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by Taib Belghiti (Kénitra)

Abstract. Let f be a holomorphic function of Carleman type in a bounded con-
vex domain D of the plane. We show that f can be expanded in a series f =

∑
n fn,

where fn is a holomorphic function in Dn satisfying supz∈Dn |fn(z)| ≤ C%n for some
constants C > 0 and 0 < % < 1, and where (Dn)n is a suitably chosen sequence of de-
creasing neighborhoods of the closure of D. Conversely, if f admits such an expansion
then f is of Carleman type. The decrease of the sequence Dn characterizes the smooth-
ness of f .

1. Introduction. Let (Mn)n≥0 be an increasing sequence of positive
real numbers. There exist two ways to define that a given C∞ function, f ,
on an interval [a, b] ⊂ R, belongs to the regular Carleman class C(Mn).
First, there exist positive constants C and %, depending on f , such that
|f (n)(x)| ≤ C%nMn for all x ∈ [a, b] and n ∈ N. (See [Ko], [Ma].) Second,
f admits an extension, F , not unique, to the whole complex plane such
that ∂F decreases rapidly near [a, b]; here ∂ = 1

2 (∂/∂x + i∂/∂y) is the
Cauchy–Riemann operator. (See [Dy] and below.)

The purpose of this short note is to characterize the holomorphic func-
tions on a bounded convex domain D belonging to a given Carleman class
as those functions that can be expanded in a series of functions holomorphic
in an appropriate sequence of decreasing neighborhoods of the closure of D,
satisfying some growth estimates. The decrease of these neighborhoods is
directly linked with the given class.

The first result of this kind was obtained by J. C. Tougeron [To, 2.7–2.9]
in the particular case where D is a bounded sector and Mn = (n!)k, with
k > 1/2, which corresponds to a Gevrey class. Our approach is different and
may be extended to sets which are Whitney regular.
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2. The class HM (D). Let D be a bounded convex domain in the plane;
O(D) and O(D) are spaces of holomorphic functions on D and in a neigh-
borhood of D respectively.

Let M = (Mn)n be an increasing sequence of positive real numbers. Let
HM (D) be the class of all functions f ∈ O(D) such that, for some positive
constants C and %,

sup
z∈D
|f (n)(z)| ≤ C%nMn, n� 0.

Note that every function f belonging to HM (D) can be extended to a C∞
function on D: if w ∈ ∂D and if zp ∈ D converges to w, the sequence
f (n)(zp) converges (because f (n+1) is bounded on D; apply the mean value
theorem). We denote this extension also by f .

In order to get classes of holomorphic functions with structural properties
and to have precise computations, we start, following [El], from a sequence
(Mn)n such that Mn := M(n) with M(t) = em(t) and m(t) = t log t+ tµ(t).
Throughout the paper µ(t) will be a strictly increasing C∞ function defined
for t � 0 such that limt→+∞ µ(t) = +∞ (so µ′(t) > 0). We also suppose
that µ(t) belongs to a Hardy field (i.e a field of germs of functions at +∞
in R which is closed under differentiation) and µ(t) ≤ at, t � 0, a > 0.
This ensures that our class is an algebra closed under differentiation (the
proof is easy and it is the same as in the real case, see [El]) and strictly
contains O(D).

Notice finally that the above class does not change if we replace M(t)
by C%tM(t) where C > 0 and % > 0. Consequently, µ is defined modulo an
additive constant.

3. The functions Ω(s) and Γ (u). Set

Ω(s) := inf
t≥t0

s−tetµ(t), s� 0,

where t0 > 0 is fixed. The infimum is attained when tµ′(t) + µ(t) = log s.
The function tµ′(t)+µ(t) tends to infinity as t→ +∞ and so it is strictly in-
creasing (µ(t) belongs to a Hardy field); so we have a unique value of t where
the infimum is attained. Thus, if Ω(s) = e−ω(s), then we get the system

(1) s = etµ
′(t)+µ(t), ω(s) = t2µ′(t).

Since µ′(t) > 0, we have ω(s) > 0 and lims→+∞ ω(s) = +∞. Thus, Ω(s) is
strictly decreasing and lims→∞Ω(s) = 0.

Set Γ (u) := e−γ(u), where u and γ(u) are defined by

(2) u = t2µ′(t), γ(u) = tµ′(t) + µ(t).

