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Remarks on pluripolar hulls

by Le Mau Hai, Nguyen Quang Dieu and Tang Van Long (Hanoi)

Abstract. The aim of the paper is to establish some results on pluripolar hulls and
to define pluripolar hulls of certain graphs.

1. Introduction. Let Ω be a domain in Cn. An upper semicontinu-
ous function u on Ω is called plurisubharmonic if the restriction of u to
the intersection of Ω with every complex line is subharmonic (we allow the
function identically −∞ to be plurisubharmonic). The cone of plurisubhar-
monic functions (resp. negative plurisubharmonic functions) is denoted by
PSH(Ω) (resp. PSH−(Ω)). A subset E of Cn is called pluripolar if for every
a ∈ A we can find a neighbourhood Ua of a and u ∈ PSH(Ua) such that
u ≡ −∞ on E∩Ua and u 6≡ −∞. A basic theorem of Josefson (see [Kl, The-
orem 4.7.4]) asserts that if E is pluripolar in Ω then there exists a plurisub-
harmonic function u on Cn such that u ≡ −∞ on E but u 6≡ −∞. If E is
pluripolar and contained in some domain Ω of Cn then we say that E is com-
plete pluripolar in Ω if there exists u ∈ PSH(Ω) such that u−1(−∞) = E.

It is easy to see that every complete pluripolar set E ⊂ Ω is a Gδ set.
In the case Ω ⊂ C by Deny’s theorem (see e.g. [Lan]) every polar Gδ subset
of Ω is complete polar. However, in higher dimensions the situation is much
more complicated: the set E = {(z, 0) : |z| < 1} is closed and complete
pluripolar in the bidisk Ω = {(z, w) : |z| < 1, |w| < 1}, but is not complete
pluripolar in any domain larger than Ω.

In order to see more concretely how a pluripolar subset E of Ω “propa-
gates”, following Levenberg and Poletsky we introduce two types of pluripo-
lar hulls of E relative to Ω:

E∗Ω =
⋂
{z ∈ Ω : u(z) = −∞, u ∈ PSH(Ω), u|E ≡ −∞},

E−Ω =
⋂
{z ∈ Ω : u(z) = −∞, u ∈ PSH−(Ω), u|E ≡ −∞}.
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Obviously E = E∗Ω if E is complete pluripolar. On the other hand, E = E∗Ω
does not imply E is complete pluripolar. Indeed, every countable and non-
Gδ set E in C satisfies E∗C = E but of course E is not complete polar
(in C). Nevertheless, this implication is true if we assume in addition that
Ω is pseudoconvex and E is both Fσ and Gδ (see Proposition 2.1 in [Ze]).
One of our aims is to discuss variants of the above mentioned result of
Zeriahi where the emphasis is on regularity of plurisubharmonic functions
whose singular locus coincides with E. In particular, we show in Theo-
rem 3.2 that if E is closed in Ω and E∗Ω′ ∩ Ω = E, where Ω′ is some
domain larger than Ω, then there exists a plurisubharmonic function u
on Ω, continuous on Ω and strictly plurisubharmonic on Ω \ E such that
u−1(−∞) = E.

In general, it is quite difficult to determine E∗Ω and E−Ω ; even sim-
ple looking sets like F1 = {(z, zα) : z 6= 0}, α > 0, α 6∈ Q, or F2 =
{(z, e−1/z) : z 6= 0} require considerable efforts (see [LP], [Wi1]) to establish
their pluripolar hulls. Combining the description of (F2)∗C2 with Zeriahi’s
theorem, one can even show that F2 is complete pluripolar in C2 (for details
see [Wi1]). On the other hand, F1 is not so, being a non-Gδ set (see [Wi3]
for details).

