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Note on the Jacobian condition and the
non-proper value set

by Nguyen Van Chau (Hanoi)

Abstract. We show that the non-proper value set of a polynomial map (P,Q) :
C2 → C2 satisfying the Jacobian condition detD(P,Q) ≡ const 6= 0, if non-empty, must
be a plane curve with one point at infinity.

1. Let f = (P,Q) : C2
(x,y) → C2

(u,v) be a dominant polynomial map,
P,Q ∈ C[x, y], and define J(P,Q) := PxQy − PyQx. Recall that the so-
called non-proper value set Af of f consists of all points a ∈ C2 such that
the inverse f−1(K) is not compact for any compact neighborhood K ⊂ C2

of a. This set Af , if non-empty, must be a plane curve such that each of
its irreducible components can be parameterized by a non-constant polyno-
mial map from C into C2 (see [J]). The mysterious Jacobian conjecture (see
[BCW] and [E]), posed first by Keller in 1939 and still open, asserts that
a polynomial map f = (P,Q) of C2 with J(P,Q) ≡ const 6= 0 must have
a polynomial inverse. This conjecture can be reduced to proving that the
non-proper value set Af is empty. Anyway one may think that in a coun-
terexample to the Jacobian conjecture, if one exists, the non-proper value
set must have a very special form. In [C] it was observed that in such a
counterexample the irreducible components of Af can be parameterized by
polynomial maps ξ 7→ (p(ξ), q(ξ)) with deg p/deg q = degP/degQ. In this
paper we notice that the non-proper value set of a nonsingular polynomial
map from C2 into itself, if non-empty, must be a curve with one point at
infinity.

Theorem 1. Suppose f = (P,Q) is a polynomial map of C2 with J(P,Q)
≡ const 6= 0, degP = degy P = Kd and degQ = degy Q = Ke, gcd(d, e)
= 1,
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(1)
P (x, y) = AyKd + · · ·+ a1(x)y + a0(x), A 6= 0,

Q(x, y) = ByKe + · · ·+ b1(x)y + b0(x), B 6= 0.

If the non-proper value set Af is not empty , then every irreducible compo-
nent of Af can be parameterized by polynomial maps of the form

(2) ξ 7→ (Aξmd + lower order terms in ξ,

Bξme + lower order terms in ξ), m ∈ N.
By definition Af is the set of all values a ∈ C2 such that the number

of solutions counted with multiplicities of the equation f(x, y) = a is differ-
ent from those for generic values in C2. Then, considering the components
P (x, y) and Q(x, y) as elements of C[x][y], we can define the resultant

(3) Resy(P − u,Q− v) = R0(u, v)xN + · · ·+RN (u, v),

where Ri ∈ C[u, v], R0 6= 0. From the basic properties of the resultant
function we know that N is the geometric degree of f and Af = {(u, v) ∈
C2 : R0(u, v) = 0}. Note that a curve given by a polynomial parameter of
the form (1) can be defined by a polynomial of the form (Aeue −Bdvd)m +∑

0≤id+je<mde ciju
ivj and its branch at infinity has a Newton–Puiseux series

of the form u = cvd/e + lower order terms in v, where c is a dth root of
Bd/Ae. Thus, Theorem 1 leads to

Corollary 1. Let f be as in Theorem 1. Then

(4) R0(u, v) = C(Aeue −Bdvd)M +
∑

0≤id+je<Mde

ciju
ivj

with 0 6= C ∈ C and M ≥ 0.

Corollary 2. Let f be as in Theorem 1. If Af 6= ∅, then Af is a curve
with one point at infinity and the irreducible branches at infinity of Af have
Newton–Puiseux series of the form

u = cvd/e + lower order terms in v

with coefficients c being dth roots of Bd/Ae.

