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On Kirchhoff type problems involving critical
and singular nonlinearities

by CHUN-YU LEI (Guiyang), CHANG-MuU CHU (Guiyang),
HoONG-MIN Suo (Guiyang) and CHUN-LEI TANG (Chongqing)

Abstract. In this paper, we are interested in multiple positive solutions for the Kirch-
hoff type problem

1

f(a+bSQ|Vu|2dx)Au:u5+)\% in £2,
u=0 on 012,
where £2 C R? is a smooth bounded domain, 0 € £2, 1 < ¢ < 2, X is a positive parameter

and [ satisfies some inequalities. We obtain the existence of a positive ground state solution
and multiple positive solutions via the Nehari manifold method.

1. Introduction and main results. This paper concerns the positive
solutions of the following Kirchhoff type equation:
1

—(a+b§ |Vu\2dm>Au:u5+)\uqi in 2,

(1) ) e
u=0 on 02,

where {2 is a smooth bounded domain in R?, a,b > 0,0 € £2, A > 0 is a real

parameter, 1 < ¢ < 2and 0 < 5 < 2.

Indeed, (1.1) has its origin in the theory of nonlinear vibration. For exam-
ple, the following equation describes the nonlinear vibration of a stretched

string:
L 2
0? E 0 0?
JATI T R Y LT R LT
ot? h 2L Ox Ox?
where p, pg, h, E, L are constants, which have the following meaning: p is
the mass density, pg is the initial tension, h represents the area of the cross-
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section, E is the Young modulus of the material, and L is the length of
the string. The above equation is the first model taking into account the
change of the axial tension along the string which is caused by the change
of its length during the vibration. It is noteworthy that the model contains
a nonlocal term Sg
by Kirchhoff in 1876 [13]. In the recent years, the existence and multiplicity

of solutions to the Kirchhoff type problem

(g—g)2 dx; the above nonlocal equation was first proposed

—(a—i—bS \Vu|2d:z:>Au:h(af,u) in (2,
Q
uw=0 on 012,

(1.2)

has been extensively studied, and some important and interesting results
have been found. For example, in [2 4. [0 [7, 14} 18, 19, 22] 26l 27], the
existence of positive solutions has been established by variational meth-
ods. The existence of sign-changing solutions for problem (1.2) has been
studied via invariant sets of the descent flow (see [20, 21], 28]). If {2 is an
unbounded domain, [I5HI6] 23] established the existence of weak solutions
and [12], 24] studied the existence of infinitely many solutions. Recently,
there are some papers on the Kirchhoff type problem involving the critical
growth (see [I, OHIT], [16], 22] 26] and the references therein).

More recently, Chen et al. [6] considered the Kirchhoff type problem

- <a +b S |Vu|? dx) Au = f(z)uP?u+ Ag(z)|u|?%u in £,
2
u=20 on 0f2,

(1.3)

assuming that 1 < ¢ < 2 < p < 6 and the sign-changing weight functions

f,g € C(2) satisty

(h1) f* = max{f,0} # 0.
(h2) g™ = max{g,0} # 0.

We report here one of the main results of [6] for the reader’s convenience.

THEOREM A (see [6]). Suppose §2 is a bounded domain in R with smooth
boundary, 1 < ¢ < 2,4 <p <6 and (hy), (ha) hold. Then there exists a
positive constant Ao(a) > 0 such that for each a > 0 and X € (0, Ao(a)),
problem (1.3) has at least two positive solutions.

Thus, motivated by [6], in equation (1.3), suppose 1 < ¢ < 2, p = 6,
f(z) =1, g(z) = 1/|z|%; an interesting question now is whether the existence
and multiplicity of positive solutions can be established for such Kirchhoff
type problems involving critical and singular nonlinearities. We will give a
positive answer by applying the Nehari manifold method.
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Throughout this paper, we use the following notation:

e The space H}(£2) is equipped with the norm |u| = (§, |Vul? dz)*/2,
the norm in LP(£2) is denoted by |ul, = (§, |u[? dx)'/?.

e ut(z) = max{u(z),0}, v~ (z) = max{—u(z),0}.

o C,(Cy,C1,C5, ... denote various positive constants, which may vary

from line to line.
e Let S be the best Sobolev constant, that is,

(1.4) S = n M

The energy functional corresponding to problem (1.1) is given by

a b 1 A (uh)e
Ly(u) = =||ul®+ =|ju|* = = \ ()b de = = dzx
(00 = Gl + Fhal? - J)* e = 21 555

A function u is called a weak solution of problem (1.1) if u € HJ(£2) and for
all p € H}(£2) we have

uT)a 1
(a+bl|ull®) | (Vu, Vo) dz — | (u™)Ppdz — X\ | ( x)w @dx = 0.
2

N 97

Let Ry > 0 be a constant such that 2 C B(0, Ry), where B(0, Ry) =
{r € R? : |z| < Rp}. By Hélder’s inequality and (1.4), for all u € HE(2),
1<g<2,0<8<2, we get

