Product property for capacities in \mathbb{C}^{N}

by MirosŁaw Baran and Leokadia Bialas-Ciez (Kraków)
Dedicated to Professor Józef Siciak on the occasion of his 80th birthday

Abstract

The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: $$
C_{\nu}\left(E_{1} \times E_{2}\right)=\min \left(C_{\nu_{1}}\left(E_{1}\right), C_{\nu_{2}}\left(E_{2}\right)\right),
$$ where E_{j} and ν_{j} are respectively a compact set and a norm in $\mathbb{C}^{N_{j}}(j=1,2)$, and ν is a norm in $\mathbb{C}^{N_{1}+N_{2}}, \nu=\nu_{1} \oplus_{p} \nu_{2}$ with some $1 \leq p \leq \infty$.

For a convex subset E of \mathbb{C}^{N}, denote by $C(E)$ the standard L-capacity and by ω_{E} the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes in $\mathbb{R}^{2 N}$. We prove that $C(E)=\omega_{E} / 2$ for a ball E in \mathbb{C}^{N}, while $C(E)=\omega_{E} / 4$ if E is a convex symmetric body in \mathbb{R}^{N}. This gives a generalization of known formulas in \mathbb{C}. Moreover, we show by an example that the last equality is not true for an arbitrary

 convex body.1. Introduction. Siciak's extremal function is defined for a compact subset E of \mathbb{C}^{N} by the formula

$$
\begin{equation*}
\Phi_{E}(z)=\Phi(E, z)=\sup \left\{|P(z)|^{1 / \operatorname{deg} P}: \operatorname{deg} P \geq 1,\|P\|_{E} \leq 1\right\}, z \in \mathbb{C}^{N} \tag{1.1}
\end{equation*}
$$

We refer to [S1, S2, S3, K2] for definitions and basic properties related to this important tool in pluripotential theory and its applications to approximation theory.

If ν is a complex norm in \mathbb{C}^{N} then we define the ν-capacity of E as the quantity

$$
\begin{equation*}
\log C_{\nu}(E)=\liminf _{z \rightarrow \infty}(\log \nu(z)-\log \Phi(E, z)) \tag{1.2}
\end{equation*}
$$

which is finite for any compact set $E \subset \mathbb{C}^{N}$. Here and subsequently, we write $z \rightarrow \infty$ when $\nu(z) \rightarrow \infty$. If $\nu(z)=\|z\|_{2}$ is the standard Euclidean norm then

[^0]we get the so called L-capacity and we put $C_{\nu}(E)=C(E)$. Kołodziej Ko has proved that $C(E)$ is a Choquet capacity. Since any two norms ν and μ in \mathbb{C}^{N} are equivalent, we have
$$
\min _{\mu(z)=1} \nu(z) \leq \frac{C_{\nu}(E)}{C_{\mu}(E)} \leq \max _{\mu(z)=1} \nu(z)
$$

By a well known result of Siciak (see [S1, S3]), $C_{\nu}(E)=0$ if and only if E is a pluripolar set.

Following [BC1, BC2] assume that there exists a norm $\nu=\nu_{0}$ (which depends on E) such that we can replace the liminf in (1.2) by lim (we shall denote such a modification by $\left.(1.2)^{*}\right)$. If ν_{1} is another norm with this property then it must be a positive multiple of ν_{0}. Indeed, if ν_{0}, ν_{1} satisfy $(1.2)^{*}$ then the limit

$$
\lim _{z \rightarrow \infty} \frac{\nu_{1}(z)}{\nu_{0}(z)}=\alpha \in(0,+\infty)
$$

exists, whence

$$
\alpha=\liminf _{z \rightarrow \infty} \frac{\nu_{1}(z)}{\nu_{0}(z)}=\min _{\nu_{0}(z)=1} \nu_{1}(z)=\limsup _{z \rightarrow \infty} \frac{\nu_{1}(z)}{\nu_{0}(z)}=\max _{\nu_{0}(z)=1} \nu_{1}(z)
$$

which means $\nu_{1}=\alpha \nu_{0}$. We shall call ν_{0} that satisfies (1.2)* and $C_{\nu_{0}}(E)=1$ the C-norm for E and denote it by h_{E}. So, if the C-norm exists, then for an arbitrary norm ν we have

$$
C_{\nu}(E)=\min _{h_{E}(z)=1} \nu(z)=\frac{1}{\max _{\nu(z)=1} h_{E}(z)}=\left(\left\|\operatorname{Id}:\left(\mathbb{C}^{N}, \nu\right) \rightarrow\left(\mathbb{C}^{N}, h_{E}\right)\right\|\right)^{-1}
$$

where $\|\cdot\|$ is the usual norm of linear mappings. Hence, if L is a linear isomorphism of \mathbb{C}^{N} we get the following connection between the ν-capacity of E and $L(E)$:

$$
C_{\nu}(L(E))=\left(\left\|L^{-1}:\left(\mathbb{C}^{N}, \nu\right) \rightarrow\left(\mathbb{C}^{N}, h_{E}\right)\right\|\right)^{-1}
$$