In the interesting paper [LP], a number of useful techniques to study
pluripolar hulls have been established by Levenberg and Poletsky. The next
goal of the present work is to apply the methods of Levenberg and Poletsky
to describe E∗Ω in case E is the graph of a holomorphic function over some
pseudoconvex domain D minus a complex hypersurface and Ω = D × C.
It should be remarked that in one dimension a complete answer has been
obtained in the work of Wiegerinck ([Wi2]). Here we encounter technical
difficulties as a complex hypersurface in Cn, n ≥ 2, contains no isolated
points. Therefore a complete description of the pluripolar hull in our case is
still missing. We are able to obtain a partial answer in Proposition 4.1. Using
this result and the above mentioned theorem of Wiegerinck it is not hard to
show that (F ′2)∗C3 = F ′2 ∪ {(0, 0)× C}, where F ′2 = {(z, w, ez/w) : w 6= 0}. In
particular, F ′2 is not complete pluripolar.

The next section deals with a new kind of pluripolar hulls taken in
the subclass L(Cn) of plurisubharmonic functions with logarithmic growth
on Cn. The main result of this section is that the new pluripolar hull ẼCn
coincides with the former, E∗Cn . This result is inspired by a well known the-
orem of Siciak stating that every pluripolar set in Cn is the singular locus
of a function in L(Cn) (see [Sic]).

Acknowledgments. This work is supported by the National Research
Program in Natural Sciences. The authors are grateful to Professor Nguyen
Van Khue for proposing problems and useful conversations.
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2. Preliminaries. The result below is particularly useful when we want
to “localize” E∗Ω.

Theorem 2.1 ([LP]). Let Ω be a pseudoconvex domain in Cn and {Ων}∞ν=1
an increasing sequence of relatively compact domains with

⋃∞
ν=1 Ων = Ω. Let

E ⊂ Ω be a pluripolar set. Then

E∗Ω =
∞⋃

ν=1

(E ∩Ων)−Ων .

An important tool in the study of pluripolar hulls is the concept of the
pluriharmonic measure (see [LP] for initial use of it and [Wi1], [Wi2], [E],
[EW], etc. for further developments). Let Ω ⊂ Cn be a domain and E ⊂ Ω.
The pluriharmonic measure at z ∈ Ω of E relative to Ω is the number

ω(z,E,Ω) = − sup{u(z) : u ∈ PSH(Ω), u|E ≤ −1, u|Ω ≤ 0}.
The following result provides a connection between the pluriharmonic mea-
sure and the pluripolar hull E−Ω .

Lemma 2.2 ([LP]). Let Ω be a bounded hyperconvex domain in Cn, and
E be a pluripolar subset of Ω. Then

E−Ω = {z ∈ Ω : ω(z,E,Ω) > 0}.
We also need

Lemma 2.3 ([Wi1]). Let Ω be a domain in Cn, E ⊂ Ω and let A ⊂ Ω\E
be closed and pluripolar. Then for all z ∈ Ω \A we have

ω(z,E,Ω) = ω(z,E,Ω \A).

The following result (Proposition 2.1 in [Ze]) characterizes complete
pluripolar sets in terms of their pluripolar hulls.

Theorem 2.4 ([Ze]). Let Ω be a pseudoconvex domain in Cn and E ⊂ Ω
an Fσ set. Then E is a complete pluripolar set in Ω if and only if E is a
Gδ set and E∗Ω = E.

Now we turn to the pluripolar hull of a pluripolar set taken in the class L
of plurisubharmonic functions on Cn with logarithmic growth. For a pluripo-
lar subset E of Cn we set

ẼCn = {z : u(z) = −∞, u|E ≡ −∞, u ∈ L(Cn)}.
It is proved in [Sic] that for every pluripolar subset E of Cn we can find
u ∈ L(Cn) such that u 6≡ −∞ and E ⊂ u−1(−∞). The following theorem
of Bedford and Taylor (Theorem 7.2 in [BT]) improves this result.

Theorem 2.5. Let E be a complete pluripolar subset of Cn. Then we
can find u ∈ L(Cn) such that u 6≡ −∞ and u−1(−∞) = E.
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Notation. If Ω is an open subset of Cn then by H(Ω) we mean the set
of holomorphic functions on Ω. We also denote by PSHc(Ω) the cone of
functions u such that eu is continuous on Ω and u ∈ PSH(Ω).