(15 | (W)

B
s
juf (R
<Sd:v<<§|u|qu>6<s 5 dac)
o 1l 0 o |x[6-a
6—q 6—q
6 1 6
<5 q/Q\uHQ(S i) C<s o | )
2| B(0,Ro) |z]5¢
A 6-q  6-28-0)
< 59y q( > _ b4 pe-aargean

Furthermore, assume that u, — w in H}(£2) and consider an arbitrary
subsequence of {uy}, still denoted by {u,}. By the Lebesgue dominated
convergence theorem,

(ut)?

|:c|5 dz.

(1.6) lim S ()"

n—00 |x|f3

da:—x
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Set
6—4q (6-28-9)/2 g—q/2
T = ——— = q
18 — 3¢ — 65R0 ST
T l 2—(] (2—‘1)/4 4aS (6—‘1)/4
T — aq <2 — an3> (241)/4'
T(6—q)\6—q

Now our main results are as follows:

THEOREM 1.1. Assume 1 < ¢ < 2 and 0 < 8 < 2. Then there exists
A« > 0 such that for any X € (0,\), problem (1.1) has a positive ground
state solution.

THEOREM 1.2. Assume 1 < q <2 and 3—q < 8 < 2. Then there exists
Aix > 0 such that for any X € (0, A\wx), problem (1.1) has at least two positive
solutions, and one of the solutions is a positive ground state solution.

REMARK 1.3. Ambrosetti et al. [3] has studied the existence and mul-
tiplicity of positive solutions for problem (1.3) with a = 1, b = 0, f(z) =
g(x) =1 and p =6. When b > 0, f(z) = g(x) =1 and p = 6, (1.3) reduces
to a Kirchhoff type problem with concave-convex nonlinearities. However, in
that case, to the best of our knowledge, there are no results on multiplicity
of positive solutions. The reason is that, in view of b > 0, type problem
becomes more complicated than in the case b = 0, namely, it is difficult to
estimate the critical value level.

REMARK 1.4. It is of importance to obtain multiple positive solutions
for problem (1.1) when 3 —¢ < g < 2. If § = 0 in (1.1), Figueiredo et
al. [I0] have obtained infinitely many solutions for (1.1), and the energy
functional value level is negative, but they could not get multiple positive
solutions. In this paper, the typical difficulty is the lack of compactness of
the embedding H{(£2) < L®(£2). We overcome the difficulty by using the
concentration-compactness principle.

This work is organized as follows. In the next section we present some

preliminary results. In Section 3, we give the proofs of Theorems 1.1 and 1.2.

2. Some preliminary results. As I, is not bounded below on H}(£2),
we will work on the Nehari manifold

N = {u € Hy(2)\{0} : (5 (u),u) = 0}.

Note that N contains all nonzero solutions of problem (1.1). Moreover,
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u € N, if and only if

+
allul|® + bljul* — S(u+)6 dx — A S (a0 dx = 0.
Q Q
We split N, into three parts:

N5t = {ue Ny (2= q)allull® + (4 — )bllull* = (6 - g) [ (u")° do > 0},

S

9]

N)(\) = {u eNy:(2— q)aHuHQ + (4 — Q)b||u”4 —(6-9q) S(u—i-)G do — 0},

9]

Ny = {u € Ma: (2= q)allul® + (4 — @)b|lull* = (6 — q) S(u+)6 dx < 0}.
Q

LEMMA 2.1.

(i) If X € (0, T1) (T1 is as in (1.7)), then N& # 0.
(ii) If X € ( ,2(4 q) 1), then/\fg:@.

Proof. (i) Let u € H}(£2) \ {0}, and define &, #, € C(R*,R) by

+\¢q
B(t) = at*|lul® + bt |Juf* — 776 | () dz,
||
2
q
1(t) = at~*|lul]? — Ae76 | ()
2

Then
dx.

+\q
/ _ A.4—5 2 pNg—T (u™)

Solving @ (t) = 0, we obtain
(ut)e
M- { - day1/2=0)
- dallull?

Easy computations show that @} (t) > 0 for all 0 < ¢ < tyax and P} () <0
for all ¢ > tnax. Thus @1 (t) attains its maximum at tpayx, that is,

2(6—q)
z—q[4a}2q Jull 5

4 |6— (ut)9 el
4 (Mo 7|J E dzx) >~

Note that {,(u")®dz < |, u®dz. Then from (1.5) one gets

B(tmax) — | (uh)0dz > By (tmax) — | (u)° da
2 (0]

2—q| 4a
4 |6

(pl (tmax) =

[=2]

—q 2(6—q)
[[ul 2

_ }Qq (ut)a L_SUde
G (Mg G de)™
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2—q[ da ] (1T ul?)
—q a - —q U —q
> — 2 —1 ‘u‘g
4 |6—g¢q AT lulg
4
2—q| 4aS |2=a (1 \ 2=« 6
>274 — 1
_{ 4 [G—q] (AT> }|u|6 -

where the last inequality holds for every 0 < A < T7. It follows that there
exist two positive numbers denoted by t* such that 0 < t+ = t*(u) <
tmax <t~ =t"(u), tTu € Ny and t7u € N .