Let $\Psi(E, \cdot)$ be Siciak's homogeneous extremal function for E. Taking into account the results of [S1, S2, S3], it is not difficult to check the following

Proposition 1.1. Assume that a compact $E \subset \mathbb{C}^{N}$ possesses the C norm. Then
(a)

$$
\begin{equation*}
h_{E}(z)=\lim _{r \rightarrow \infty} \frac{1}{r} \Phi(E, r z) \geq \Psi(E, z), \quad z \in \mathbb{C}^{N} \tag{1.3}
\end{equation*}
$$

(b) If $F \subset \mathbb{C}^{M}$ also possesses the C-norm then so does $E \times F$ and

$$
h_{E \times F}(z, w)=\max \left(h_{E}(z), h_{F}(w)\right), \quad(z, w) \in \mathbb{C}^{N+M}
$$

(c) If L is a linear isomorphism of \mathbb{C}^{N} then $h_{L(E)}=h_{E} \circ L^{-1}$.
(d) If $E_{R}=\left\{z \in \mathbb{C}^{N}: \Phi(E, z) \leq R\right\}$ then $h_{E_{R}}=(1 / R) h_{E}$.

EXAMPLE 1.2. If q is a norm in \mathbb{C}^{N} and $E=\left\{z \in \mathbb{C}^{N}: q(z) \leq 1\right\}$ then $h_{E}(z)=q(z)=\Psi(E, z), z \in \mathbb{C}^{N}$.

Remark 1.3. If for a compact $E \subset \mathbb{C}^{N}$ the limit

$$
f_{E}(z)=\lim _{r \rightarrow \infty} r^{-1} \Phi(E, r z)
$$

exists for $z \in \mathbb{C}^{N}$ (as in (1.3)), then we shall call f_{E} the C-h-function of E (it is a positive homogeneous function) whenever additionally f_{E} is continuous and $\lim _{z \rightarrow \infty} \Phi(E, z) / f_{E}(z)=1$.

If f_{E} is a C-h-function of E and ν is an arbitrary complex norm in \mathbb{C}^{N} then
$C_{\nu}(E)=\frac{1}{\sup _{\nu(z)=1} f_{E}(z)}=\inf _{f_{E}(z)=1} \nu(z)=: \rho_{\nu}\left(S_{f_{E}}(0,1)\right)=: \frac{1}{2} \omega_{\nu}\left(S_{f_{E}}(0,1)\right)$,
where $S_{f_{E}}(0,1)=\left\{z \in \mathbb{C}^{N}: f_{E}(z)=1\right\}$.
We do not know when a C-h-function exists and when it is a norm in \mathbb{C}^{N}.
EXAMPLE 1.4. Let $Q=\left(Q_{1}, \ldots, Q_{N}\right): \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ be a polynomial mapping such that $\operatorname{deg} Q_{j}=d \geq 1, j=1, \ldots, N$, and $Q=\widehat{Q}+R$, where $\widehat{Q}=\left(\widehat{Q_{1}}, \ldots, \widehat{Q_{N}}\right)$ is the main (homogeneous) part of Q of degree $d, \operatorname{deg} R$ $<d$ and $\widehat{Q}^{-1}(\{0\})=\{0\}$. Then, by the Klimek theorem [K1 (see also K2, Thm. 5.3.1]), for an arbitrary compact E we have

$$
\Phi\left(Q^{-1}(E), z\right)=(\Phi(E, Q(z)))^{1 / d}, \quad z \in \mathbb{C}^{N}
$$

If E possesses the C-norm then $Q^{-1}(E)$ possesses a C-h-function and

$$
f_{Q^{-1}(E)}=\left(h_{E} \circ \widehat{Q}\right)^{1 / d} .
$$

REMARK 1.5. Note the following result of Klimek K1]: if $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is a polynomial mapping of degree $d \geq 1$ and $\liminf _{z \rightarrow \infty}\left(\|F(z)\|_{2} /\|z\|_{2}^{d}\right)>0$ then for every compact set E in \mathbb{C}^{N},

$$
\begin{aligned}
C\left(F^{-1}(E)\right) \liminf _{z \rightarrow \infty}\|F(z)\|_{2} /\|z\|_{2}^{d} & \leq(C(E))^{1 / d} \\
& \leq C\left(F^{-1}(E)\right) \limsup _{z \rightarrow \infty}\|F(z)\|_{2} /\|z\|_{2}^{d}
\end{aligned}
$$