3. Variations on Zeriahi’s theorem. The next result is a minor im-
provement of Theorem 2.4.

Proposition 3.1. Let Ω, Ω′ be domains in Cn such that Ω ⊂ Ω′ and
Ω′ is pseudoconvex. Assume that E is a pluripolar subset of Ω which is Fσ
and Gδ. If

(1) E = E∗Ω′ ∩Ω
then there exists a function u ∈ PSH(Ω′) such that

(a) u−1(−∞) ∩Ω = E.
(b) u is continuous on Ω \E.

We could say that this result follows from the proof of Zeriahi’s theorem.
However, for the sake of completeness we indicate the details.

Proof. Since E is Fσ and Gδ we can express E and Ω \E as increasing
unions of compact subsets:

E =
⋃

j≥1

Kj , Ω \E =
⋃

j

Lj .

We also write Ω′ =
⋃
j Ω
′
j , where Ω′j are relatively compact subsets of Ω′

and satisfyKj∪Lj ⊂ Ω′j for all j ≥ 1. Fix j ≥ 1. Let a be a point in Lj . Then

from (1) we have a 6∈ E∗Ω′ . Hence, there exists u(j)
a ∈ PSH(Ω′) such that

u
(j)
a |E ≡ −∞ and u

(j)
a (a) > −∞. By composing with a suitable increasing

convex function we may assume that

u(j)
a |E ≡ −∞, u(j)

a (a) > −2/3, u(j)
a |Ω′j ≤ −1/2.

Since Ω′ is pseudoconvex, using a result of Fornæss and Narasimhan in [FN]
we get a sequence {u(j)

k } of real-valued, continuous plurisubharmonic func-
tions on Ω′ that decrease pointwise to u(j)

a on Ω′. Applying Dini’s theorem
we find ka (sufficiently large) such that

u
(j)
ka
|Kj ≤ −2j , u

(j)
ka

(a) > −1, u
(j)
ka
|Ω′j ≤ 0.

As u(j)
ka

is continuous there exists a neighbourhood Ua of a such that u(j)
ka

>
−1 on Ua. Now a standard argument using the compactness of Lj implies
that there exists a continuous plurisubharmonic function vj on Ω′ such that

(i) vj |Kj ≤ −2j .
(ii) vj |Lj > −1.
(iii) vj |Ω′j ≤ 0.
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Then in view of (iii) the series

u(z) :=
∑

j≥1

2−jvj(z)

defines a plurisubharmonic function on Ω′. It follows from (i) that u ≡ −∞
on E. Furthermore from (ii) we have u > −∞ on Ω′\E. Thus (a) is proved.
Finally, (b) follows since the series converges uniformly on Lj for each j in
view of (ii).

It is reasonable to ask if the function u above can be chosen to be con-
tinuous on Ω if E is closed in Ω. We have the following

Theorem 3.2. Let Ω be a bounded domain in Cn and E be a closed
pluripolar subset of Ω. Assume that

(2) E∗Ω′ ∩Ω = E,

where Ω′ is some domain in Cn that contains Ω. Then there exists a function
u ∈ PSHc(Ω) such that

(a) u−1(−∞) ∩Ω = E.

(b) u is smooth and strictly plurisubharmonic on Ω \E.
Proof. We divide the proof into two steps.

Step 1. Let Ω′′ be a domain satisfying Ω ⊂⊂ Ω′′ ⊂⊂ Ω′. We will show
that there exists v∈PSH(Ω′′) such that v < 0 onΩ′′ and v−1(−∞)∩Ω=E.
Since the proof below is very similar to that of Proposition 3.1, we only
sketch it (see also Lemma 4.2 in [EW] for a similar situation). Express E
and Ω \E as increasing unions of compact sets:

E =
⋃

j≥1

Kj , Ω \E =
⋃

j≥1

Lj .

Fix j ≥ 1 and let a ∈ Lj . From (2) we get ua ∈ PSH(Ω′) such that
ua|E ≡ −∞, ua(a) = −2/3, and ua|Ω′′ ≤ −1/2. By taking convolution
with standard smooth kernels we get a sequence of real-valued continuous
plurisubharmonic functions {uj} on Ω′′ that decrease pointwise to ua on Ω′′.
Now the rest of the proof goes exactly as that of Proposition 3.1, and hence
we omit the details.