(ii) For contradiction, suppose that there exists ug # 0 such that ug € NY.
It follows that

Q

, . ()"
(2.1) alluol|® + blluo||* = | (ug)® d:z+)\s T
0
(2.2) salluol? + 2blluoll* = A6 — ) | {0)°
(pj

These imply that

2a 9 2 6 2a
4_qHU0H +fqﬂ(%) d37>4_

23) A ()" ) 2
(9]

||
o)

2
upl| -

On the one hand, since |Jug||? > S|ug|2 for up € NY, using (1.5) we get
(Qﬁfq)
6— —q
NI S
M 4
(o |;§\B dm) 0
—q (S
>T2 2-¢ 82— q( ’u0| ) — —S(U(T)de
TE|UO|6_(I 9]
— ol dz — | (u)® da > 0.
Q Q
On the other hand, by (2.3),

2(6—q)
6— 2=
S N TP
“ 4
(Ao Bk dz)*™ o
(6—11)
4 6-q 4 |
< T?2-498 2-q \2—9¢

4
(42aq)2 QHUOH2 a

4
4 _6-q 4 (4—q\24
:Tzqu 23)\24q< 2aq> q”u0||2—x(u8')6dx.
2
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Since ug € N, the above equals

4
4 6-q 4 [4—q\2q 9 a(2—9q) 5 b(4—19q) 4
T2-a8 2—q \2— - - - =7 - 7
5 ( )l o= =g ol

a(2 ) 5 d—q\77 6—¢ b(d—q), |4
= T2 S 2 )\2 -1 - —-—z
<0

when A\ < ( )Tl, which is a contradiction. =
LEMMA 2.2. I, is coercive and bounded below on Ny .
Proof. Tf u € Ny, then by (1.5) we get

a b 1 A (uh)d
Ii(u) = 5”“”2 + ZHUH4 % S(U+)6 dx — — S dx
Q

a b 1 1 (u™)?
= P+ gl = (5 - 5) | S o
3 12 q 6/ ||

a, o b 4 1 1
> = — —A === q,
> Shul? + gyl = A = § )7

Since 1 < ¢ < 2, the conclusion follows. =

We remark that by Lemma 2.1 we have V) = N UN; for all A in
(0, %Tl). Moreover, we know that N and N are nonempty, and by
Lemma 2.2 we may define

AU SR A

LEMMA 2.3.
(i) an < ay <O.

(i) If A € (0,To) (T is given in (1.7)), then o, > %(2%353(1)1/2.

Proof. (i) Suppose u € N,". Then

2—q 4—q
24 w0 de < ——al|ul|® + —b||ul|.
(2.4 J(ur)* e < G gall® + g0l
It follows from (2.4) that
A (wh)
2y 4
= - dx
Ix(u) = || I + || [ qs Bk

)
)
1
4

— (5 Jalll®+ Z

)buuu‘* (;-5) Snras

9}
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a 1 s (1 1 .
- S )b
< (52 Jalul+ (5= ol
1 1\ (2-q 1 4—q,
U Y (e B
# (5= 5) (3= Zala? + = 2bi
1 2 1/1 1
=-(1-2 24 (=== )bful* <o0.
31 2t + 5 (5 - £ ol <

By the definitions of «;, and aj\r, we obtain ay < ozj\r < 0.
(ii) Suppose u € N, . Then

2 — 4 —
gwﬂmM>6_qme+gjﬁwmﬁ
o q q

According to (1.4) and {,(u™)%dz < §, [ul® dz, we get

_ 2—q 4—q
SﬂWWZSWWWm>6—fﬂMF+——%MW
—q 6—q
7
2—q

>

allull?,

and consequently

2 g, \ VA
2.5 > ——5 .
(25) Jull > (3=25%)

Assume A € (0,T3). Then from v € Ny and (2.5) one obtains

a b 1 A (uh)e
In(u) = = |lu|* + =|jul|* = = \ (u)0dz — = dx
A(u) = Fllull® + g lul 65 ) qg,ﬂﬁ

_ a2 Q 4_1 2 4 K _é (ut)e
= 2l + 7 lul 6(wwn+wmn M) -3

1 1
> ul? = (=== )ATul)?
3 qg 6

—ttiad Gpoz—a _ (L1

!uH{3Hu|| <q 2 AT
a(2—q ., 1/2

> =—= :