As µ(t) is strictly increasing and limt→+∞ µ(t) = +∞, it follows that γ(u)
is strictly increasing and limu→+∞ γ(u) = +∞. Hence, Γ (u) is strictly de-
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creasing and limu→+∞ Γ (u) = 0. The system (2) gives easily

(3) t = 1/γ′(u), µ(t) = γ(u)− uγ′(u),

which shows that γ′ is strictly decreasing, positive and limu→+∞ γ′(u) = 0.
Notice that γ(u), just as µ(t), is defined modulo an additive constant.

4. Main result. Define

DΓ
n,R := {z ∈ C; d(z,D) < RΓ (n)}.

Under the condition limt→+∞(log t)/µ(t) 6= 0, we have the following:

Theorem 1. (a) Let f ∈ HM (D). Then there exist R > 0, C > 0,
0 < % < 1, and a sequence (fn)n with fn ∈ O(DΓ

n,R) such that :

(i) ‖fn‖DΓn,R ≤ C%
n for all n;

(ii)
∑
n fn = f uniformly on D.

(b) Conversely , let R > 0 and let fn ∈ O(DΓ
n,R) be such that ‖fn‖DΓn,R

≤ C%n for some constants C > 0 and 0 < % < 1, and for all n ≥ n0

(n0 fixed). Then f :=
∑
n fn belongs to the class HM (D).

5. Technical lemmas. With the above notations we have

Lemma 1. The function ω(s) is the inverse, under composition, of the
function eγ(u) = 1/Γ (u), i.e. ω(s) = γ−1(log s), s� 0.

Proof. It suffices to compare the systems (1) and (2).

Let us introduce the class HMα(D), α > 0, which corresponds to µ(αt),
i.e. we replace µ(t) by µα(t) = µ(αt). So Mα(t) = emα(t), where mα(t) =
t log t+tµ(αt). Let Ωα(s) = e−ωα(s) and Γα(u) = e−γα(u) be the correspond-
ing functions of the class HMα(D). We have the following:

Lemma 2. For all α > 0,

(i) ωα(s) = (1/α)ω(s),
(ii) γα(u) = γ(αu).

Proof. By (2), we have u = t2αµ′(αt) and γα(u) = tαµ′(αt) + µ(αt); so
if t̃ := αt, then αu = t̃µ′(t̃ ) and γα(u) = t̃µ′(t̃ ) + µ(t̃ ). Thus we have (ii).
Using Lemma 1 and (ii) we get

ωα(s) = γ−1
α (log s) =

1
α
γ−1(log s) =

1
α
ω(s).

Lemma 3. If limt→+∞ (log t)/µ(t) 6= 0, then HMα(D) = HM (D).

Proof. By assumption, there exists A > 0 such that µ(t) ≤ A log t for
t � 0; then tµ′(t) ≤ B for some constant B > 0. Hence |µ(αt) − µ(t)| ≤
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|1 − α|tµ′(t) ≤ B|1 − α|. Thus µ(αt) − µ(t) is bounded. But µ is defined
modulo an additive constant, so we can choose µα = µ.

6. Proof of Theorem 1. Let f ∈ HM (D). By Lemma 3, f ∈ HMα(D)
for every α > 0. With the help of Dynkin’s scheme (see [Dy, pp. 41–43]
adjusted to our situation, f can be extended to a C∞ function on the whole
plane, say F , with compact support and such that the following estimate
holds:

(4)
∣∣∣∣
∂F

∂ζ̄
(ζ)
∣∣∣∣ ≤ C2e

−ωα(1/C1d(ζ,D))

for every ζ ∈ C − D. In the above C1 and C2 are positive constants de-
pending on α and f ; d(ζ,D) is the Euclidean distance from ζ to D; and
∂/∂ζ is the Cauchy–Riemann operator. Fix such an F with suppF ⊂
{ζ ∈ C; d(ζ,D) < r}, where r is a fixed positive number; and let R =
r/Γ (n0), where n0 is an integer to be chosen later. Now, set

(5) Dn := DΓ
n,R =

{
ζ ∈ C; d(ζ,D) < r

Γ (n)
Γ (n0)

}
, n ≥ n0.

Notice that suppF ⊂ Dn0 ; Dn is an open convex neighborhood of D;
Dn+1 ⊂ Dn for all n; and

⋂
n≥n0

Dn = D.
Let fn be the C-valued function defined for every z ∈ Dn by

fn(z) =
−1
π

�

Dn−1\Dn

∂F
∂ζ

(ζ)

ζ − z dξ dη, ζ = ξ + iη, n ≥ n0.

