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Propagation of delayed lattice differential equations
without local quasimonotonicity

by Shuxia Pan (Lanzhou)

Abstract. This paper is concerned with the traveling wave solutions and asymptotic
spreading of delayed lattice differential equations without quasimonotonicity. The spread-
ing speed is obtained by constructing auxiliary equations and using the theory of lattice
differential equations without time delay. The minimal wave speed of invasion traveling
wave solutions is established by investigating the existence and nonexistence of traveling
wave solutions.

1. Introduction. Lattice dynamical systems are very important to de-
scribe some evolutionary processes in life sciences [BeC, K] and phase tran-
sitions [BC]. For scalar lattice differential equations, a typical example is

(1.1)
dun(t)

dt
= [Du]n(x) + f(un(t)), n ∈ Z, t > 0,

where f : R→ R, and

[Du]n(x) = D(un+1(t)− 2un(t) + un−1(t))

with D > 0. In the past decades, much attention has been paid to its propa-
gation modes indexed by traveling wave solutions and asymptotic spreading:
see [AS, BC, BeC, CMV, CG1, CG2, CMS, HL, K, MP1, MP2, MP3, Shen,
Ton, Zin1, Zin2]. In particular, to reflect the maturation time of the species
under consideration and the time needed for the signals to travel along ax-
ons and to cross synapses, time delay was introduced in lattice differential
equations, and a delayed version of (1.1) is

(1.2)
dun(t)

dt
= [Du]n(x) + f(un(t), un(t− τ)), n ∈ Z, t > 0,

in which τ ≥ 0 is the time delay. Since Wu and Zou [WZ], some results about
the existence of traveling wave solutions and the estimation of asymptotic

2010 Mathematics Subject Classification: Primary 35C07; Secondary 34K31.
Key words and phrases: auxiliary equation, asymptotic spreading, traveling wave solutions.

DOI: 10.4064/ap114-3-3 [219] c© Instytut Matematyczny PAN, 2015



220 S. X. Pan

spreading of (1.2) have been established: we refer to [FWZ1, FWZ2, HLR,
HLZ, LZ, LLP, LW, MZ1, MZ2, TZ, WLW, WHW, Zou].

To better introduce the known results, we assume that

(1.3) f(0, 0) = f(K,K) = 0, f(u, u) > 0, u ∈ (0,K),

with some K > 0, and f(u, v) is continuous for u, v ∈ [0,K]. To apply a
comparison principle, the (local) monotonicity of f(u, v) for v > 0 is needed;
for example, see the scalar models in [FWZ1, FWZ2, LZ, LLP, LW, MZ1,
MZ2, TZ, WLW, WHW, Zou]. Moreover, if the time delay τ > 0 is small
enough, some results on the existence of traveling wave solutions have been
established (see Huang et al. [HLZ]).

The purpose of this paper is to investigate the propagation modes of
(1.2) if f(u, v) is not increasing in v near 0. For the sake of convenience, we
consider the following special form of (1.2):

(1.4)
dun(t)

dt
= [Du]n(x) + un(t)g(un(t), un(t− τ)), n ∈ Z, t > 0,

in which g : R2 → R satisfies the following assumptions:

(H1) g(1, 0) = 0, and g(u, 0) > 0 for u ∈ (0, 1);
(H2) g(u, v) is Lipschitz continuous and strictly decreasing for u, v ∈

[0, 1], and g(u, 0) → −∞ as u → ∞, more precisely, there exists
I > 0 such that

0 ≤ |g(u, v)− g(0, 0)| ≤ I(u+ v), u, v ∈ [0, 1];

(H3) g(0, 1) > 0, and there exists E ∈ (0, 1) such that g(E,E) = 0;
(H4) if 1 > u ≥ u > 0 are such that

g(u, u) ≤ 0, g(u, u) ≥ 0,

then u = u = E.