It follows from $[\mathrm{BC} 1]$ that if for a compact $E \subset \mathbb{C}^{N}$ there exists a C-norm then

$$
d_{\infty}(E)=d_{\infty}\left(B_{h_{E}}(0,1)\right)
$$

where $B_{h_{E}}(0,1)$ is the unit ball for the C-norm and $d_{\infty}(E)$ denotes the transfinite diameter for E. By the Shestakov formula for $L(E)$, where L is a linear isomorphism of \mathbb{C}^{N} (cf. [BC1]), we have

$$
d_{\infty}(L(E))=\sqrt[N]{|\operatorname{det} L|} d_{\infty}(E)
$$

A product property was first proved in [BC1] (see also [BC2, $\mathrm{CM}, \mathrm{BES}]$):

$$
d_{\infty}\left(E_{1} \times E_{2}\right)=d_{\infty}\left(E_{1}\right)^{\frac{N_{1}}{N_{1}+N_{2}}} d_{\infty}\left(E_{2}\right)^{\frac{N_{2}}{N_{1}+N_{2}}},
$$

where $E_{1} \subset \mathbb{C}^{N_{1}}, E_{2} \subset \mathbb{C}^{N_{2}}$. We see that the given formula for $C_{\nu}(L(E))$ is much more complicated, but the product property for capacities is simpler, as we shall see later.
2. Product property for capacities in \mathbb{C}^{N}. If $f: \mathbb{C}^{N} \rightarrow \mathbb{R}$ is locally bounded and ν is a norm in \mathbb{C}^{N}, then we put

$$
M_{\nu}(f, r)=\sup \{f(z): \nu(z) \leq r\}, \quad r>0 .
$$

Moreover, if f is plurisubharmonic, then by the maximum principle we can write $M_{\nu}(f, r)=\sup _{\nu(z)=r} f(z)$.

For a locally bounded function $f: \mathbb{C}^{N} \rightarrow \mathbb{R}$ we denote by f^{*} its upper regularization: $f^{*}(z)=\lim \sup _{w \rightarrow z} f(w)$, which is upper semicontinuous.

It is well known (Siciak's theorem, see e.g. S3]) that if $C(E)=0$ then $\Phi^{*}(E, z) \equiv+\infty$. In the case $C(E)>0$ we have $\log \Phi^{*}(E, \cdot) \in \operatorname{PSH}\left(\mathbb{C}^{N}\right) \cap$ $L_{\text {loc }}^{\infty}\left(\mathbb{C}^{N}\right)$ and $\log \Phi^{*}(E, z)-\log \nu(z)=O(1)$ for an arbitrary norm ν as $\nu(z) \rightarrow \infty$.

Proposition 2.1. If $C(E)>0$ then:
(a) for an arbitrary norm ν and for all $r>0$,

$$
M_{\nu}\left(\Phi_{E}, r\right)=M_{\nu}\left(\Phi_{E}^{*}, r\right)=\sup _{\nu(z)=r} \Phi^{*}(E, z)=\sup _{\nu(z)=r} \Phi(E, z) ;
$$

(b) for each $r>0$ exists $z_{r} \in \mathbb{C}^{N}$ such that $\nu\left(z_{r}\right)=r$ and $\Phi^{*}\left(E, z_{r}\right)=$ $M_{\nu}\left(\Phi_{E}^{*}, r\right)$;
(c) $M_{\nu}\left(\log \Phi_{E}^{*}, e^{t}\right)$ is an increasing convex function in \mathbb{R};
(d) $M_{\nu}\left(\log \Phi_{E}^{*}, e^{t}\right)-t=O(1)$ as $t \rightarrow+\infty$.

Proof. Part (a) is a consequence of the maximum principle for plurisubharmonic functions (see [K2, Cor. 2.9.9]) and Bedford-Taylor theory (see [K2]): the set $\left\{z \in \mathbb{C}^{N}: \Phi(E, z)<\Phi^{*}(E, z)\right\}$ is pluripolar if it is non-empty. Since psh functions are upper semicontinuous, this implies (b). Assertion (c) is a special case of Prop. 1.4 in [LG. The last part follows from Siciak's result (see [S2, K2]).

Lemma 2.2. For any $a \in \mathbb{R}$, if $\varphi:(a,+\infty) \rightarrow \mathbb{R}$ is a convex function such that $\varphi(t)=o(t)$ as $t \rightarrow+\infty$, then φ is a decreasing function.

Proof. Let $a<t_{1}<t_{2}<t$ and $t_{2}=(1-\alpha) t_{1}+\alpha t$. Then $\alpha=\frac{t_{2}-t_{1}}{t-t_{1}}$ and, by convexity of φ,

$$
\varphi\left(t_{2}\right) \leq(1-\alpha) \varphi\left(t_{1}\right)+\alpha \varphi(t)=(1-o(1)) \varphi\left(t_{1}\right)+o(1)
$$

which gives $\varphi\left(t_{2}\right) \leq \varphi\left(t_{1}\right)$.

ThEOREM 2.3. Let ν be a norm in \mathbb{C}^{N} and $C(E)>0$. Put

$$
\Lambda_{\nu}(E, t):=M_{\nu}\left(\log \Phi_{E}^{*}, e^{t}\right)=M_{\nu}\left(\log \Phi_{E}, e^{t}\right)
$$

Then
(a) $\Lambda_{\nu}(E, t)-t$ is a convex decreasing function on \mathbb{R};
(b) for all $t \in \mathbb{R}$,

$$
\begin{gathered}
\Lambda_{\nu}(E, t)-t \geq-\log C_{\nu}(E) \\
\lim _{t \rightarrow \infty}\left(\Lambda_{\nu}(E, t)-t\right)=\inf _{t \in \mathbb{R}}\left(\Lambda_{\nu}(E, t)-t\right)=-\log C_{\nu}(E)
\end{gathered}
$$