Step 2. Let Ω′′ and v be as in Step 1. We will construct a function u
satisfying (a) and (b). To this end, we use methods given in Lemma 1.2 of
[Sib]. Let h be an increasing convex function on [0, 1] such that

h(x) = 0 ∀x ∈ [0, 1/2], h(x) < 1 ∀x 6= 1, h(1) = 1.

Set ṽk = h(ev/k). Clearly ṽk ∈ PSH(Ω′′), ṽk vanishes on neighbourhoods
of E in Ω′′, 0 ≤ ṽk ≤ 1 and limk→∞ ṽk = 1 on Ω \E. By taking convolution
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with standard smooth kernels and shrinking Ω′′ we can assume in addition
that ṽk is continuous on Ω′′. Set

wk = max{ṽ1, . . . , ṽk}.
Then {wk} is an increasing sequence of continuous plurisubharmonic func-
tions on Ω′′ that vanish on neighbourhoods of E in Ω′′. Thus by Dini’s
theorem it converges uniformly on compact subsets of Ω \E. We claim that
there exists a sequence {Fk} of compact subsets and a sequence {nk} such
that

(i) Int(Fk−1) ⊂ Fk,
⋃
Fk = Ω \ E.

(ii) {z ∈ Ω :
∑k−1
j=1 wnj ≥ 1/2} ⊂ Fk.

(iii) 1− 1/2k ≤ wnk on Fk.

First we choose n1 so large that F1 := {z : wn1 ≥ 1/2} 6= ∅. Assume that
F1, . . . , Fk−1 and n1, . . . , nk−1 have been chosen. Let Fk be any compact
set in Ω \ E that contains {z ∈ Ω :

∑k−1
j=1 wnj ≥ 1/2} ∪ Int(Fk−1). This is

possible since the latter set is compact and disjoint from E. As the sequence
{wk} converges to 1 uniformly on Fk we can choose nk so large that

wnk ≥ 1− 1/2k on Fk.

It is clear that the compact sets Fk can be taken so that
⋃
Fk = Ω \ E.

Thus the claim is valid.
Now we form the series

w̃(z) = |z|2 +
∑

k≥1

(wnk − 1).

It defines a plurisubharmonic function on Ω. Moreover from (iii) we deduce
that it converges uniformly on Fk for every k ≥ 1. Thus by (i), w̃ is real-
valued, continuous on Ω \ E. Next (ii) implies that w̃ ≡ −∞ on E and w̃
is continuous at every point of E. Clearly w̃ is strictly plurisubharmonic on
Ω \ E. Let ϕ be a continuous function on Ω such that ϕ > 0 on Ω and
ϕ ≡ 0 on ∂Ω. Now using Richberg’s regularization lemma ([Ri]) we get a
smooth strictly plurisubharmonic function u on Ω \ E such that w̃ ≤ u ≤
w̃ + ϕ. Since E is closed and pluripolar, u can be extended through E to
a plurisubharmonic function on Ω (still denoted by u). Finally, it is easy
to see that u can be extended to a continuous function on Ω and satisfies
u−1(−∞) ∩Ω = E.

4. Pluripolar hulls of certain graphs. The next result is an analogue
of Proposition 5 in [Wi2]. Needless to say, we rely heavily on Wiegerinck’s
methods.

Proposition 4.1. Let D be a pseudoconvex domain in Cn, and f ∈
H(D \ A), where A = {g = 0} and g is a holomorphic function on D.
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Denote by E the graph of f in (D \A)× C. Then

Z = E ∪ (A× C)

is complete pluripolar in D × C.
Proof. We split the proof into two steps.

Step 1. We assume that D is bounded, g is holomorphic on a Stein
neighbourhood D̃ of D and f ∈ H(D \ A). Let B be a disk around 0 ∈ C.
Let E′ be the graph of f in (D \ A)×B and

Z ′ = E′ ∪ (A×B).