—6(6—(1“) )

LEMMA 2.4. For every u € Ny, there exist € > 0 and a continuously
differentiable function f = f(w) >0, w € HE($2), ||w| < e, satisfying

fO)=1, fw)(ut+w)eNy, Ywec HH ), |vw|<e.
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Proof. For u € Ny, define F : R x H}(2) — R by

P(t,w) = 2% § [V (u+ w)Pde -+ 19| [V -+ w) de )

02 (0]
— 50\ ((u+w) ")’ da — A | (’“+|;q dz.
2 02 r

Since u € Ny, it is easily seen that F'(1,0) = 0 and

Fy(1,0) = (2 = q)allul* + (4 — @)bllu]|* — (6 — ) | (uT)° da.
(9}
As u # 0, Lemma 2.1 shows that F;(1,0) # 0. Thus, we can apply the im-
plicit function theorem at the point (0, 1) to obtain € > 0 and a continuously
differentiable function f : B(0,e) C H}(£2) — R* as in the conclusion of
the lemma. =

LEMMA 2.5. For every u € N, , there exist ¢ > 0 and a continuously
differentiable function f = f(v) >0, v € H}(R2), |[v| < e, satisfying
fO)=1, f)(utv)eNy, YveHy(2), || <e.

Proof. Similar to the argument in Lemma 2.4, for u € N, , define a
function F : R x H}(£2) — R by

F(t,v) = 2% § [V + o) do 4+ (| [V + ) de)

2 n
— 109 S((u +0))0dr — X S (u;gq dx.
9] 9]

As u € N, we get F(1,0) = 0 and F;(1,0) < 0. Therefore, we can apply
the implicit function theorem at (0,1) to get the result. =

LEMMA 2.6. If {u,} C Ny is a minimizing sequence of I, then for any
v € Hy(12),

_ a0 lfunll + Il

(26) (I} ) 0) .

Proof. By Lemma 2.2, I, is coercive on N). Then by Ekeland’s varia-
tional principle [8], there exists a minimizing sequence {u,} C N) for I,
such that

1 1
(2.7) I)\(un) <Oé)\—|-ﬁ, IA(U)—I)\(un) > —EHU—UnHa Yv € Nj.

Obviously, Lemma 2.2 shows that {u,} is bounded in Hg(§2). So there exist



278 C. Y. Lei et al.

a subsequence (still denoted {u,}) and u, in H}(2) such that

Up — Uy weakly in HE(£2),

Uy, — Us strongly in LP(£2) (1 < p < 6),

up(x) = us(z) a.e. in 2.
Pick t > 0 small enough and ¢ € H}(f2), and set u = u,, w =
tp € Hi(£2). By Lemma 2.4 there exists f,,(t) = fn(tp) satisfying f,(0) = 1,
Jn(t)(un + to) € Ny. Note that
ut)

(2.8) al[tnl* + blun|* = § (u)® da = A | (|x|ﬁ

2

dr = 0.
Then (2.7) implies that

(29)  ~{1falt) = 11 ltnll + £ Fa O] > 1 Fa(E) i + 10) —
> IA(UTL) - I)x[fn(t)(un + t@)]

and

Ix(un) = Ix[fu () (tn +ts0)}

RESU — 7
allunl? + =4 bl

6 _ _ w, +Y4a
+fn(g ;}((un—kt@ﬁ)ﬁdaz—k)\fn(g 1 S ( ?;T;O) ) dx
2
#2880 (e T 2 1) ) (= s+ 1)
1 w 36 g4 — { ()6 de
+6<§z(( SRR (0 i)
A Up, + to) ) — (u)e
SO W BT

Combining this with (2.8) and (2.9), dividing by ¢ and letting ¢t — 0, we
obtain

£ lunll + [l

n

> L (O)allun | + £, O)bllun | + £1(0) § (1) d+ A£5(0) | (“72 dr
) iy

|x|ﬁ pdx

— (a +blfunl?) | (Vun, Vo) dz + | (u) o da+ X |
(0] (0] (0]



Kirchhoff type problems 279

+\g—1
—(a + bljun|?) S (Vu,, Vo) dx+8(“:zr)5$0d$+)\x (uyy) ; L
+\g¢—1
.Q 0 0

Hence, we deduce that

(O unll + llell

n

(2.10) < (a+blunl?) § (Vun, Vip) da

0
— (Vo da — (u) 1 .
§2< ed Aéw d
= (I} (un). )

for any ¢ € HE(£2). As (2.10) also holds for —¢, we see that (2.6) holds.
Moreover, by Lemma 2.4, there exists a constant C' > 0 such that | f},(0)| < C
for all n € N. Therefore, letting n — oo in (2.6) we get

