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Existence results for a class of quasilinear
integrodifferential equations of Volterra—Hammerstein type
with nonlinear boundary conditions

by ZUODONG YANG (Nanjing)

Abstract. The existence of a solution for a class of quasilinear integrodifferential
equations of Volterra—Hammerstein type with nonlinear boundary conditions is estab-
lished. Such equations occur in the study of the p-Laplace equation, generalized reaction-
diffusion theory, non-Newtonian fluid theory, and in the study of turbulent flows of a gas
in a porous medium. The results are obtained by using upper and lower solutions, and
extend some previously known results.

In this paper we study existence results for the integrodifferential equa-
tion

(1) (@ (W) = ft,u, Tyu, Tou,u'), tel=10,1],
subject to one of the following boundary conditions:

(2) 9(u(0), u(1),u'(0),4'(1)) =0,  h(u(0)) = u(1),
(3) p(u(0),4(0)) = 0 = q(u(0),v(0), u(1), (1))
(4) r(u(1),v(1)) = 0 = w(u(0),v(0), u(1),u'(1)),
where

Tyu(t) =1 (t) + SKl (t,s)u(s)ds, Tiu(t) =(t) + S Ks(t, s)u(s) ds,
0 0

2000 Mathematics Subject Classification: Primary 34B15.

Key words and phrases: integrodifferential equation of Volterra-Hammerstein type;
nonlinear boundary value problem; upper and lower solutions.

Research supported by the Science Foundation of Nanjing Normal University (No.
2003SXXXGQ2B37), the Science Foundation of 211 Engineering and the Science Founda-
tion of Jiangsu Province Educational Department (No. 04KJB110062).

[211]



212 Z. D. Yang

K; € C([0,1] x [0,1],RT), ¢; € C([0,1],R), i = 1,2, f:[0,1] x R* — R is
a continuous function, and &,,(s) = |s|™ 2s for m > 1. Equations of the
above form are mathematical models occurring in the study of the m-Laplace
equation, in generalized reaction-diffusion theory ([6]), non-Newtonian fluid
theory, and in the study of turbulent flows of a gas in a porous medium
([4]). In the non-Newtonian fluid theory, the quantity m is a characteristic
of the medium. Media with m > 2 are called dilatant fluids and those with
m < 2 are called pseudoplastics. If m = 2, they are Newtonian fluids.
The equation

(5) (@m(u) = f(t,u,u), tel=]0,1],

with various boundary conditions has been studied by many authors (see
[1-4, 6, 8-15] and references therein). On the contrary, it seems that lit-
tle is known about problems (1)-(2), (1)-(3), and (1)-(4). Our results were
motivated by the papers [1, 2, 5, 7] which studied periodic and Neumann
nonlinear boundary conditions for equation (5). When p = 2, some related
results have been obtained in [5, 7]. Our results extend those of [1, 2, 5, 7].

DEFINITION 1. A function o € C1[0,1] with &,,(a’) € C1[0,1] is called
a lower solution of (5) on I =[0,1] if
(D () > f(t,a,a’)  fortel.
Likewise, 3 € C[0, 1] with &,,(8') € C[0,1] is an upper solution of (5) on
Iif
(@ (B)) < f(t,8,8) fortel.
In what follows we shall assume that
a(t) < pB(t), tel.
For a, 8 € C(I), < 3, we define the set
E={uecCI)|at) <u(t) <p(t),VteI}.

In the following theorems we will use the following hypotheses:

(H;)  fis a continuous function in 2 = {(¢,y,2) |0 <t <1, (y,2) € R?}.

(Hy)  f(t,y,z) satisfies the Nagumo condition in E, i.e. there exists a
function ¥ : [0,00) — [0, 00) with 1/¥ integrable on every bounded
interval (a,b) C [0, 00), such that

|f(t,y,2)] <W(|z]) for (t,y) € E, z €R,

where ¥ satisfies
oo

[ &, (w)/#(®, (w) du = .
0

From [11, 15], we have the following theorem:



Equations of Volterra—Hammerstein type 213

THEOREM 1. Let a, 8 € C*0,1] be lower and upper solutions of (5), re-
spectively, with o < (3 in I. Assume that hypotheses (H1)—(Hz) are satisfied.
Then for any a(0) < A < ((0), a(1) < B < (1) there exists a solution u
of the boundary value problem

(Spm(u/)), = f(t7u7u,)7 ”U,(O) = A7 u(l) =B,
satisfying a(t) < u(t) < B(t) on [0,1].

Before stating the main result on existence of solutions for problems
(1)-(2), (1)-(3), and (1)-(4), we give the following

DEFINITION 2. A function a € C0, 1] with &,,(a’) € C1[0,1] is called
a lower solution of (1) on [0, 1] if

(@ () > f(t,a, Tha, Toar, ') fort € 1.

Likewise, 3 € C'[0,1] with @,,(8’) € C'[0,1] is an upper solution of (1) on
[0, 1] if

(D (8) < f(t, 3,13, ToB,3) fortel.