By (H2), we see that (1.4) does not satisfy the (local) quasimonotonicity
condition of [FWZ1, FWZ2, LZ, LLP, LW, MZ1, MZ2, TZ, WLW, WHW,
Zou], and a typical example of g satisfying (H1)–(H4) is

g(u, v) = 1− u− av, a ∈ (0, 1),

which is a special form of logistic nonlinearity with time delay.
In what follows, by using the spreading speed of undelayed scalar lattice

differential equations and constructing auxiliary equations without time de-
lay, we shall investigate the propagation of (1.4). We first prove that the
spreading speed of un(t) defined by the corresponding initial value problem
for (1.4) is the same as that of g(u, v) = g(u, u) by the idea of Lin [Lin],
which implies the persistence of spreading speeds of delayed lattice differ-
ential equations even if the time delay τ is large and the equation cannot
generate monotone semiflows. Furthermore, we establish the minimal wave
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speed of (1.4) by investigating the existence and nonexistence of traveling
wave solutions for all positive wave speeds, which is motivated by the re-
sults of Lin and Ruan [LR]. These traveling wave solutions correspond to
the successful invasion of one new invader in population dynamics.

In this paper, we shall use the standard ordering and intervals in R. Let

C = C(R,R) = {u : R→ R; u is uniformly continuous and bounded}.
Then C is a Banach space equipped with the standard supremum norm.
When a < b, denote

C[a,b] = {u ∈ C; a ≤ u ≤ b}.
If u, u′ ∈ C, then u ∈ C1(R,R). For any fixed µ > 0, define

Bµ(R,R) =
{
u ∈ C(R,R); sup

t∈R
{|u(t)|e−µ|t|} <∞

}
;

then Bµ(R,R) is a Banach space with the norm defined by

|u|µ = sup
t∈R
{|u(t)|e−µ|t|} for u ∈ Bµ(R,R).

Let l∞ be the space of bounded doubly infinite sequences {u(n)}∞n=−∞.
We now give the following definition of traveling wave solutions.

Definition 1.1. A traveling wave solution of (1.4) is a special solution
of the form un(t) = φ(n+ct), where c > 0 is the wave speed and φ ∈ C1(R,R)
is the wave profile that propagates in Z.

From Definition 1.1, φ and c must satisfy

(1.5)

c
dφ(ξ)

dξ
= D

(
φ(ξ+ 1) + φ(ξ− 1)− 2φ(ξ)

)
+ φ(ξ)g(φ(ξ), φ(ξ− cτ)), ξ ∈ R.

To better reflect the evolutionary processes, we also require the following
asymptotic boundary value condition:

(1.6) lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = E.

To index the asymptotic spreading, we also give the following definition.

Definition 1.2. Assume that un(t) ≥ 0 for all n ∈ N and t > 0. Then
c1 > 0 is the spreading speed of un(t) if

(1) for any c > c1, limt→∞ sup|n|>ct un(t) = 0;
(2) for any c < c1, lim inft→∞ inf |n|<ct un(t) > 0.

The spreading speed of delayed lattice differential equations has been
investigated in [LZ, TZ, WHW]. In particular, if f in (1.1) satisfies

(f1) f(u) = uh(u), h(M) = 0 for some M > 0,
(f2) h(u) is Lipschitz continuous and decreasing for u ∈ [0,M ],
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then we can obtain the spreading speed of un(t) defined by the corresponding
initial value problem of (1.1) (see [LZ, TZ, WHW]). More precisely, consider
the initial value problem

(1.7)

{
dun(t)
dt = [Du]n(x) + f(un(t)), n ∈ Z, t > 0,

un(0) = ψ(n), n ∈ Z.

By Ma et al. [MWZ] and Weng et al. [WHW] (see also an abstract form
of the comparison principle by Weinberger [Wei]), we have the following
conclusions.

Lemma 1.3. Assume that (f1)–(f2) hold. If 0 ≤ ψ(n) ≤M for all n ∈ Z,
then (1.7) has a solution un(t) for all n ∈ Z and t > 0. If wn(t), n ∈ Z,
t > 0, satisfies {

dwn(t)
dt ≥ (≤) [Dw]n(t) + f(wn(t)),

wn(0) ≥ (≤) ψ(n),

or

wn(t) ≥ (≤) e−(2D+d)(t−θ)wn(θ)

+

t�

θ

e−(2D+d)(t−s)[dwn(s) +D(wn+1(s) + wn−1(s)) + f(wn(s))
]
ds

with any fixed d ≥ 0 and θ ∈ [0, t), then wn(t) ≥ (≤)un(t) for all n ∈ Z
and t > 0. In particular, wn(x) is called an upper (resp. a lower) solution
of (1.7).