- (ul)" e
(2.11) (a+b$§&HuMF>S(Vﬁu,vw)dx::S@dj5@dx+AS——Tjﬁ—fdx
n n n

for all o € H}(£2). This completes the proof of Lemma 2.6. m
We define

absS® N b3 S0 N (b25* + 4a8)3/?
4 24 24 ’
LEMMA 2.7. Assume 1 < ¢ <2 and 0 < 3 <2, and let {u,} C N, be
a minimizing sequence for Iy with

4 2/(2=a) 79, 9/(2—)
ay, <A-— DX/2=9  yhere D = <(4qq)T> <q> )

A=

a
Then there exists u € Hi(§2) such that u, — u in L°(£2).
Proof. We have
(2.12) I\(un,) = o) as n — oo.

By Lemma 2.2, {u,} is bounded in H}({2). Passing to a subsequence if
necessary, there exists u € Hg(§2) such that

Up — U weakly in H}(£2),
Up, —> U strongly in LP(£2) (1 < p < 6),
up(x) = u(x) a.e. in 2.

Furthermore, by the concentration-compactness principle (see [17]), there



280 C. Y. Lei et al.

exists a subsequence, still denoted by {u,}, such that
Vun* = dp > ul® + D 1jdey,  |uals = dv =[ulg + ) v,
Jje€J jeJ
where J is an at most countable index set, d,; is the Dirac mass at z;, and
xj € {2 is in the support of u,v. Moreover,

(2.13) i v >0, g > Sl

For any € > 0 small, let ¢ j(x) be a smooth cut-off function centered at x;
such that 0 <9 j(z) <1,

Ve j(x) =1in B(zj,¢/2), e j(x) =0in B(zj,e), |V ()] <4/e.
By (1.4), we have

uf)rt
LSQ( e d

(uf)" s o) A
< S T dx<( S ]un|q'qu>6< S 6ﬁdm>
i - o2l
B(zj,e) B(zj,e) B(xj,e)
6—q
1 6
<s o |t )
B(oy.e) [@ — 2|7
e 5=1
= 592 ||u, ||Q<S r’ )
07“6 G
- S~ q/2 [ ||q<s )
0or

6—q

_ 6—q 6 6-26—g
=S Q/2<18—3q—6,8> lunl|%e2 .

Since {u,} is bounded in H}(£2), it follows that

+)g—1
lim lim S (u(;)‘ﬁ Ve j(2)uy dz = 0.

e—0n—o0
2

By Holder’s inequality, we have

S ’V(@baj(fv)un)ﬁ dx = S |un Ve j () + wa,j(x)vunF dx
(9} 2

16
<5 |

8
|un|2 dx + g S Un’vun’dx"i_ Hun”2
B(xj,e) B(w; )
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D lar)” (] 1)l Sl f w2 ae)
0

B(Ijvs) B(xjvs)

| /\

16 8
< ;QCll\unIIQ62 + [fun | + ngIIUnII?’E = (16C1 + 1)|[unl* + 8Ca|unl®,

where C1, Cy are positive constants. Since {f/ (0)} and {u,} are bounded in
HE(£2), one gets

fo O el + e (@]

=0,
n—o0 n
so that
/ .
b i MOl + ey @] _
e—0n—o0 n

Setting ¢ = 9. j(z)uy, in (2.6), and taking ¢ — 0, one gets
0= lim lim (7}(un), ¥ j(x)un)

e—=0n

= lim hm {(a+b[!un|]2) S(Vun,V(we,j(:r)un)) dx

e—=0n
@ +yg-1
= J() (o do = 0§ e da |
2 2
= (a—i—bx d,u) S e jdp — S e j dv,
(0] k0] kP

so that
vj = (a+ buj)u,
By (2.13) we deduce that

(214) V;/?) Z asS + szyj/B, or v;=puj= 0.

1/3

Let X = v;"". It follows from (2.14) that

X2 >aS+bS8%X
which means that

bS? + Vb254 + 4aS
2 b

bS? + V1256 4 453
5 =
Next we show that u; > (bS® + V0256 + 4a53) /2 is impossible, therefore

the set J is empty. Assume the contrary: there exists some jo € J such
that pj, > (bS® + V2S5 +4aS3)/2. By (2.12), (1.6), (1.5) and Young’s

X >

so that

pj = SX >
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inequality, we obtain

(2.15) a, = nlLHOLO I (uy)