We will show that there exists u ∈ PSH−(D×B) such that u is −∞ exactly
on Z ′. By Theorem 1 in [Ch] we can expand

f(z) =
∑

j≥0

fj(z)
gj(z)

, z ∈ D \ A,

where fj are holomorphic functions on D̃ and satisfy

lim
j→∞

‖fj‖1/jD
= 0.

Fix δ > 0 so small that

K = {z ∈ D : d(z, ∂D) ≥ δ, |g(z)| ≥ δ} 6= ∅.
Set

εj = sup
k≥j
‖fk‖1/kD

, hN (z, w) =
1
N

log
(∣∣∣∣
(
w −

N∑

j=0

fj(z)
gj(z)

)
gN (z)

∣∣∣∣
)
,

where the integer N will be chosen later. It is clear that εj ↓ 0. Let M =
supD |g|. We now make some estimates. On (K ×B) ∩E we have

hN (z, f(z)) =
1
N

log
∣∣∣∣
∑

j≥N+1

fj(z)
gj(z)

∣∣∣∣+ log |g(z)|(3)

≤ 1
N

log
∑

j≥N+1

∣∣∣∣
fj(z)
gj(z)

∣∣∣∣+ log |g(z)|

≤ 1
N

log
∑

j≥N+1

∣∣∣∣
εjN
gj(z)

∣∣∣∣+ log |g(z)|

≤ 1
N

log
∣∣∣∣
(
εN
g(z)

)N+1 1
1− εN/δ

∣∣∣∣+ log |g(z)|

=
(

1 +
1
N

)
(log εN − log |g(z)|)− 1

N
log
∣∣∣∣1−

εN
δ

∣∣∣∣
+ log |g(z)|

≤ log εN + C1,
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where C1 depends on δ but not on εN , and N is chosen such that εN < δ/2.
Next, let r > 0. For z ∈ K and |w − f(z)| > r we have

hN (z, w) =
1
N

log
∣∣∣∣(w − f(z)) +

∑

j≥N+1

fj(z)
g(z)j

∣∣∣∣+ log |g(z)|(4)

≥ 1
N

log
∣∣∣∣|w − f(z)| −

∑

j≥N+1

∣∣∣∣
fj(z)
g(z)j

∣∣∣∣
∣∣∣∣+ log δ

≥ 1
N

log
(
r − 2

(
εN
δ

)N+1)
+ log δ ≥ −C2,

where C2 > 0 if N is sufficiently large. The last estimate is that, for C3 > 0
large enough,

hN (z, w) < C3 on D ×B,
where C3 depends on M and radius of B. Next we set

uN = max(hN − C3, log εN ).

Choose a sequence {Ni} of positive integers and a sequence {di} of positive
numbers with the following properties:

∑
di < ∞ but

∑
di log εNi = −∞.

This is possible since εN ↓ 0. We form the series

u(z, w) =
∑

i≥1

diuNi(z, w).

Notice that on D×B, u is the limit of a decreasing sequence of plurisubhar-
monic functions. We use (3) to see that u ≡ −∞ on E ∩ (K ×B) and hence
on E. Next from (4) we obtain u 6= −∞ if w 6= f(z). Combining these facts,
we conclude that u is plurisubharmonic on D × B, real-valued, continuous
away from E ∪ (A× C) and satisfies

E ⊂ {(z, w) : u(z, w) = −∞} ⊂ E ∪ (A× C).

Thus the function u(z, w) + log |g| − logM satisfies our conditions.

Step 2. We show that Z is complete pluripolar in D × C. Let {Dj}
be an increasing sequence of relatively compact hyperconvex subdomains
of D such that D =

⋃
Dj . Let K be a closed ball such that K ⊂ D1 and

K ∩A = ∅. Denote by EK the graph of f over K. Let {Bj} be an increasing
sequence of open disks such that f(K) ⊂ B1 and C =

⋃
Bj . Then we have

(EK)−Dj×Bj = (E ∩ (Dj ×Bj))−Dj×Bj .
On the other hand, by Step 1 we can find a plurisubharmonic function uj
on Dj ×Bj so that uj = −∞ precisely on (Dj ×Bj)∩Z. This implies that

ω((z, w), EK ,Dj ×Bj) = 0 for (z, w) ∈ (Dj ×Bj) \ Z.
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Thus using Lemma 2.2 we find