Moreover, we define the following sets:

F={(y,zuv)|a0) <y <5(0), a(l) <z < (1), u,v € R};
G={9=g9(y,z,u,v) € C(F) | g is nondecreasing in u, nonincreasing in v,
and g(a(0), (1), a’(0),0/(1)) = 0 = g(8(0), B(1), B'(0), 5'(1)) };
H={h|h:[a(0),5(0)] — [a(1),3(1)] is a homeomorphism,
and h(a(0)) = a(1), h(5(0)) = B(1)};
P={p=np(st)|p:[a0),5(0)] x R — R is continuous and nonincreasing
in ¢ and p(a(0), /(0)) <0 < p(5(0), 5'(0))};
I'={(s,t,u,v) | a(0) <s<5(0), a(l) <u < B(1), t,v € R};
Z(p) ={(s,t) [ p(s,t) = 0, ()<S<ﬁ() t € R};
Q ={q=q(s,t,u,v) € C(I') | q is nondecreasing in v, and
q(s; t,a(1),0/(1)) <0 < q(s, 2, 3(1), §'(1)) for (s,t) € Z(p)};
Z(r) = {(u,v) | r(u,v) = 0,a(1) <u < (1), v € R};
R={r=r(u,v)|r:[a(l),5(1)] x R— Ris continuous, nondecreasing in v,
and r(a(1),0'(1)) <0 <r(B(1),5'(1))};

W ={w =w(s,t,u,v) € C(I') | w is nonincreasing in ¢, and

w(a(0),a’(0),u,v) <0 <w(a(l),d(1),u,v) for (u,v) € Z(r)}.
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In what follows we impose the following conditions on (1):
(Hs)  f(t,u,v,w, z) is nonincreasing in v and in w.
(Hy) f € C(]0,1] x RYR) and there exists a continuous function h :
[0,00) — [0, 00) such that
|f(t,u,v,w,2)| < h(|z|]) for (t,u,v,w,z) € (2,
where 2 = {(t,u,v,w,2z) € I x R3 : |u| < rq, [v] < ro, |lw| < 73,
z € R} for some 71,792,735 > 0, and also that

oo

| &, (w)/h(@,, (w)) du = .

0

Now, we can prove our main results.

THEOREM 2. Let «, 3 € C0,1] be lower and upper solutions of (1),
respectively, with o < 3 on I = [0,1]. Assume that hypotheses (Hz)—(Hy)
are satisfied. Then for any a(0) < A < 3(0), a(1) < B < (1) there exists
a solution u of the boundary value problem

(6) (D () = f(t,u, Thu, Tou,u'), u(0)=A4, wu(l)=B5B,
satisfying a(t) < u(t) < B(t) on [0,1].
Proof. Let ug(t) = B(t). Then

f(t,a(t), [Truo](t), [Tauol(t), o (t) < f(t, a, [Ta] (1), [Ta0](t), &/ (t))
< (Pm(a)),
ft, B(E), [Truo) (t), [Touo] (t), B'(t) = (@m (),  t€I=][0,1].
By Theorem 1, there exists a solution u; of the boundary value problem
(ém(u,))/ = f(ta U7T1UOaT2u07u/)7 U(O) = A7 U(l) = B)
satisfying a(t) < uq(t) < B(t) = uo(t) on [0, 1].
We now consider the problem
(7) (D (W) = f(t,u, Tyur, Toug,u'), w(0)=A, u(l)=B.
Clearly,
f(t7 «, T1’LL1, T2u17 O/) < (@m(a’))”
and
f(ta uz, T1U1, T2u17 ull) Z f(t7 Uy, T1u07 T1U0, ull) = (ém(ull)),
By Theorem 1, there exists a solution ug of (7) satisfying a(t) < wa(t)
< wuy(t) on [0,1].
By induction, we can construct a nonincreasing sequence {u,(t)} such
that

a(t) < un(t) < un—i(t) <--- <wolt) = ().
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From condition (Hy4), there exists a positive constant N > 0 such that
lun(t)] < N, t € I, n =1,2,.... On the other hand, {(®,,(u,,))’} is uni-
formly bounded on I by equation (6). Therefore, {u,},{®Pn (u,)} are uni-
formly bounded and equicontinuous. Applying the Arzela—Ascoli theorem to
the sequence {u,,}, we find that there exists a subsequence {u,, } satisfying

limy o0 P (u},, ) = v. Thus, we obtain limg_. u), = @;,'(v), and so

tn, (t) = A+ \u),, (s)ds — A+ |, (v)ds =a(t) (k— o0).
0 0

So there exists w € C'(I) such that limy_ o up, (t) = u(t). By the dominated
convergence theorem, we know that @ is a solution of problem (6).

THEOREM 3. Let a, 3 € C[0,1] be lower and upper solutions of (1)
respectively, with o < 3 on I = [0,1]. Assume that hypotheses (Hz)—(Hy
are satisfied, and g € G, h € H. Then the boundary value problem (1)-(2
has a solution u = u(t) with a(t) < u(t) < B(t) on [0,1].

