by a C' subanalytic function [J] to get such a
function p). Set

Se :={x € cl(S) : p(x) > e}

Note that for € > 0 small enough, by Sard’s theorem, S is a smooth manifold
with boundary and w is a smooth form on it. Thus, by the classical Stokes
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formula,
S dwg = S ws.
Se 0S¢

As dwg is bounded, it easily follows from Lebesgue’s Dominated Convergence
Theorem that

ii_I)% S dwg = S dwg.

Se S

We thus only have to show that

(3.3) ?_r}r(l) S wg = S w.
8S. fr(S)

As cl(S) is a leaf, there is a subanalytic subset S’ C 95 such that cl(.S)
is a C' manifold with boundary at every point of fr(S) \ S" and such that
dim S" < k — 1. Set, for 6 > 0,

Us:={z € R" :d(z,5") <5},
and let (ps,1s) denote a partition of unity subordinated to the covering
(int(Us), R™ \ Us 2).-
As (by Proposition wg is bounded and because ¢ has support in Uy,
we can write, for some constant C,

(3.4) | wsw<onY(Usnos.).
9Se
Applying Lemma [3.4] to the subanalytic family Bs. := Us N 0S, we see that
lim sup lim sup #*~1(Us N 8S.) = 0.

0—0 e—0
By (3.4)), this entails that

lim li =0.
61—I>I(1)81—I>I%) S Ps s 0

€

As a matter of fact, since for each § > 0 we have w = psw+1sw, proving (i3.3)
reduces to showing that
(3.5) lim lim S s ws = S w.

6—0e—0
0S. fr(S)

It follows from Lemma (applied to tsw, which induces a stratified
form with compact support on the manifold with boundary S\ Us/5) that

lim S Psw = S Psw = S Y5 w.
e—0
dS. £:(S)\Us /2 fr(S)
Passing to the limit as § > 0 tends to zero and applying Lebesgue’s Domi-

nated Convergence Theorem, we see that this yields (3.5)). m
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Proof of Theorem[3.1]. Tt is of course enough to carry out the proof for
a single simplex o : A; — X. Denote by I" the graph of ¢ and take two
Whitney stratifications S and X’ of I" and X respectively such that the
mapping 7 : I' — X, (z,y) — y, maps submersively strata onto strata.
By Lemmas and [3.5] we may suppose that the closures of all the strata
of X' and S are leaves. We may also assume that if 7 induces an immersion
on a stratum then it induces an injective mapping on this stratum (this
property is clearly preserved under refinement, and it is easy to construct
a stratification satisfying this property using cell decompositions). Because
Y and X’ are Whitney stratifications, they satisfy the frontier condition
(i.e. the closure of each stratum is a union of strata).

Since the projection (x,y) — = induces a subanalytic homeomorphism
on I', we will identify A; with I', and S with X', and work as if o were the
mapping 7. Refining the stratifications X' and X', we may assume that w is
a stratified form on X’. We endow the strata of X' of dimension j with the
orientation induced by A;.

Let S € X and let ¢ := dim S. Either o/ is a diffeomorphism onto its
image or dimo(S) < i. In the former case, if we endow S and o(S) with
coherent orientations, we obviously have, for any continuous bounded i-form
aon S,

(3.6) ofsa= |
S a(S)

If dim o(S) < i, then both sides are zero (since o is identically zero) and
this equality continues to hold.

Observe also that if dimS = j and if og is a diffeomorphism then
o(fr(S)) = fr(o(S)), which entails that (putting on fr(S),eg the orientation
induced by the leaf cl(5))

(3.7) S w= S w.

fr(o(S)) o(fr(S))

We claim that this formula is true even if o|g fails to be a diffeomorphism.
Indeed, assume dimo(S) < j and take a stratum 7' C fr(o(S)) of dimen-
sion j — 1, on which we choose an orientation. As the left-hand side of
vanishes in this case (since dimfr(o(S)) < j — 1), it is enough to check
that so does the right-hand side. For any stratum S’ C fr(S) N o~ }(T)
of dimension j — 1, as o5 : S’ — T is a diffeomorphism, we have
o(8") = £T (here —T means T with the opposite orientation). As
dimo(S) < j, we must have > ¢ c w61 grcm(s) o(S") = 0 (as formal sums
of oriented manifolds). This shows that the right-hand side of vanishes,
as claimed.
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By Lemma , for any stratum S of dimension j, (since the closure of
every stratum is a leaf) we have

(3.8) S dw = S W& S
a(S) fr(o(9)) o(fr(9))
We thus obtain

(3.9) S dw = Z SUF‘S dwe(s)

o Sex ) S
=y dusgs) B > | w
Sex() o(9) Sex @) o(fr(S))

Observe that every stratum 7' € YU~ lies in the frontier of exactly two
strata of X' (inducing on T opposite orientations) if 7N 0A; = 0 and one
such stratum whenever 7' C 0A; (we may assume that 0A; is a union of
strata). Therefore

ORI S L

Sex ) o(fr(S)) Sex(i-1),5coA; a(S) do
Together with (3.9)), this yields the desired formula. m

REMARK 3.8. If (X, Y) is a stratified set, any smooth differential form
w which is defined in a neighborhood of X gives rise to a stratified form
(ws)sex on (X, X)) obtained by considering the respective restrictions of
w to the strata. The Stokes formula that we have proved is therefore a
generalization of the Stokes formula for smooth forms on singular varieties.
For the same reasons, it also implies the generalized Stokes formulas given
in [L [P].
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