= lim {[,\(un) - i(a\unHQ +bllun* = | ()0 do — A | () dx) }

n—00
[0 9

AV4
i»—'
gE
——
N
N | —

|
e~ =
~_

ESH

<

3
S

+

(<]
7N
| =

|
=
~_

2
S

> (5= 3)ali e ) (5 £ e+ )
il jeJ
11 L1y ¢ fu)
+ <4 - 6> (équw;w) ‘A<q - 4) Vg @

11 11\, , (1 1 @ s 11

- - 4 - - ; S PP T S (i By ol PATT
(2 4)aujo+(4 4)bum+<4 6) ot 2l A(q 4) Jul
1 1 1 1 1 1\K3 2
S ) CT I (S 1y - ST (il I 5 )=
(2 4>a +<4 4) +<4 6)53 ’
a _2
2

b 9 KS 9 3
- —— — —|aK +bK* — — | — D)2~
Z oK K e g\ B T AT
where D = (%T) 2/(2=q) (%)q/(z_@. We claim that
a b K3
2.1 “K+-K*— — = A.
(2.16) 2t T T
Indeed,
@ _ abS? + a/b256 + 4aS3
27 4
and

(bS? + /1256 + 4a.93)* = 2bS° + 4aS® + 2bS% /5256 + 4aS3.
So
(bS? + /256 4 4a.93)3 = 12abS° + 4b>S? + (4b*S® + 4a.5%)\/b2S6 + 4a.93.
Hence
K3 12abS3 + 46355 + (46253 4 4a) V256 + 453
693 48

and
3 3 g6 23, /p2 G6 3
9K+9K2:8ab5 +20°S° + (4a + 2b°5°) Vb3S +4a5"

2 4 16
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Therefore,
a b K3 abS®  b3S®  (4a +b2S3)V/b2S6 + 4453
K4+ K2 — = A
2 + 4 653 4 + 24 + 24
An easy computation yields
l(3
(2.17) aK +bK?* — =5 =0

Therefore, by (2.15)~(2.17), we get A — DAY (29 < af < A — DN?/(-9).
This is a contradiction. Hence J is empty, thus {,ud dz — {,u®dz as
n — o0o. This completes the proof of Lemma 2.7. =

It is well known that the extremal function
31/4
Ulx) = ———+
@)= T e
solves
—Au=v" inR3,
and |VU\%2(R3) = |U]%6(R3) = S§3/2. Let n € C3°(R2) be a cut-off function

such that 0 <7 <1, |Vn| < C and n(z) =1 for |z| < 2R, and n(z) = 0 for
|z| > 3R. We define

_ —1)2 T\ _ (3¢%)"/*n(x)
w0 =0 (C) = (e
It is known (see [25, Lemma 1.46], [5]) that

(2.18) |“€|6 = ’U|L6(R3 +O(e 3) = §%/2 4 0(63)’
' Juc||? = VU2, 2@y T O(€) = S3/2 1 0(e).

In much the same way as in [26] we can deduce

lucll* = VU1 gs) + O(e) = $* + O(e),

luc||® = VU S5 sy + O(e) = $%2 4 O(e),
lucll® = [VU [ gs) + O(e) = S° + O(e),

Hu H12 = ‘VU’L2 (R3) + O(f‘:) =59 + O( )

(2.19)

LEMMA 2.8. Assume 1 < g <2 and 3 —q < 8 < 2. Then there ezxists
u € HE(92) such that

sup Iy (ta) < A — DA%/ (2=,
t>0

where D is given in Lemma 2.7. In particular,

ay < A— DN/,
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Proof. We claim that there exist t. > 0 and positive constants tg, 17,
independent of ¢, A, such that sup;>q Ix(tus) = I\(t-u:) and

(2.20) 0<ty<t:.<Ty <oo.
In fact, since limy_,o I (tue) = —00, there exists t. > 0 such that

dI(t
(2.21) L(tous) = sup Iy (fows) and  T2U) | g

t>0 dt t=te
It follows from (2.21) that
q
(222)  tealjuc|® + 2buc|t — 2 uldz — X271 | S dw =0,
(223)  aljucl? + 3e20lfuc | - 5! § ul dz — A(g — )12 | oy dw < 0.
Combining (2.22) and (2.23) implies that
221) (@ qteallucl? + (4 — q)t2bluct < (6 — q)t2 | o d.
Q

On the one hand, we can calculate easily from (2.24) that ¢. is bounded
below, that is, there exists a positive constant tg > 0 (independent of e, \)
such that 0 < tg < t..

On the other hand, it follows from (2.22) that

2 q

allu A U
Ht;H + b|]ua|]2 = tg S ug dx + T S —Eﬂ z,

€ Q te " g ]

so t is bounded above for all € > 0 small enough. Thus (2.20) is true.
We set Iy(t-u:) = A(teus) — AB(tzue), where
a b to 1 ud
Alteue) = 52l + Jeblucl = 55 (i, Bt = oot

B
6Q Q]m\

dx.