For λ, c > 0, define

∆(λ, c) = D(eλ + e−λ − 2)− cλ+ h(0).

Lemma 1.4. There exists c2 := infλ>0
D(eλ+e−λ−2)+h(0)

λ > 0 such that:

(1) If c > c2, then ∆(λ, c) = 0 has two distinct positive real roots λ1(c) <
λ2(c) satisfying

∆(λ, c)

{
< 0, λ ∈ (λ1(c), λ2(c)),

> 0, λ ∈ (0, λ1(c)) or λ > λ2(c).

(2) ∆(λ, c) = 0 has no real roots for c < c2.
(3) Let ε > 0 be any positive constant. Then c2 is continuous and strictly

increasing in h(0) ≥ ε.

Lemma 1.5. Assume that (f1)–(f2) hold. If 0 ≤ ψ(n) ≤M for all n ∈ Z,
ψn(0) 6= 0 for some n ∈ Z, and ψ(n) = 0 for all large |n|, then c2 is the
spreading speed of un(t) defined by (1.7).
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2. Asymptotic spreading. In this section, we assume that (H1)–(H3)
hold and consider the long time behavior of the initial value problem

(2.1)

{
dun(t)
dt = [Du]n(x) + un(t)g(un(t), un(t− τ)), n ∈ Z, t > 0,

un(s) = ϕn(s), n ∈ Z, s ∈ [−τ, 0],

in which ϕn : [−τ, 0] → R satisfies 0 ≤ ϕn(s) ≤ 1, and for each n ∈ Z it is
uniformly continuous in s ∈ [−τ, 0].

In what follows, let d > 0 be a constant such that the function

[0, 1] 3 ω 7→ dw + wg(w, 1)

is increasing. Consider

dwn(t)

dt
= −2Dwn(t)− dwn(t), wn(0) = ω(n), n ∈ Z.

Then we obtain an analytic and strictly positive semigroup in l∞ because
of the boundedness of 2D+ d. Then the standard semigroup theory implies
the following results.

Lemma 2.1. Assume that (H1)–(H2) hold. Then (2.1) admits a unique
mild solution un(t) for all t > 0 and n ∈ Z, which can be written as

(2.2) un(t) = e−(2D+d)tϕn(0) +

t�

0

e−(2D+d)(t−s)Hn(s) ds

with

Hn(s) = dun(s) +D(un+1(s) + un−1(s)) + un(s)g(un(s), un(s− τ)).

This lemma is also clear by the variation of constants formula [MZ1]; we
omit the proof here. It should be noted that Lemma 2.1 remains true even
if τ = 0. By (H1)–(H2), un(t) also satisfies the following conclusion.

Lemma 2.2. Assume that (H1)–(H2) hold. If un(t) is defined by (2.1),
then

0 ≤ un(t) ≤ 1, t > 0, n ∈ Z.
The positivity of un(t) is clear from the quasipositivity of ug(u, v) (see

Martin and Smith [MS, p. 7]), and un(t) ≤ 1 is clear by (H2) and Lemma 1.3.
Furthermore, using Lemmas 2.1–2.2, we obtain the following conclusion.

Lemma 2.3. Assume that un(t) is defined by (2.1) and (H1)–(H2) hold.

(1) For t > θ ≥ 0, n ∈ Z, we have

un(t) ≤ e−(2D+d)(t−θ)wn(θ) +

t�

θ

e−(2D+d)(t−s)Hn(s) ds

with

Hn(s) = dun(s) +D(un+1(s) + un−1(s)) + un(s)g(un(s), 0).
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(2) For t > θ ≥ 0 and n ∈ Z, we also have

un(t) ≥ e−(2D+d)(t−θ)un(θ) +

t�

θ

e−(2D+d)(t−s)Hn(s) ds

with

Hn(s) = dun(s) +D(un+1(s) + un−1(s)) + un(s)g(un(s), 1).