(EK)−Dj×Bj ⊂ (Dj ×Bj) ∩ Z.
Application of this and Theorem 2.1 gives

E∗D×C ⊂ (D × C) ∩ Z.
Let a ∈ D×C\Z. Then we can find v ∈ PSH(D×C) such that v(a) 6= −∞
and v ≡ −∞ on E. Hence the plurisubharmonic function ṽ = v + log |g|
is identically −∞ on Z, whereas ṽ(a) 6= −∞. It follows that Z∗D×C = Z.
Finally, it is clear that Z is a Gδ as well as an Fσ, and we infer from
Theorem 2.4 that Z is complete pluripolar in D × C.

We now apply this result to study pluripolar hulls of certain graphs which
are analogues of [Wi1] (see Theorem 7 in [Wi1]).

Proposition 4.2. Let D be a pseudoconvex domain in Cn (n ≥ 2), p and
q be holomorphic functions on D such that q 6≡ 0, A = {z ∈ D : q(z) = 0}
6= ∅ and A′ = {z ∈ D : p(z) = q(z) = 0} is of (complex ) codimension
2 in D. Let ϕ be a holomorphic function on C which is not a polynomial.
Denote by E the graph of f = ϕ(p/q) over D \A. Then

(5) E∗D×C = E ∪ (A′ × C).

In particular , E is not complete pluripolar in D × C if A′ 6= ∅.
Proof. First we show that A′×C ⊂ E∗D×C. We may assume that A′ 6= ∅.

Fix z0 ∈ A′ and c ∈ C \ {0}. Then z0 ∈ Xc = {z ∈ D : p(z) − cq(z) = 0}.
Let u ∈ PSH(D × C) be such that u ≡ −∞ on E. Let v(z) = u(z, ϕ(c)).
Clearly v ≡ −∞ on Xc \ A′. As A′ is of codimension 2 in D we deduce
that v ≡ −∞ on Xc. In particular v ≡ −∞ on A′. It follows that u ≡ −∞
on A′ × C. Thus the right hand side of (5) is contained in the left hand
side. It remains to prove the reverse inclusion. For this, take an arbitrary
point (z0, w0) ∈ A×C such that p(z0) 6= 0; we claim that (z0, w0) 6∈ E∗D×C.
Indeed, set

F = {(ξ, ϕ(1/ξ)) : ξ ∈ C \ {0}}, B = {z ∈ D : p(z) = 0}.
As ϕ is not a polynomial, the point ξ = 0 is an essential singularity for
ϕ(1/ξ). It follows from Theorem 2 in [Wi2] that F is complete pluripolar
in C2. By Theorem 2.5 we get a function u ∈ L(C2) such that u = −∞
precisely on F . Define

ũ(z, w) = u

(
q(z)
p(z)

, w

)
+ log |p(z)|.

Obviously ũ ∈ PSH((D \B)×C). Since u ∈ L(C2) the function ũ is locally
bounded from above near every point of B×C. So it extends through B×C
to a plurisubharmonic function (still denoted by ũ) on D × C. As ũ ≡ −∞
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on E \ (B×C), an open subset of E, we infer ũ ≡ −∞ on E. Now the claim
follows since ũ(z0, w0) = u(0, w0) + log |p(z0)| > −∞. On the other hand,
using Proposition 4.1 one gets

E∗D×C ⊂ E ∪ (A× C).

Putting all this together we are done.

5. Hulls in the class L(Cn). We start with the following

Proposition 5.1. Let E be a pluripolar subset of Cn. Then E∗Cn = ẼCn .

For simplicity of notation, throughout this section we write E∗ = E∗Cn
and Ẽ = ẼCn .

Proof of Proposition 5.1. Obviously, E∗ ⊂ Ẽ. The reverse inclusion is an
easy consequence of the Bedford–Taylor theorem (Theorem 2.5). Indeed, let
z0 6∈ E∗. Then there is u ∈ PSH(Cn) such that u(z0) > −∞ and u|E ≡ −∞.
Let E′ = {z : u(z) = −∞}. Then E′ is complete pluripolar in Cn. So using
Theorem 2.5, we find v ∈ L(Cn) such that v is −∞ exactly on E′. It follows
that z0 6∈ Ẽ. We are done.