As seen later, the representation in (1) of P and Q is only used to
visualize the coefficient Bd/Ae. In fact, when Af 6= ∅ the numbers d, e,
Bd/Ae and the polynomial R0(u, v) are invariant under right actions of
automorphisms of C2, since the set Af does not depend on the coordinate
(x, y). Furthermore, the coefficient Bd/Ae is uniquely determined from the
relation

P e+(x, y) = (Bd/Ae)Qd+(x, y),

which is a consequence of the Jacobian condition when degP > 1 and
degQ > 1. Here, P+ and Q+ are the leading homogeneous components of
P and Q, respectively.
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Theorem 1 will be proved in Sections 2–5 in an elementary way by using
Newton–Puiseux expansions and the Newton theorem. It would be interest-
ing to determine the form of R0(u, v) by examining directly the resultant
function Resy(P − u,Q− v).

2. Dicritical series of f . From now on, f = (P,Q) : C2
(x,y) → C2

(u,v)

is a given polynomial map with J(P,Q) ≡ const 6= 0, degP = Kd > 0
and degQ = Ke > 0, gcd(d, e) = 1. The Jacobian condition will be used
really in Lemma 3 and the proof of Theorem 1. Since Af does not depend
on the coordinate (x, y), to examine it we can assume that degy P = degP,
degy Q = degQ and

(5)
P (x, y) = AyKd + · · ·+ a1(x)y + a0(x), A 6= 0,

Q(x, y) = ByKe + · · ·+ b1(x)y + b0(x), B 6= 0.

With this representation the Newton–Puiseux roots at infinity y(x) of each
of the equations P (x, y) = 0 and Q(x, y) = 0 are fractional power series of
the form

y(x) =
∞∑

k=0

ckx
1−k/m, m ∈ N, gcd{k : ck 6= 0} = 1,

for which the map τ 7→ (τm, y(τm)) is meromorphic and injective for τ large
enough. In view of the Newton theorem we can represent

(6) P (x, y) = A

deg P∏

i=1

(y − ui(x)), Q(x, y) = B

degQ∏

j=1

(y − vj(x)),

where ui(x) and vj(x) are the Newton–Puiseux roots at infinity of the equa-
tions P = 0 and Q = 0, respectively. We refer the readers to [A] and [BK]
for the Newton theorem and the Newton–Puiseux roots.

We begin with the description of the non-proper value set Af of f via
Newton–Puiseux expansions. We will work with finite fractional power series
ϕ(x, ξ) of the form

(7) ϕ(x, ξ) =
K−1∑

k=1

akx
1−k/m + ξx1−K/m, m ∈ N, gcd{k : ak 6= 0} = 1,

where ξ is a parameter. For convenience, we set mult(ϕ) := m. Such a
series ϕ is called a dicritical series of f if

f(x, ϕ(x, ξ)) = fϕ(ξ) + lower order terms in x, deg fϕ > 0.

The following description of Af was given in [C].
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Lemma 1 ([C, Theorem 4.4]).

Af =
⋃

ϕ is a dicritical series of f

fϕ(C).

To see this, note that by definition the non-proper value set Af consists
of all values a ∈ C2 such that there exists a sequence C2 3 pi → ∞ with
f(pi)→ a. If ϕ is a dicritical series of f of the form (7), we can define the map
Φ(t, ξ) := (t−m, ϕ(t−m, ξ)). Then Φ sends C∗×C to C2 and the line {0}×C to
the line at infinity of CP2. The polynomial map Fϕ(t, ξ) := f ◦Φ(t, ξ) sends
the line {0} × C to Af ⊂ C2. Therefore, fϕ(C) is an irreducible component
of Af , since deg fϕ > 0. Conversely, if ` is an irreducible component of Af ,
one can choose a smooth point (u0, v0) of Af , (u0, v0) ∈ `, and an irreducible
branch at infinity γ of the curve P = u0 (or Q = v0) such that the image
f(γ) is a branch curve intersecting ` transversally at (u0, v0). Let u(x) be the
Newton–Puiseux expansion of γ at infinity. Then we can construct a unique
dicritical series ϕ(x, ξ) such that u(x) = ϕ(x, ξ0 + lower order terms in x).
For this dicritical series ϕ we have fϕ(C) = `.