Firstly, we claim that there exists a positive constant C3 (independent
of €, \) such that

(2.25) A(teus) < A+ Cse.
Indeed, let

a b 10
hO) = 5 el + el - 5 §

ul dz.
Since lim¢—yo0 h(t) = —o0, h(0) = 0 and lim; ,o+ h(t) > 0, it follows that
sup;>q h(t) is attained at T. > 0, that is,

W (#)lr = aTe||ucl® + bT2 uc||* — T2 | ué dz = 0.
(7
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Observe that

T2\ uf do — alfuc||” = bT2||uc||* = 0,
2

SO

bllel 1+ /02 s | + dafuc 2§ u d 172
e = ( 2, ubdx ) '
Since h(t) is increasing in [0,7%], by (2.18) and (2.19) we get
Alteue) < h(T:)
__abjuc|® Bllucl ' (O [lue]® + daljuc|* §, ué )
4\, ubdr  24((,ul dr)? 24(§ , ug dx)?
ab(S%2 + O(e)) b3 (S% + O(e))
T A(S32 1 O(3)) | 24(S3/2 + O(3))2
P2(5° + O(2)) + 4a(S%2 + O(2)) (%2 + O(=3) 2
24(59 4 O(3))?
abS?  b3S6  (b2S6 + 4aS%)3/?

+

=1 Tt 2453 +0()
abS?  b3S%  (b2S* + 4aS)3/?
=t t o +0(e) = A+ O(e).

Therefore, there exists Cs > 0 (independent of €, A) such that (2.25) holds.
We now estimate B(t.u.). By the definition of u. and (2.20), in addition,
let 0 < e < p1 <2R. We have

(2.26)  Blteu.) =t | uel® 4,
| ) = Tl
2
-8 q
q(a.2\q/4 |z| q |ve
> t5(3e%) S EFEDTE dr + 1 S FE dx
|z|<p1 |z[>p1

p1

2
qaq/4_q/2 -
> 1d39/49/2 | T dr
0
Py
__ 499q 6—q—2
=331 S rﬁ(1+r2)‘1/2 dr
0
qaq/4_(6 25)/21 r?
— 1439/ (6=a- —d
037 "¢e Srﬁ(1+r2)q/2 r
01871 7’2
+1930/1£(0-0-28)/2 | TR dr.
T T

0

1



286 C. Y. Lei et al.

From (2.26), we get

. Celb-a29)2 53 g
S x€|6 dx > 05(6_‘1_2/3)/2’1ng|’ q= 3 — ﬁ’
2 Ce/2, qg<3-—p.

CASE B > 3 —q. Then ¢ > 3 — 3, so there exists a constant Cy > 0
(independent of €, ) such that
(2.27) Bltug) > Cuel6-1720)/2,
Noting that 1 < ¢ <2 and 3—¢ < 8 < 2, it follows that (6 — ¢ — 28)/2 < 1
2
and 76_%;%3 <0.Let e = N2/ and A\ < )y = (TCﬁD) 2‘1“5—6. Then
8—2q—2ﬁ

Ce — Cye(079720)/2 — 0322/ (270 _ o\
= 229 (05 — Oy 22qq25)
< —DX\¥/(2=9),
Therefore, the combination of (2.25) and (2.27) implies that
I(teus) = Altzuz) — AB(tou)
< A+ Cze — CyAe'6-9720)/2
< A — D)/

CASE 8 = 3 — ¢q. Then there exists a constant C5 > 0 (independent
of &, A) such that

(2.28) B(teug) > Cse00720)/2 |1 ¢,
Let € = A\ (279 X\ < \g = min{1,e"(©3+DP)/Cs} where C5 = 203 so that

Cse — 05)\5(6*q72ﬁ)/2‘1n€’ — 03)\2/(2711) _ ;&

—4q

— \Y0(Cy — CgA 25 [InA|)
=\ (=905 — Cg|ln \|) < =DA%/ (2~9),
It follows from (2.25) and (2.28) that
In(teus) = A(teus) — AB(touz) < A+ Cye — CyAe6~9728)/2|1p ¢
< A— D)/,
This completes the proof of Lemma 2.8. =

3. Proofs of the theorems

Proof of Theorem 1.1. There exists a constant 0 > 0 such that
A— DX/ D > 0 for A < 6. Set \, = mln{2 Tl,Tg,(S} Then Lem-
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mas 2.1-2.4, 2.6, 2.7 hold for all 0 < A < A,. By Lemma 2.6, there exists a
minimizing sequence {u,} C Ny of I, obviously bounded in H{ (£2); going if
necessary to a subsequence, still denoted by {u,}, there exists uy € H}(2)
such that

Up — U weakly in HE(£2),
Uy —> Uy strongly in L*(£2), 1 < s < 6,
up(z) = up(x) a.e. in £2,
as n — oo. Now we will prove that u) is a positive ground state solution of

problem (1.1).
First, we prove that u) is a positive solution of (1.1). Indeed, by Lem-

ma 2.6, for all ¢ € HZ(£2),
Ve

(“*bﬁngmF)MVvamdx—g@JPwdz—Aé““

dzr = 0.
B
) E

Set limy, o0 ||un || = 1. Then

(uf) 1ty

|$|B dz.