Proposition 5.2. Let Ω be a domain in Cn and E be a pluripolar subset
of Ω. Assume that E∗ ∩ Ω = E and E is Fσ and Gδ. Then there exists
u ∈ L(Cn) such that u−1(−∞) ∩Ω = E.

Proof. Applying Proposition 3.1 with Ω′ = Cn we obtain v ∈ PSH(Cn)
such that v−1(−∞) ∩Ω = E. Now the set v−1(−∞) is complete pluripolar
in Cn, so by Theorem 2.5 we get u ∈ L(Cn) so that u−1(−∞) = v−1(−∞).
We are done.

Let E ⊂ Cn. Then the Siciak extremal function associated to E is defined
as follows:

VE(z) = sup{u(z) : u ∈ L(Cn), u|E ≤ 0}.
Siciak has proved in [Sic] that if E is a pluripolar set in Cn then so is
AVE = {z ∈ Cn : VE(z) < ∞}. The result below describes the pluripolar
hull of AVE and AVE∗ .

Proposition 5.3. Let E ⊂ Cn be a pluripolar set. Then

(AVE )∗ = AVE∗ = E∗.

Consequently , if E = E∗ then E∗ = AVE = {z ∈ Cn : VE(z) <∞}.
Proof. First we prove that AVE∗ = E∗. Since VE∗ ≡ 0 on E∗ we deduce

that E∗ ⊂ AVE∗ . For the reverse inclusion, we fix z ∈ AVE∗ and let u ∈
L(Cn) with u ≡ −∞ on E. From the definition of E∗ we have u ≡ −∞
on E∗. Hence for every m > 0 we have u + m ∈ L(Cn) and u + m ≡ −∞
on E. Consequently, u(z) +m ≤ VE∗(z). This leads to u(z) ≤ VE∗(z)−m.
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Now let m go to ∞ to obtain u(z) = −∞. Applying Proposition 5.1 we get
z ∈ Ẽ = E∗. The proof is complete.

6. Miscellanea. To finish this paper, we include the following elemen-
tary facts.

Proposition 6.1. Let E be a compact pluripolar subset of a pseudo-
convex domain Ω in Cn. Let ÊΩ denote the holomorphic hull of E in Ω,
i.e.,

ÊΩ = {z ∈ Ω : |f(z)| ≤ ‖f‖E, ∀f holomorphic on Ω}.
Then ÊΩ ⊂ E∗Ω.

Proof. Let u ∈ PSH(Ω) be such that u ≡ −∞ on E. Since Ω is pseudo-
convex, it is well known that ÊΩ coincides with the hull of E with respect to
plurisubharmonic functions, and we infer that u ≡ −∞ on ÊΩ. The desired
conclusion follows.

Proposition 6.2. Let D,G be domains in Cn and Cm respectively and
let E ⊂ D,F ⊂ G be pluripolar sets.Then

(E × F )∗D×G = E∗D × F ∗G,(6)

(E × F )−D×G = E−D × F−G .
Proof. It is enough to prove (6), since the proof of the other equality is

similar. For (6), we only have to show

E∗D × F ∗G ⊂ (E × F )∗D×G
as the reverse inclusion is trivial. To this end, we claim that

(7) E∗D × F ⊂ (E × F )∗D×G.

Indeed, let (z0, w0) ∈ E∗D×F and ϕ(z, w) ∈ PSH(D×G) and ϕ|E×F = −∞.
Then ϕ(z, w0) ∈ PSH(D) and ϕ|E = −∞. Hence, ϕ(z0, w0) = −∞ and
(z0, w0) ∈ (E × F )∗D×G. Thus (7) is proved. Replace F in (7) by F ∗G to
obtain

(8) E∗D × F ∗G ⊂ (E × F ∗G)∗D×G.

On the other hand, interchanging the roles of E and F in (7) gives

(9) E × F ∗G ⊂ (E × F )∗D×G.

Combining (8) and (9) we get (6).
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