3. Associated sequence of a dicritical series. Let ϕ be a given
dicritical series of f . Let us represent it as

(8) ϕ(x, ξ) =
K−1∑

k=0

ckx
1−nk/mk + ξx1−nK/mK ,

where 0 ≤ n0/m0 < n1/m1 < · · · < nK−1/mK−1 < nK/mK = nϕ/mϕ and
ci ∈ C may be zero, so that the sequence {ϕi}i=0,1,...,K of series defined by

(9) ϕi(x, ξ) :=
i−1∑

k=0

ckx
1−nk/mk + ξx1−ni/mi , i = 0, 1, . . . ,K − 1,

and ϕK := ϕ has the following properties:

(S1) mult(ϕi) = mi.
(S2) For every i < K at least one of the polynomials pϕi and qϕi has a

root different from zero.
(S3) For every ψ(x, ξ) = ϕi(x, ci)+ξx1−α, ni/mi < α < ni+1/mi+1, each

of the polynomials pψ and qψ is either constant or a monomial in ξ.

The representation (8) of ϕ is thus the longest representation such that
for each i there is a Newton–Puiseux root y(x) of P = 0 or Q = 0 such
that y(x) = ϕi(x, c + lower order terms in x) and c 6= 0 if ci = 0. This
representation and the associated sequence {ϕi}i=0,1,...,K are well defined
and unique. Further, ϕ0(x, ξ) = ξx.

We will use the sequence {ϕi} to determine the form of the polynomials
fϕ(ξ). For simplicity of notation, below we use lower indices “i” instead of
the lower indices “ϕi”.
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For each ϕi, i = 0, . . . ,K, let us write

(10)
P (x, ϕi(x, ξ)) = pi(ξ)xai/mi + lower order terms in x,

Q(x, ϕi(x, ξ)) = qi(ξ)xbi/mi + lower order terms in x,

where pi, qi ∈ C[ξ] \ {0}, ai, bi ∈ Z and mi := mult(ϕi).
Let {ui(x) : i = 1, . . . ,degP} and {vj(x) : j = 1, . . . ,degQ} be the

collections of the Newton–Puiseux roots of P = 0 and Q = 0, respectively.
As shown in Section 2, by the Newton theorem the polynomials P (x, y) and
Q(x, y) can be factorized as

(11) P (x, y) = A

deg P∏

i=1

(y − ui(x)), Q(x, y) = B

degQ∏

j=1

(y − vj(x)).

For each i = 0, . . . ,K, define

Si := {k : 1 ≤ k ≤ degP,

uk(x) = ϕi(x, aik + lower order terms in x), aik ∈ C},
Ti := {k : 1 ≤ k ≤ degQ, vk(x) = ϕi(x, bik + lower terms in x), bik ∈ C},
S0
i := {k ∈ Si : aik = ci}, T 0

i := {k ∈ Ti : bik = ci}.
Write

pi(ξ) = Aip̄i(ξ)(ξ − ci)#S0
i , p̄i(ξ) :=

∏

k∈Si\S0
i

(ξ − aik),

qi(ξ) = Biq̄i(ξ)(ξ − ci)#T 0
i , q̄i(ξ) :=

∏

k∈Ti\T 0
i

(ξ − bik).

Lemma 2. (i) n0 = 0, m0 = 1 and

A0 = A, deg p0 = a0 = Kd,

B0 = B, deg q0 = b0 = Ke.

(ii) For i = 1, . . . ,K,

Ai = Ai−1p̄i−1(ci−1), deg pi = #Si = #S0
i−1,

ai
mi

=
ai−1

mi−1
+ #S0

i−1

(
ni−1

mi−1
− ni
mi

)
,

Bi = Bi−1q̄i−1(ci−1), deg qi = #Ti = #T 0
i−1,

bi
mi

=
bi−1

mi−1
+ #T 0

i−1

(
ni−1

mi−1
− ni
mi

)
.

Proof. Note that ϕ0(x, ξ) = ξx and ϕi(x, ξ) = ϕi−1(x, ci−1) + ξx1−ni/mi

for i > 0. Then, substituting y = ϕi(x, ξ), i = 0, 1, . . . ,K, into the New-
ton factorizations of P (x, y) and Q(x, y) in (11) one can easily verify the
conclusions.
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4. The Jacobian condition. Let ϕ be a dicritical series of f and {ϕi}
be its associated series. Define

Ji(ξ) := aipi(ξ)q̇i(ξ)− biṗi(ξ)qi(ξ).
The Jacobian condition will be considered in the following sense.