(3.1) (a+01%) {(Vux, Vo) do = | (uf)Podz + X |
02 2 2

Taking the test function ¢ = wuy in (3.1) yields

(uy)?

‘ﬁ dr =

(3.2) (a+b2)Juxl® = § (uf)° do — A |
0N 2

The fact that u,, € N, implies that

+)4
(@t W ) = § ) e = 2§ 2 o =0,
9 9

As oy <0< A— DX?/2-9 by Lemma 2.7 and (1.6) one has

(3.3) (a+ 1)1 = | (uf)® da — A g
02 2

It follows from (3.2) and (3.3) that ||uy|| = I, so u, — uy in H(£2), and uy
is a solution of problem (1.1), that is,

(uf)i 1y

WB dx

(34) (@t bluall) {(Vur, Vi) dr = | (uf)’pdr + A
2 0] 2

for all ¢ € H(2). Taking the test function ¢ = u in (3.4), we get [Juy || =0,
so uy > 0. Furthermore, note that uy € N) (u) is a nontrivial solution of



288 C. Y. Lei et al.

problem (1.1)) and ay < 0 (by Lemma 2.3), so

1 1 ’U,SI\ a b
—Z _ = der = = 2 e 4 I
<q 6)§2W3 = gllual® + lluallt = Ia(ua)

a b
> —luall® + EHUAH4 —ay >0,

which implies that uy # 0. Therefore, by the strong maximum principle,
uy > 0 in §2. Furthermore, by Lemma 2.7 and (1.6), we have

(35) ) = lim I)\(un) = I/\(’U,)\).

Next, we want to show that uy € Nj and Iy(uy) = aj. We first prove
that uy € N, . On the contrary, assume that uy € N, (N? = 0 for
A e (0, %TI)). By Lemma 2.1, there exist 0 < ¢7 < tmax < ¢t~ = 1
such that ttu € N, t7u € Ny and

ay < I)\(t+u>\) < IA(t_uA) = IA(U)\) = ay,

which is a contradiction. Hence, uy € N. ;“ . By the definition of aj, we obtain
af < I)(uy). It follows from Lemma 2.3(i) and (3.5) that

Iy(uy) = aj\“ =y <0.

From the above arguments, u) is a positive ground state solution of problem
(1.1). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Set A = min{\, A, 5\0}. Then Lemmas 2.1-2.8
hold for all 0 < A < A4. By Theorem 1.1, uy € ./\/’;r is a positive ground state
solution of (1.1). Now, we shall verify that (1.1) has another solution vy,
and vy € Ny~ with I)(vy) > 0.

Since I is also coercive on N, , Ekeland’s variational principle applied to
the minimization problem o = inf _ N I (v) yields a minimizing sequence
{vn} C Ny for I, with the following properties:

(i) In(vn) < ay +1/n,
(ii) Ix(u) > In(vp) — (1/n)|lu — vy || for all u € Ny .

Since {v,,} is bounded in H}(£2), passing to a subsequence if necessary, there
exists vy € Hg(£2) such that

Up — Uy weakly in HE($2),

Uy — Uy, strongly in L*(£2), 1 < s <6,

vp(z) = vr(z) a.e. in £2,
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as n — 00. Now we will prove that vy is a positive solution of (1.1). As in
the proof of Theorem 1.1, we get v, — vy in H}(£2), and vy is a nonnegative
solution of (1.1).

Now, we prove that vy > 0 in 2. Since v, € N, , we have

a(2 = q)l|va]l® < (6 — q) | (v)° dz = b(4 — q) "

2
< (6-a) | joulode < (6~ )5 o
2
so that
a(2—q)53)1/4
3.6 Upl| > | ———— .
(35 Jonl > (2522

As v, — vy in H}(£2), (3.6) implies that vy # 0. Therefore, the strong
maximum principle implies that vy > 0 in {2.
Next, we prove that vy € N, ; it suffices to show that N, is closed.
Indeed, by Lemmas 2.7 and 2.8, for {v,} C N, , we have

nh_{go S (v, do = (S}vg dx.

By the definition of Ny,

(2= q)allval® + (4 = @blloal* = (6 — q) | (v,))° dz < 0,
(9}
thus ) A 6
(2 = q)alloall* + (4 = @)blloal|* = (6 — ¢) | v} dz <0,
2

which implies that vy € NYUN, . If N} is not closed, then vy € N7, and by
Lemma 2.1 it follows that vy = 0, which contradicts vy > 0. Consequently,
vy € N, . Furthermore, by Lemma 2.3,

In(vy) = lim I (v,) = o, > 0.
n—oo
This completes the proof of Theorem 1.2.
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