Clearly fn ∈ O(Dn) and since F (= f) is holomorphic on D, by the Cauchy–
Green formula we have

f(z) =
−1
π

�

C

∂F
∂ζ

(ζ)

ζ − z dξ dη =
−1
π

�

Dn0\D

∂F
∂ζ

(ζ)

ζ − z dξ dη

=
∑

n≥n0+1

−1
π

�

Dn−1\Dn

∂F
∂ζ

(ζ)

ζ − z dξ dη =
∑

n≥n0+1

fn(z), z ∈ D.

Next, by the estimate (4) on ∂F/∂ξ, by Lemmas 1–3, choosing n0 equal to
the integer part of Γ−1(rC1) where Γ−1 is the inverse of the function Γ , we
have∣∣∣∣
∂F

∂ζ
(ζ)
∣∣∣∣ ≤ C2 exp

(
− 1
α
ω

(
1

C1d(ζ,D)

))
≤ C2 exp

(
− 1
α
ω

(
Γ (n0)

rC1Γ (n− 1)

))

≤ C2 exp
(
− 1
α
ω

(
1

Γ (n− 1)

))
= C2e

−(n−1)/α
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for every ζ ∈ Dn−1 \Dn. Otherwise, a proof similar to that of the Ahlfors–
Beurling inequality (see [Ra, pp. 141–142]) gives the estimates

�

Dn−1\Dn

1
|ζ − z| dξ dη ≤

√
π area(Dn0).

Now, taking C =C2e
1/α
√
π area(Dn0) and %> e−1/α we get ‖fn‖Dn ≤C%n;

and the proof of Theorem 1(a) is finished.
To prove the converse, let z ∈ D. Since the closed disc D(z, (R/2)Γ (n))

is contained in Dn := DΓ
n,R (R > 0 is given), we use Cauchy’s inequalities

to get
|f (p)
n (z)|
p!

≤ C%n
(

2
RΓ (n)

)p
, p = 0, 1, . . . , n ≥ 0.

Choose %′ such that % < %′ < 1; then

sup
z∈D

|f (p)
n (z)|
p!

≤ C(2R−1)p
(
%

%′

)n
%′
n sup
u>0

%′u

(Γ (u))p
, p = 0, 1, . . . , n ≥ 0.

By summing the preceding inequalities over n we get

sup
z∈D

|f (p)(z)|
p!

≤ C(2R−1)p
(
%

%′

)n0 %′

%′ − % sup
u>0

%′u

(Γ (u))p

= C(2R−1)p
(
%

%′

)n0 %′

%′ − % sup
u>0

e{u log %′+pγ(u)}, p = 0, 1, . . . .

Furthermore the supremum is reached when γ ′(u) = −(log %′)/p and it
is equal to exp{p(γ(u) − uγ′(u))}. So, f belongs to the class such that
µ(p) = γ(u) − uγ′(u). Thus, by (3), f ∈ HMα(D) with α = −1/log %′.
Consequently, by Lemma 3, f ∈ HM (D) and the proof of Theorem 1 is
complete.

Theorem 1 for C(M(n)). Let f ∈ C∞([a, b]). Then f ∈ C(M(n)) if
and only if there exist constants C > 0, 0 < % < 1, R > 0 and a sequence of
functions fn, holomorphic in En := {z ∈ C; d(z, [a, b]) < RΓ (n)} such that
‖fn‖En ≤ C%n and

∑
n fn = f uniformly on [a, b].

Note that our result is valid for the class C(M(n)) whether or not the
class is quasianalytic.

Examples. 1. µ(t) = 1
k log t, k > 0, which corresponds to the Gevrey

class of order k. From (3) we obtain u = 1
k t and

γ(u) =
1
k

log t+
1
k

=
1
k

(log u+ log k) +
1
k

;

so we can choose γ(u) = 1
k log u.
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2. µ(t) = β log log t (β > 0). We obtain u = βt/ log t, so log u ∼ log t,
and

γ(u) = β log log t+
β

log t
;

so we can choose γ(u) = β log log u.
3. µ(t) = at, a > 0 (extreme case); γ(u) = 2

√
au.

Remarks. The condition µ(t) ≤ at implies that every function Γ (u) is
lower bounded by e−2

√
au at infinity, for some a� 0. Consequently, Γ (u) is

always subexponentially decreasing.
2. We can say more on the link between the function M(t) = ttetµ(t),

which ensures the growth of the derivatives, and the function Γ (u) = e−γ(u),
which ensures the decrease of the neighborhoods Dn: if limt→+∞ (log t)/µ(t)
6= 0 we can choose γ = µ as in Examples 1 and 2.
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