Lemma 3. Let 0 ≤ i < K. If ai > 0 and bi > 0, then

Ji(ξ) ≡
{
−miJ(P,Q) if ai + bi = 2mi − ni,
0 if ai + bi > 2mi − ni.

Further , Ji(ξ) ≡ 0 if and only if pi(ξ) and qi(ξ) have a common root. In
this case

pi(ξ)bi = Cqi(ξ)ai , C ∈ C∗.
Proof. Since ai > 0 and bi > 0, differentiating f(t−mi , ϕi(t−mi , ξ)) with

respect to t, we obtain

miJ(P,Q)tni−2mi−1 + higher order terms in t

= −Ji(ξ)t−ai−bi−1 + higher order terms in t.

Comparing the two sides we get the first conclusion. The remaining ones are
left to the reader as an elementary exercise.

5. Proof of Theorem 1. (i) Assume that Af 6= ∅. Then Af is a plane
curve in C2. Let ` be an irreducible component of Af . By Lemma 1 there is
a dicritical series ϕ of f such that ` can be parameterized by the polynomial
map fϕ(ξ) = (pϕ(ξ), qϕ(ξ)), i.e. ` = fϕ(C). We will show that

(12) fϕ(ξ) = (ACdϕξ
Dϕd + · · · , BCeϕξDϕe + · · ·), Cϕ 6= 0, Dϕ ∈ N.

Then by changing variable ξ 7→ C−1
ϕ ξ we get the desired parameterization

ξ 7→ (AξDϕd + · · · , BξDϕe + · · ·) of `.
(ii) Consider the associated sequence {ϕi}Ki=1 of ϕ. Since Af 6= ∅, we

have
degP > 1, degQ > 1.

Otherwise, f is bijective and Af = ∅. Since ϕ is a dicritical series of f ,
without loss of generality we can assume that

deg pK > 0, aK = 0, bK ≤ 0.

Then from the construction of the sequence ϕi it follows that

(13)
{
pi(ci) = 0 and ai > 0, i = 0, 1, . . . ,K − 1,
qi(ci) = 0 if bi > 0.

This allows us to use the Jacobian condition in the sense of Lemma 3. Then,
by induction using Lemma 2, Lemma 3 and (13) we can obtain without
difficulty the following.
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Assertion. For i = 0, 1, . . . ,K − 1 we have

ai > 0, bi > 0,(a)
ai
bi

=
#Si
#Ti

=
d

e
,(b)

#S0
i

#T 0
i

=
d

e
, p̄i(ξ)e = q̄i(ξ)d.(c)

(iii) Now, we prove (12). By Lemma 2(iii) and (b-c) we have

bK
mK

=
bK−1

mK−1
+ #T 0

K−1

(
nK−1

mK−1
− nK
mK

)

=
e

d

[
aK−1

mK−1
+ #S0

K−1

(
nK−1

mK−1

nK
mK

)]

=
e

d

aK
mK

= 0,

as aK = 0. Hence, fϕ(ξ) = (pK(ξ), qK(ξ)) by definition and (a). Using
Lemma 2(ii)–(iii) to compute the coefficients AK and BK we get

AK = A
( ∏

k≤K−1

p̄k(ck)
)
, BK = B

( ∏

k≤K−1

q̄k(ck)
)
.

Let Cϕ be a dth root of
∏
k≤K−1 p̄k(ck) and Dϕ := gcd(#S0

K−1,#T
0
K−1).

Then, by Lemma 2(ii) and (b-c) we have AK = ACdϕ, BK = BCeϕ, deg pK =
#S0

K−1 = Dϕd and deg qK = #T 0
K−1 = Dϕe. Thus,

fϕ(ξ) = (ACdϕξ
Dϕd + · · · , BCeϕξDϕe + · · ·).
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