Since Lemma 2.1 also holds for τ = 0, un is an upper solution of{
dun(t)
dt = [Du]n(x) + un(t)g(un(t), 1), n ∈ Z, t > 0,

un(0) = ϕn(0), n ∈ Z,
and a lower solution of

(2.3)

{
dun(t)
dt = [Du]n(x) + un(t)g(un(t), 0), n ∈ Z, t > 0,

un(0) = ϕn(0), n ∈ Z.
By Lemmas 1.3 and 1.5, we have the following conclusion.

Lemma 2.4. Assume that (H1)–(H3) hold. For any given ε > 0, if
ϕ0(0) ≥ ε and 0 ≤ ϕn(0) ≤ 1, n ∈ Z, and un(t) is defined by{

dun(t)
dt = [Du]n(x) + un(t)g(un(t), 1), n ∈ Z, t > 0,

un(0) = ϕn(0), n ∈ Z,
then there exists δ = δ(ε) > 0 such that

u0(t+ τ) > δ, t > 0,

and δ is independent of ϕn(0), n 6= 0.

Using Lemma 2.4, we can obtain an auxiliary equation without time
delay, which is formulated in the following lemma.

Lemma 2.5. Assume that un(t) is defined by (2.1) and (H1)–(H3) hold.
Then for each ε ∈ (0, 1), there exists M = M(ε) ≥ 1 such that

un(t) ≥ e−(2D+d)(t−θ)un(θ) +

t�

θ

e−(2D+d)(t−s)Hn(s) ds

for some θ ∈ [0, t) and

Hn(s) = dun(s) +D
(
un+1(s) + un−1(s)

)
+ un(s)g(Mun(s), ε).

Proof. If un(t− τ) < ε, then

un(t)g(un(t), un(t− τ)) ≥ un(t)g(un(t), ε)

from (H2). If un(t−τ) > ε, then (H2)–(H3) and Lemma 2.4 imply that there
exists M > 1 such that

Mun(t) ≥ un(t− τ)
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and

un(t)g(un(t), un(t− τ)) ≥ un(t)g(Mun(t), ε).

We now present the main result of this section.

Theorem 2.6. Assume that (H1)–(H3) hold and set

c∗ := inf
λ>0

D(eλ + e−λ − 2) + g(0, 0)

λ
.

If ϕn(s) = 0 for |n| > M and s ∈ [−τ, 0] with some M > 0, and ϕn(0) > 0
for some n ∈ Z, then c∗ is the spreading speed of un(t) which is defined
by (2.1).

Proof. If c > c∗, then un is a lower solution of (2.3) and

lim
t→∞

sup
|n|>ct

un(t) = 0

by Lemma 1.5. If c′ < c∗, then there exists ε > 0 such that

D(eλ + e−λ − 2)− cλ+ g(0, ε) > 0

for any 2c ≤ c′+c∗ and λ > 0 by Lemma 1.4. Applying Lemmas 1.5 and 2.5,
we further obtain

lim inf
t→∞

inf
|n|<c′t

un(t) > 0.

If (H4) holds, we also have the following convergence.

Theorem 2.7. Assume that the assumptions of Theorem 2.6 hold and
(H4) is true. Then

lim inf
t→∞

inf
|n|<ct

un(t) = lim sup
t→∞

sup
|n|<ct

un(t) = E

for any given c < c∗.

Proof. Define

lim inf
t→∞

inf
|n|<ct

un(t) = E, lim sup
t→∞

sup
|n|<ct

un(t) = E.

Then

lim sup
t→∞

sup
|n|<ct

un(t− τ) ≥ E, lim inf
t→∞

inf
|n|<ct

un(t− τ) ≤ E.

Moreover, what we have proved implies that

0 < E ≤ E ≤ 1.

Note that

dun(t) + un(t)g(un(t), un(t− τ))
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is increasing in un(t) and decreasing in un(t− τ), so

lim sup
t→∞

sup
|n|<ct

{dun(t) + un(t)g(un(t), un(t− τ))} ≤ dE + Eg(E,E),

lim inf
t→∞

inf
|n|<ct

{dun(t) + un(t)g(un(t), un(t− τ))} ≥ dE + Eg(E,E).

Using dominated convergence in (2.2) (see also Thieme [Thi]), we obtain

E ≥ D(E + E) + dE + Eg(E,E)

2D + d
,

E ≤ D(E + E) + dE + Eg(E,E)

2D + d
.

From (H4), the proof is complete.