Proof. $\Lambda_{\nu}(E, t)-t$ is a convex function on \mathbb{R} as a sum of two convex functions. By Proposition 2.1(d) and Lemma 2.2 this function is decreasing, which implies (a) and (b) except the fact that $\Lambda_{\nu}(E, t)-t \rightarrow-\log C_{\nu}(E)$. To show this, we need to prove the crucial fact

$$
C_{\nu}(E)=\lim _{r \rightarrow \infty} \frac{r}{M_{\nu}\left(\Phi_{E}^{*}, r\right)}
$$

By Proposition 2.1(b), we have

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{r}{M_{\nu}\left(\Phi_{E}^{*}, r\right)}=\lim _{r \rightarrow \infty} \frac{\nu\left(z_{r}\right)}{\Phi^{*}\left(E, z_{r}\right)} \\
& \quad \geq \liminf _{\nu(z) \rightarrow \infty} \frac{\nu(z)}{\Phi^{*}(E, z)} \geq \liminf _{\nu(z) \rightarrow \infty} \frac{\nu(z)}{\sup _{\nu(w) \leq \nu(z)} \Phi^{*}(E, w)}=\lim _{r \rightarrow \infty} \frac{r}{M_{\nu}\left(\Phi_{E}^{*}, r\right)}
\end{aligned}
$$

which completes the proof.
Corollary 2.4.

$$
C_{\nu}(E)=\lim _{r \rightarrow \infty} \frac{r}{M_{\nu}\left(\Phi_{E}, r\right)}=\sup _{r>0} \frac{r}{M_{\nu}\left(\Phi_{E}, r\right)} \geq \frac{1}{\sup _{\nu(z)=1} \Phi^{*}(E, z)}
$$

Corollary 2.5. For all $r>0$,

$$
\sup _{\nu(z)=r} \Phi(E, z) \geq \frac{r}{C_{\nu}(E)}
$$

Let n be a norm in \mathbb{R}^{2} such that $n\left(x_{1}, x_{2}\right)=n\left(x_{2}, x_{1}\right)=n\left(\left|x_{1}\right|,\left|x_{2}\right|\right)$, for each $r \geq 0$ the function $n(r, \cdot)$ is increasing on $\mathbb{R}_{+}, n(1,0)=n(0,1)=1$ and $n\left(x_{1}, x_{2}\right) \geq \max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)$. If ν_{1} is a norm in \mathbb{C}^{N} and ν_{2} is a norm in \mathbb{C}^{M} then $\nu(z, w)=n\left(\nu_{1}(z), \nu_{2}(w)\right)$ is a norm in $\mathbb{C}^{N} \times \mathbb{C}^{M}$ and $\left\{(z, w) \in \mathbb{C}^{N+M}\right.$: $\nu(z, w)=r\}=\left\{\left(r_{1} z, r_{2} w\right): \nu_{1}(z)=1=\nu_{2}(w), r_{j} \geq 0, n\left(r_{1}, r_{2}\right)=r\right\}$. Note that the norms n with the above properties form a convex set.

Theorem 2.6 (Product property). If E and F are compact subsets of \mathbb{R}^{N} and \mathbb{R}^{M} respectively, then for the norm ν defined above

$$
M_{\nu}\left(\Phi_{E \times F}, r\right)=\max \left(M_{\nu_{1}}\left(\Phi_{E}, r\right), M_{\nu_{2}}\left(\Phi_{F}, r\right)\right), \quad r>0
$$

and

$$
C_{\nu}(E \times F)=\min \left(C_{\nu_{1}}(E), C_{\nu_{2}}(F)\right)
$$

Proof. It suffices to prove the first part, which easily implies the second. We have

$$
\begin{aligned}
\sup _{\nu(z, w)=r} \Phi(E \times F,(z, w)) & =\sup _{\nu(z, w)=r} \max (\Phi(E, z), \Phi(F, w)) \\
& =\sup _{n\left(r_{1}, r_{2}\right)=r, \nu_{1}(z)=1=\nu_{2}(w)} \max \left(\Phi\left(E, r_{1} z\right), \Phi\left(F, r_{2} w\right)\right) \\
& =\sup _{n\left(r_{1}, r_{2}\right)=r} \max \left(M_{\nu_{1}}\left(\Phi_{E}, r_{1}\right), M_{\nu_{2}}\left(\Phi_{F}, r_{2}\right)\right) \\
& \leq \max \left(M_{\nu_{1}}\left(\Phi_{E}, r\right), M_{\nu_{2}}\left(\Phi_{F}, r\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sup _{n\left(r_{1}, r_{2}\right)=r} & \max \left(M_{\nu_{1}}\left(\Phi_{E}, r_{1}\right), M_{\nu_{2}}\left(\Phi_{F}, r_{2}\right)\right) \\
& \geq \max \left(\max \left(M_{\nu_{1}}\left(\Phi_{E}, r\right), M_{\nu_{1}}\left(\Phi_{E}, 0\right)\right), \max \left(M_{\nu_{2}}\left(\Phi_{F}, r\right), M_{\nu_{2}}\left(\Phi_{F}, 0\right)\right)\right) \\
& =\max \left(M_{\nu_{1}}\left(\Phi_{E}, r\right), M_{\nu_{2}}\left(\Phi_{F}, r\right)\right)
\end{aligned}
$$

which completes the proof.
Corollary 2.7. If $E \subset \mathbb{C}^{N}$ and $F \subset \mathbb{C}^{M}$ are compact sets then

$$
C(E \times F)=\min (C(E), C(F)) .
$$

Moreover for $E=E_{1} \times \cdots \times E_{N}, E_{j} \subset \mathbb{C}$, we have $C(E) \leq d_{\infty}(E)$, with equality if and only if $C\left(E_{1}\right)=\cdots=C\left(E_{N}\right)$.