)
)

Proof. For each a(0) < ¢ < 3(0), there exists (by Theorem 2) a solution
u. of the BVP

(P () = f(t,u, Thu, Tou,u’), u(0)=¢c, u(l)=h(c),

satisfying a(t) < u.(t) < B(t) on [0, 1]. If ¢ = «(0), then u.(0) > /(0) and
ul(1) < o'(1). Hence,

(8)  guc(0),ue(1), ul(0), ul(1)) = glax(0), (L), ul(0), (1))
> g((0), a(1), o (0), /(1)) > 0

by the monotonicity of ¢ in the last two variables. Similarly, if ¢ = ((0), we
have u/.(0) < 5(0),ul.(1) > §'(1), and therefore,

(9)  g(uc(0),uc(1), u(0),u(1)) < g(8(0), 8(1),8°(0), 5'(1)) < 0,
Def c = (3(0).

M = {c € [a(0), 8(0)] : g(uc(0), uc(1), ug(0), uc(1)) < 0},
N = {c € [(0), B(0)] : g(uc(0), uc(1), ue(0), uc(1)) > 0}.

If the theorem is not true, then M U N = [a(0),5(0)] and both M, N are
nonempty by (8)-(9). We claim that M is closed. To see this, let ¢,, € M with
lim,, 00 ¢, = ¢o. Then with w,, = u,,, it follows that g(u,(0),u,(1),u,,(0),
ul (1)) < 0 and there exists a subsequence of u,, which converges, uniformly

n [0,1], to a solution ug of (1) satisfying uo(0) = co,uo(1l) = h(co) and
9(up(0),up(1), u5(0),up(1)) < 0. By assumption, equality cannot occur, so

that g(uo(0),uo(1),uy(0),u((1)) < 0, and thus ¢g € M. Therefore, M is
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closed, so N is open. Likewise, we may show N is closed. This is a contra-
diction which proves the theorem.

THEOREM 4. Let a,3 € C0,1] be lower and upper solutions of (1)
respectively, with o < 8 on I = [0,1]. Assume that hypotheses (Hz)—(Hy
are satisfied, and p € P, q € Q. Then the boundary value problem (1)-(3
has a solution uw = u(t) with a(t) < u(t) < B(t) on [0,1].

)
)

THEOREM 5. Let o, 3 € C[0,1] be lower and upper solutions of (1)
respectively, with a < 3 on I = [0,1]. Assume that hypotheses (Hs)—(Hy
are satisfied, and r € R, w € W. Then the boundary value problem (1)-(4
has a solution uw = u(t) with a(t) < u(t) < B(t) on [0,1].

)
)

COROLLARY 1. Let a, 3 € C1[0,1] be lower and upper solutions of (1),
respectively, with o < 8 on I = [0,1]. Assume that hypotheses (Hz)—(Hy)
are satisfied, and m = (6(1) — «(1))/(B(0) — a(0)). Furthermore, suppose
there exists ¢ > 0 such that 3'(1) — /(1) > ¢(6'(0) —/(0)) and let d satisfy
B'(1) —cp'(0) > d > a'(1) —ca/(0). Then equation (1) has a solution u with
a(t) <u(t) < B and u(l) = mu(0) + a(1) — ma(0), v’ (1) = cu/(0) + d.

COROLLARY 2. Let a, 3 € Ct0,1] be lower and upper solutions of (1),
respectively, with o« < 3 on I = [0, 1]. Suppose there exists a constant L > 0
such that for all (t,u) € E and ui,us € R,

|f(t,u, Tyu, Tou,uy) — f(t,u, Tiu, Tou, ub)| < Llu) — ub).

Let A,B,ay,as,b1,by be real numbers such that a;,b; > 0 (i = 1,2),
a1+ ag >0, by + by >0 and

a1a(0) — aza’(0) — A <0 < a1 8(0) — az8'(0) — 4,
bia(l) + b2’ (1) — B <0< b18(1) + b5/ (1) —
Then equation (1) has a solution u such that
a1u(0) — agu/(0) = A =0 =bu(l) + bau(l) — B, a(t) <u(t) < S(t).

ExaAMPLE. To illustrate Theorem 4 for the case when the boundary con-
ditions are nonlinear, let f satisfy conditions (Hs)—(H4) and assume

t t
f(t,—l,wl(t) + K1 (8, ) ds, da(t) + | Ka(t, s) ds,O) <0
0 0

t

t
< f(t,l,wl(t) + (K0t 5) ds, () + | Ko(t, 5) ds,O), 0<t<1,
0 0

where K; € C([0,1] x [0,1],R"), ¢; € C([0,1],R), i = 1,2, so that o = —1,
B = 1 are lower and upper solutions, respectively, of (1). Let p = p(s, 1),
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q = q(s,t,u,v) be defined by
p(s,t):ﬁ—t—lv q(s,t,u,v) = s+t + cu+ dv,

where ¢ > 5/4, d > 0 are real constants. It is easy to check that p € P,
q € @, so that by Theorem 4, there exists a solution u of the boundary
value problem

(P (u)) = f(t,u, Tyu, Tou,u'),
(u(0))? — 4/ (0) — 1 = 0 = u(0) + u'(0) + cu(1) + du'(1),
satisfying —1 < wu(z) <1 on [0,1].
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