Theorem 2.8. Assume that (H1)–(H4) hold. If un(t) is defined by (2.1)
and φn(0) > 0 for some n ∈ Z, then

lim inf
t→∞

inf
|n|<ct

un(t) = lim sup
t→∞

sup
|n|<ct

un(t) = E

for any given c < c∗.

The proof is similar to that of Theorem 2.7, and we omit it here. To end
this section, we make the following remark.

Remark 2.9. The spreading speed of (1.4) with τ > 0 is the same as
that of (1.4) with τ = 0, and we obtain the persistence of spreading speed
of (1.4) with any time delay τ > 0.

3. Minimal wave speed. In this part, we shall consider the traveling
wave solutions of (1.4), and first present our main conclusion.

Theorem 3.1. Assume that (H1)–(H3) hold. If c ≥ c∗ (resp. c < c∗),
then (1.4) has (resp. does not have) a positive traveling wave solution φ such
that

(3.1) lim
ξ→−∞

φ(ξ) = 0, 0 < lim inf
ξ→∞

φ(ξ) ≤ lim sup
ξ→∞

φ(ξ) ≤ 1.

Moreover, when (H4) and c ≥ c∗ are true, then (1.6) remains true.

We prove this result by establishing three lemmas.

Lemma 3.2. Assume that (H1)–(H3) hold. If c < c∗, then (1.5) has no
positive solutions satisfying (3.1).

Proof. If the statement were false, there would exist some c′′ < c∗ such
that (1.5) with c = c′′ has a positive solution satisfying (3.1). Namely,
u(x, t) = φ(x+ c′′t) also satisfies{

dun(t)
dt = [Du]n(x) + un(t)g(un(t), un(t− τ)), n ∈ Z, t > 0,

un(s) = φ(n+ c′′s), n ∈ Z, s ∈ [−τ, 0].
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Consider −2n = (c+ c′′)t. Then Theorem 2.7 implies that

lim inf
t→∞

inf
−2n=(c+c′′)t

un(t) > 0,

which contradicts (3.1) because ξ = n+ c′′t→ −∞ as t→∞.
Lemma 3.3. Assume that (H1)–(H3) hold. Then for each fixed c > c∗,

(1.4) with (3.1) has a positive solution φ.

Proof. If φ, ψ ∈ C[0,1], define an operator F as follows

F (φ, ψ)(ξ) =
1

c

ξ�

−∞
e−(2D+d)(ξ−s)/cH(φ, ψ)(s) ds

with

H(φ, ψ)(s) = dφ(s) +D
(
φ(s+ c) + φ(s− c)

)
+ φ(s)g(φ(s), ψ(s− cτ)).

When φ(ξ) = ψ(ξ), we also denote

F (φ, φ)(ξ) := P (φ)(ξ).

Then it is easy to prove that P : C[0,1] → C[0,1]. In fact, since

0 ≤ H(φ, ψ)(s) ≤ d+ 2D, s ∈ R,
we have

0 ≤ P (φ)(ξ) ≤ 1, ξ ∈ R,
and the uniform continuity of P (φ)(ξ) is clear by the boundedness of
H(φ, ψ)(s).

We now define two continuous functions by

φ(ξ) = min{eλ1(c)ξ, 1}, φ(ξ) = max{eλ1(c)ξ − qeηλ1(c)ξ, 0}
with 1 < η < min{2, λ2(c)/λ1(c)} and q > 1. Then

(3.2) φ(ξ) ≤ F (φ, φ)(ξ) ≤ P (φ)(ξ) ≤ F (φ, φ)(ξ) ≤ φ(ξ), ξ ∈ R,
if q > 1 is large enough and

φ ∈ C[0,1], φ(ξ) ≤ φ(ξ) ≤ φ(ξ).

In fact, the monotonicity and the definition of d indicate that

F (φ, φ)(ξ) ≤ P (φ)(ξ) ≤ F (φ, φ)(ξ), ξ ∈ R,
and it suffices to verify that

φ(ξ) ≤ F (φ, φ)(ξ), F (φ, φ)(ξ) ≤ φ(ξ), ξ ∈ R.