For $1 \leq p \leq \infty$ we take

$$
\|z\|_{p}=\left(\left|z_{1}\right|^{p}+\cdots+\left|z_{N}\right|^{p}\right)^{1 / p}, \quad\|z\|_{\infty}=\max \left(\left|z_{1}\right|, \ldots,\left|z_{N}\right|\right) .
$$

If $\nu_{1}=\|\cdot\|_{p}, \nu_{2}=\|\cdot\|_{p}, n\left(x_{1}, x_{2}\right)=\left\|\left(x_{1}, x_{2}\right)\right\|_{p}$ then we put $C_{p}(E)=$ $C_{\| \| \|_{p}}(E)$.

Corollary 2.8. If $E \subset \mathbb{C}^{N}$ and $F \subset \mathbb{C}^{M}$ are compact sets then

$$
C_{p}(E \times F)=\min \left(C_{p}(E), C_{p}(F)\right) .
$$

3. L-capacity for convex sets in \mathbb{C}^{N}. If E is a convex body in \mathbb{K}^{N}, $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$, and if we put

$$
\rho_{\nu}(E):=\sup _{a \in \operatorname{int}_{K} E} \sup \left\{r \geq 0: B_{\nu}(a, r) \subset E\right\},
$$

then $\rho_{\nu}(E)$ is the ν inner radius of E and $\omega_{\nu}(E)=2 \rho_{\nu}(E)$ is the ν width of E in \mathbb{K}^{N}.

Example 3.1. Let q be a norm in \mathbb{C}^{N} and $E=\left\{z \in \mathbb{C}^{N}: q(z) \leq 1\right\}$ be its closed unit ball. Then $($ S1] $) \Phi(E, z)=\max (1, q(z))$, which gives $h_{E}(z)=q(z)$. Thus for every norm ν,

$$
C_{\nu}(E)=\rho_{\nu}(E)=\frac{1}{2} \omega_{\nu}(E) .
$$

In the next example we shall use dual norms in \mathbb{C}^{N}. If ν is a complex norm then $\nu^{*}(z):=\sup \{|\langle z, w\rangle|: \nu(w) \leq 1\}$ where $\langle z, w\rangle:=z_{1} \overline{w_{1}}+\cdots+z_{N} \overline{w_{N}}$.

Example 3.2. Let q be a norm in \mathbb{R}^{N} and $E=\left\{x \in \mathbb{R}^{N}: q(x) \leq 1\right\}$. Then ([Lu], see also [B1], [K2, Th. 5.4.6])

$$
\Phi(E, z)=\max _{w \in E^{*}} h\left(\frac{1}{2}|\langle z, w\rangle+1|+\frac{1}{2}|\langle z, w\rangle-1|\right),
$$

where $E^{*}=\left\{x \in \mathbb{R}^{N}:|\langle x, y\rangle| \leq 1 \forall y \in E\right\}$ is the dual ball and $h(t)=$ $t+\sqrt{t^{2}-1}, t \geq 1$. Thus we get

$$
h(\max (1, \check{q}(z))) \leq \Phi(E, z) \leq h(1+\check{q}(z)), \quad \check{q}(z)=\max _{w \in E^{*}}|\langle z, w\rangle|
$$

(see [B4] for the properties of E^{*} and \check{q}). Hence we get $h_{E}(z)=2 \check{q}(z)$ and for every norm ν,

$$
C_{\nu}(E)=\frac{1}{2} \inf _{\check{q}(z)=1} \nu(z)=\frac{1}{2} \frac{1}{\sup _{\nu(z)=1} \check{q}(z)} .
$$

Denote $q_{\mathbb{K}}^{*}(z)=\sup _{w \in E}|\langle z, w\rangle|, z \in \mathbb{K}^{N}$. Then

$$
\begin{aligned}
C_{\nu}(E) & =\frac{1}{2} \frac{1}{\max _{\nu(z)=1} \max _{w \in E^{*}}|\langle z, w\rangle|}=\frac{1}{2} \frac{1}{\max _{w \in E^{*}} \max _{\nu(z)=1}|\langle z, w\rangle|} \\
& =\frac{1}{2} \frac{1}{\max _{w \in E^{*}} \max _{\nu(z)=1}|\langle w, z\rangle|}=\frac{1}{2} \frac{1}{\max _{w \in E^{*}} \nu^{*}(w)} \\
& =\frac{1}{2} \frac{1}{\max _{\left(\left.\nu^{*}\right|_{\left.\mathbb{R}^{N}\right)}\right)_{\mathbb{R}}^{*}(x)=1} \max _{w \in E^{*}}|\langle x, w\rangle|}=\frac{1}{2} \inf _{q(x)=1}\left(\left.\nu^{*}\right|_{\mathbb{R}^{N}}\right)_{\mathbb{R}^{*}}^{*}(x) \\
& =\frac{1}{2} \rho_{\left(\left.\nu^{*}\right|_{\mathbb{R}^{N}}\right)_{\mathbb{R}}^{*}}(E)=\frac{1}{4} \omega_{\left(\left.\nu^{*}\right|_{\mathbb{R}^{N}}\right)_{\mathbb{R}^{*}}^{*}}(E) .
\end{aligned}
$$