If ξ > 0 is such that φ(ξ) = 1 and φ′(ξ) = 0, then

D
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
+ φ(ξ)g(φ(ξ), φ(ξ − cτ))

≤ g(1, φ(ξ − cτ)) ≤ 0 = cφ′(ξ).
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When ξ < 0 is such that φ(ξ) = eλ1(c)ξ and φ′(ξ) = λ1(c)e
λ1(c)ξ, then

D
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
+ φ(ξ)g(φ(ξ), φ(ξ − cτ))

≤ D
(
eλ1(c)(ξ+1) + eλ1(c)(ξ−1) − 2eλ1(c)ξ

)
+ eλ1(c)ξg(φ(ξ), φ(ξ − cτ))

≤ D
(
eλ1(c)(ξ+1) + eλ1(c)(ξ−1) − 2eλ1(c)ξ

)
+ eλ1(c)ξg(0, 0)

= eλ1(c)ξ[D(eλ1(c) + e−λ1(c) − 2) + g(0, 0)]

= cλ1(c)e
λ1(c)ξ = cφ′(ξ).

Thus, we have verified that

cφ′(ξ) + (d+ 2D)φ(ξ)

≥ D
(
φ(ξ + 1) + φ(ξ − 1)

)
+ φ(ξ)g(φ(ξ), φ(ξ − cτ)), ξ 6= 0.

If ξ < 0, then

F (φ, φ)(ξ) =
1

c

ξ�

−∞
e−(2D+d)(ξ−s)/cH(φ, φ)(s) ds

≤ 1

c

ξ�

−∞
e−(2D+d)(ξ−s)/c[cφ′(s) + (d+ 2D)φ(s)] ds = φ(ξ),

and when ξ > 0, we have

F (φ, φ)(ξ) =
1

c

ξ�

−∞
e−(2D+d)(ξ−s)/cH(φ, φ)(s) ds

=
1

c

[ 0�

−∞
+

ξ�

0

]
e−(2D+d)(ξ−s)/cH(φ, φ)(s) ds

≤ 1

c

[ 0�

−∞
+

ξ�

0

]
e−(2D+d)(ξ−s)/c[cφ′(s) + (d+ 2D)φ(s)] ds = φ(ξ),

which completes the proof of F (φ, φ)(ξ) ≤ φ(ξ) for ξ ∈ R.
If φ(ξ) = eλ1(c)ξ−qeηλ1(c)ξ > 0 with φ′(ξ) = λ1(c)e

λ1(c)ξ−qηλ1(c)eηλ1(c)ξ,
then

D
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
+ φ(ξ)g(φ(ξ), φ(ξ − cτ))

≥ D
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
+ φ(ξ)g(0, 0)− Iφ(ξ)

(
φ(ξ) + φ(ξ − cτ)

)
≥ eλ1(c)ξ[D(eλ1(c) + e−λ1(c) − 2) + g(0, 0)]

− qeηλ1(c)ξ[D(eηλ1(c) + e−ηλ1(c) − 2) + g(0, 0)]− 2Ie2λ1(c)ξ

≥ cλ1(c)eλ1(c)ξ − cqηλ1(c)eηλ1(c)ξ = cφ′(ξ)



Delayed lattice differential equations 229

provided that

q >
2I

cηλ1(c)−D(eηλ1(c) + e−ηλ1(c) − 2)− g(0, 0)
+ 1 > 1.

When φ(ξ) = 0, it is clear that

cφ′(ξ) ≤ D
(
φ(ξ + 1) + φ(ξ − 1)− 2φ(ξ)

)
+ φ(ξ)g(φ(ξ), φ(ξ − cτ)).

Therefore, if φ(ξ) > 0, then

F (φ, φ)(ξ) =
1

c

ξ�

−∞
e−(2D+d)(ξ−s)/cH(φ, φ)(s) ds

≥ 1

c

ξ�

−∞
e−(2D+d)(ξ−s)/c[cφ′(s) + (d+ 2D)φ(s)] ds = φ(ξ),

and when φ(ξ) = 0, we have

F (φ, φ)(ξ) =
1

c

ξ�

−∞
e−(2D+d)(ξ−s)/cH(φ, φ)(s) ds

≥ 1

c

[ − ln q
(η−1)λ1(c)�

−∞
+

ξ�

− ln q
(η−1)λ1(c)