If ν satisfies $\left(\left.\nu^{*}\right|_{\mathbb{R}^{N}}\right)_{\mathbb{R}^{*}}^{*}(x)=\nu(x)$ for all $x \in \mathbb{R}^{N}$ then we get

$$
C_{\nu}(E)=\frac{1}{4} \omega_{\nu}(E) .
$$

The norms $\nu(z)=\|z\|_{p}, p \geq 1$, and in particular the Euclidean norm, have this property.

Now we shall consider the case when ν is the Euclidean norm, i.e. $C_{\nu}=C$ is the standard L-capacity.

Example 3.3. We shall denote by $S_{\mathbb{K}}^{N-1}$ the unit Euclidean sphere in \mathbb{K}^{N}. If E is a convex body in \mathbb{K}^{N} and

$$
\begin{aligned}
& H_{\xi}^{0}(E)=\left\{z \in \mathbb{K}^{N}: \operatorname{Re}\langle z, \xi\rangle=\min _{z \in E} \operatorname{Re}\langle z, \xi\rangle=: a_{\xi}(E)\right\}, \\
& H_{\xi}^{1}(E)=\left\{z \in \mathbb{K}^{N}: \operatorname{Re}\langle z, \xi\rangle=\max _{z \in E} \operatorname{Re}\langle z, \xi\rangle=: b_{\xi}(E)\right\}
\end{aligned}
$$

are supporting hyperplanes then

$$
\rho_{\xi}(E):=\inf \left\{\|z-w\|_{2}: z \in H_{\xi}^{0}, w \in H_{\xi}^{1}\right\}=b_{\xi}(E)-a_{\xi}(E)
$$

is the width of E in direction ξ, and

$$
\omega_{E}=\inf _{\xi \in S_{\mathbb{K}}^{N-1}} \rho_{\xi}(E)
$$

is the minimal width of E. If E is a compact subset of \mathbb{R}^{N} then we put $\omega_{E}:=\omega_{\operatorname{conv}(E)}$.

Note the following property: if E is a convex body in \mathbb{K}^{N} and F is a convex body in \mathbb{R}^{M} then

$$
\omega_{E \times F}=\min \left(\omega_{E}, \omega_{F}\right)
$$

Indeed, it is easily seen that $\omega_{E \times F} \leq \min \left(\omega_{E}, \omega_{F}\right)$. Next, observe that

$$
\begin{gathered}
a_{\left(\xi_{1}, \xi_{2}\right)}(E \times F)=\left\|\xi_{1}\right\|_{2} a_{\xi_{1} /\left\|\xi_{1}\right\|_{2}}(E)+\left\|\xi_{2}\right\|_{2} a_{\xi_{2} /\left\|\xi_{1}\right\|_{2}}(F) \\
b_{\left(\xi_{1}, \xi_{2}\right)}(E \times F)=\left\|\xi_{1}\right\|_{2} b_{\xi_{1} /\left\|\xi_{1}\right\|_{2}}(E)+\left\|\xi_{2}\right\|_{2} b_{\xi_{2} /\left\|\xi_{1}\right\|_{2}}(F) \\
\rho_{\left(\xi_{1}, \xi_{2}\right)}(E \times F)=\left\|\xi_{1}\right\|_{2} \rho_{\xi_{1} /\left\|\xi_{1}\right\|_{2}}(E)+\left\|\xi_{2}\right\|_{2} \rho_{\xi_{2} /\left\|\xi_{1}\right\|_{2}}(F), \\
\omega_{E \times F} \geq \min _{0 \leq \alpha \leq 1} \alpha \omega_{E}+\sqrt{1-\alpha^{2}} \omega_{F}=\min \left(\omega_{E}, \omega_{F}\right)
\end{gathered}
$$

If $E=\left\{x \in \mathbb{R}^{N}: q(x) \leq 1\right\}$ is a ball then for $\xi \in S_{\mathbb{R}}^{N-1}$ we have

$$
\begin{gathered}
\rho_{\xi}(E)=2 \operatorname{dist}\left(0, H_{\xi}^{1}\right)=2 \sup _{x \in E}|\langle x, \xi\rangle|=2 q^{*}(\xi) \\
\inf _{\xi \in S_{\mathbb{R}}^{N-1}} q^{*}(\xi)=\frac{1}{\sup _{q^{*}(x)=1}\|x\|_{2}}=2 C(E)
\end{gathered}
$$

which gives a generalization of the one-dimensional case of an interval,

$$
C(E)=\frac{1}{4} \omega_{E}
$$

If $E=\left\{z \in \mathbb{C}^{N}: q(z) \leq 1\right\}$ is a complex ball then for $\xi \in S_{\mathbb{C}}^{N-1}$ we have

$$
\begin{gathered}
\rho_{\xi}(E)=2 \operatorname{dist}\left(0, H_{\xi}^{1}\right)=2 \sup _{z \in E}|\langle z, \xi\rangle|=2 q^{*}(\bar{\xi}), \\
\inf _{\xi \in S_{\mathbb{R}}^{N-1}} q^{*}(\bar{\xi})=\frac{1}{\sup _{q^{*}(x)=1}\|x\|_{2}}=C(E)
\end{gathered}
$$

which gives a generalization of the one-dimensional case of a disc,

$$
C(E)=\frac{1}{2} \omega_{E} .
$$

Example 3.4. Let now E be a convex body in \mathbb{R}^{N}. Then we have the lower bound

$$
\begin{aligned}
\Phi(E, z) & \geq \sup _{\xi \in S_{\mathbb{R}}^{N-1}} \Phi\left(\left[a_{\xi}(E), b_{\xi}(E)\right],\langle z, \xi\rangle\right) \\
& =\sup _{\xi \in S_{\mathbb{R}}^{N-1}} \Phi\left([-1,1], \frac{2\langle z, \xi\rangle}{b_{\xi}(E)-a_{\xi}(E)}-\frac{b_{\xi}(E)+a_{\xi}(E)}{b_{\xi}(E)-a_{\xi}(E)}\right), \quad z \in \mathbb{C}^{N}
\end{aligned}
$$

with equality if $z \in \mathbb{R}^{N}$ (see $[\mathrm{BCL}]$). This gives

$$
\sup _{\|z\|_{2} \leq r} \Phi(E, z) \geq h\left(\max \left(\sup _{\xi \in S_{\mathbb{R}}^{N-1}}\left|\frac{b_{\xi}(E)+a_{\xi}(E)}{b_{\xi}(E)-a_{\xi}(E)}\right|, \frac{2 r}{\omega_{E}}\right)\right)
$$

and therefore

$$
C(E) \leq \frac{1}{4} \omega_{E}
$$

It is known that we have equality in the above bound if E is a symmetric $(E=-E)$ convex body. There are some other cases when this is also true, e.g. when E is the standard simplex $S_{N}=\left\{x \in \mathbb{R}^{N}: x_{j} \geq 0, x_{1}+\cdots+x_{N}\right.$ $\leq 1\}$. In this case we have (see [B1])

$$
\Phi\left(S_{N}, z\right)=h\left(\left|z_{1}\right|+\cdots+\left|z_{N}\right|+\left|z_{1}+\cdots+z_{N}-1\right|\right), \quad z \in \mathbb{C}^{N}
$$

Hence we can easily deduce that

$$
\begin{aligned}
h_{S_{N}}(z) & =2\left(\left|z_{1}\right|+\cdots+\left|z_{N}\right|+\left|z_{1}+\cdots+z_{N}\right|\right) \\
C\left(S_{N}\right) & =\frac{1}{\max _{z \in S_{\mathbb{C}}^{N-1}} h_{S_{N}}(z)}=\frac{1}{4 \sqrt{N}}=\frac{1}{4} \omega_{S_{N}}
\end{aligned}
$$

Example 3.5. Now we shall present a counterexample to the equality $C(E)=\frac{1}{4} \omega_{E}$ for a convex body.

Let $L: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be given by

$$
L\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{2}, 2 z_{2}+z_{3}, z_{1}\right), \quad L^{-1}(z)=\left(z_{3}, z_{1}, z_{2}-2 z_{1}\right)
$$

and put $E=L\left(S_{3}\right)$. Then it is easy to check that $\frac{1}{4} \omega_{E}=\frac{1}{4 \sqrt{5}}$.
On the other hand, $C(E)=1 /\left\|L^{-1}:\left(\mathbb{C}^{3},\| \|_{2}\right) \rightarrow\left(\mathbb{C}^{3}, h_{S_{3}}\right)\right\|$. Hence

$$
\begin{aligned}
& 1 / C(E) \\
& =2 \max \left\{\left|z_{3}\right|+\left|z_{1}\right|+\left|z_{2}-2 z_{1}\right|+\left|z_{3}+z_{2}-z_{1}\right|:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\} \\
& =2 \max \left\{2\left|w_{3}\right|+\frac{\left|w_{1}+w_{2}\right|}{2}+\frac{\left|3 w_{1}+w_{2}\right|}{3}+\left|w_{1}\right|: \frac{\left|w_{1}\right|^{2}}{2}+\frac{\left|w_{2}\right|^{2}}{2}+\left|w_{3}\right|^{2}=1\right\} \\
& =2 \max \left\{2 r_{3}+3 r_{1}+r_{2}: \frac{1}{2} r_{1}^{2}+\frac{1}{2} r_{2}^{2}+r_{3}^{2}=1\right\}=4 \sqrt{6}
\end{aligned}
$$

which gives

$$
\frac{1}{4 \sqrt{6}}=C(E)<\frac{1}{4 \sqrt{5}}=\frac{1}{4} \omega_{E}
$$

This example also proves that the equality $C(E)=\frac{1}{4} \omega_{E}$ for a convex body in \mathbb{R}^{N} is not invariant under linear maps if $N \geq 3$. The situation for $N=2$ is not clear.