]
e−(2D+d)(ξ−s)/c[cφ′(s) + (d+ 2D)φ(s)] ds = φ(ξ),

which implies (3.2).
Let µ ∈ (0, d/(4c)) be a constant and define

Γ = {φ ∈ C[0,1]; φ(ξ) ≤ φ(ξ) ≤ φ(ξ) for all ξ}.
Then Γ is convex and nonempty, and is bounded and closed in the sense
of | · |µ. From (3.2), we also obtain P : Γ → Γ. Moreover, the mapping
is completely continuous in the sense of the decay norm | · |µ, the proof of
which is independent of monotonicity (see Huang et al. [HLZ, Lemmas 3.3
and 3.5] and Ma et al. [MWZ, Theorem 3.1]).

By Schauder’s fixed point theorem, there is φ ∈ Γ satisfying

P (φ)(ξ) = φ(ξ), φ(ξ) ≤ φ(ξ) ≤ φ(ξ), ξ ∈ R,
which is also a solution of (1.4).

Since φ is a special positive solution to (2.1), the asymptotic boundary
condition is clear by Section 3.

Lemma 3.4. Assume that (H1)–(H3) hold. If c = c∗, then (1.4) has a
positive solution φ satisfying (3.1).

Proof. We prove the result by passing to a limit function [BrC, LR]. Let
ci → c∗, i ∈ N, be strictly decreasing. Then for each fixed ci, the operator
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P with c = ci has a positive fixed point φi such that

0 < φi(ξ) < 1, lim inf
ξ→∞

φi(ξ) > 0, lim
ξ→−∞

φi(ξ) = 0, i ∈ N.

Without loss of generality, we assume that

φi(0) = δ, φi(ξ) < δ, ξ < 0

with g(4δ, 1) > 0. Due to the uniform boundedness of φ′i, {φi} is an equicon-
tinuous and uniformly bounded sequence. By the Ascoli–Arzelà lemma and a
nested subsequence argument, {φi} has a subsequence, still denoted by {φi},
and there exists φ ∈ C[0,1] such that

φi(ξ)→ φ(ξ), i→∞,
in which the limit is pointwise and locally uniform on any bounded interval
of ξ ∈ R. Clearly, we also have

φ(0) = δ, φ(ξ) ≤ δ, ξ < 0.

Note that

e−(2D+d)(ξ−s)/ci → e−(2D+d)(ξ−s)/c∗ , i→∞,
and the convergence is uniform for ξ ∈ R, s ≤ ξ. Therefore, φ is a fixed point
of P with c = c∗. By the properties of P , φ is a positive solution to (1.4).

Due to the results of Section 3, the limit behavior as ξ →∞ is clear. We
now consider the limit behavior when ξ → −∞. If lim supξ→−∞ φ(ξ) > 0,
then there exists ε0 > 0 such that there exists ξi < −i such that

φ(ξi) > ε0, i ∈ N.
Since φ is a special positive solution to (2.1), Theorem 2.8 implies that

there exists T independent of i such that

φ(ξi + T ) > 3δ,

and a contradiction occurs when i→∞.
To illustrate our main results, we consider the following example.

Example 3.5. Assume that r > 0 and a ∈ [0, 1). Let

c∗ = inf
λ>0

D(eλ + e−λ − 2) + r

λ
.

Then c∗ is the minimal wave speed of traveling wave solutions connecting 0
with 1/(1 + a) of

(3.3)
dun(t)

dt
= [Du]n(x) + run(t)[1− un(t)− aun(t− τ)], n ∈ Z, t > 0.

Moreover, c∗ is the spreading speed of un(t) which is defined by the cor-
responding initial value problem of (3.3) if un(s) ≥ 0, n ∈ N, s ∈ [−τ, 0],
satisfies:
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(I1) for each n ∈ N, un(s) is continuous in s ∈ [−τ, 0];
(I2) un(s) = 0 for all |n| > M and s ∈ [−τ, 0] with some M > 0;
(I3) un(0) > 0 for some n ∈ Z.
To end this paper, we make the following remark.

Remark 3.6. Although the delayed term reflects the intraspecific com-
petition in population dynamics, the delay may be harmless to the propaga-
tion if the instantaneous competition dominates the delayed one (see (H3)).
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