However, we can show that if $E=S_{2}$ and $L(x, y)=(a x+b y, c x+d y)$, $a d-b c \neq 0$, then

$$
\begin{aligned}
\omega_{L(E)} & =|a d-b c| \min \left\{\frac{1}{\sqrt{(c-d)^{2}+(a-b)^{2}}}, \frac{1}{\sqrt{a^{2}+c^{2}}}, \frac{1}{\sqrt{b^{2}+d^{2}}}\right\} \\
\| L^{-1}: & \left(\mathbb{C}^{2},\| \|_{2}\right) \rightarrow\left(\mathbb{C}^{2}, h_{S_{2}}\right) \| \\
& =\frac{2}{|a d-b c|} \max \left\{\sqrt{(c-d)^{2}+(a-b)^{2}}, \sqrt{a^{2}+c^{2}}, \sqrt{b^{2}+d^{2}}\right\}
\end{aligned}
$$

which implies $C(L(E))=\frac{1}{4} \omega_{L(E)}$ and the equality $C(T)=\frac{1}{4} \omega_{T}$ holds for an arbitrary triangle $T \subset \mathbb{R}^{2}$.
4. Capacities in \mathbb{R}^{N}. Fix a norm ν in \mathbb{R}^{N}. For a compact set $E \subset \mathbb{R}^{N}$ define

$$
C_{\nu, \mathbb{R}}(E)=\liminf _{\nu(x) \rightarrow \infty} \frac{\nu(x)}{\sup _{\nu(w) \leq \nu(x)} \Phi(E, w)}
$$

and in the case $\nu(x)=\|x\|_{2}$ we put $C_{\mathbb{R}}(E):=C_{\nu, \mathbb{R}}(E)$. Note that $\frac{1}{2} C_{\mathbb{R}}(E) \leq$ $C(E) \leq C_{\mathbb{R}}(E)$ (see $[\mathrm{Sz}]$) and $C_{\mathbb{R}}(E)=0$ if and only if E is a pluripolar subset of \mathbb{C}^{N}.

EXAMPLE 4.1. If E is an arbitrary convex body in \mathbb{R}^{N} then $C_{\mathbb{R}}(E)=$ $\frac{1}{4} \omega_{E}$ (see BCL].

REmARK 4.2. We can formulate a few problems for $C_{\nu, \mathbb{R}}$:
(1) Is $C_{\nu, \mathbb{R}}$ continuous with respect to sequences of sets E_{j} with $E_{j} \supset$ E_{j+1} ?
(2) Does the limit

$$
\lim _{\nu(x) \rightarrow \infty} \frac{\nu(x)}{\sup _{\nu(w) \leq \nu(x)} \Phi(E, w)}
$$

exist for any compact set $E \subset \mathbb{R}^{N}$?
(3) Is the ratio $\frac{r}{\sup _{\nu(w) \leq r} \Phi(E, w)}$ an increasing function of r ?
(4) When does the equality $C(E)=C_{\mathbb{R}}(E)$ hold? In particular, for which convex bodies is it true?

References

[B1] M. Baran, Siciak's extremal function of convex sets in \mathbb{C}^{n}, Ann. Polon. Math. 48 (1988), 275-280.
[B2] M. Baran, Plurisubharmonic extremal function and complex foliation for the complement of a convex subset of \mathbb{R}^{n}, Michigan Math. J. 39 (1992), 395-404.
[B3] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in \mathbb{R}^{n}, Proc. Amer. Math. Soc. 123 (1995), 485-494.
[B4] M. Baran, Conjugate norms in \mathbb{C}^{n} and related geometrical problems, Dissertationes Math. 377 (1998), 67 pp.
[BC1] R. Bloom and J.-P. Calvi, On the multivariate transfinite diameter, Ann. Polon. Math. 72 (1999), 285-305.
[BC2] R. Bloom et J.-P. Calvi, Sur le diamètre transfini en plusieurs variables, C. R. Acad. Sci. Paris 329 (1999), 567-570.
[BES] Z. Błocki, A. Edigarian and J. Siciak, On the product property for the transfinite diameter, Ann. Polon. Math. 101 (2011), 209-214.
[BCL] L. Bos, J.-P. Calvi and N. Levenberg, On the Siciak extremal function for real compact convex sets, Ark. Mat. 39 (2001), 245-262.
[CM] J.-P. Calvi and Phung Van Manh, A determinantal proof of the product formula for the multivariate transfinite diameter, Bull. Polish Acad. Sci. 53 (2005), 291-298.
[K1] M. Klimek, On the invariance of the L-regularity under holomorphic mappings, Univ. Iagell. Acta Math. 23 (1982), 27-38.
[K2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, Oxford, 1991.
[LG] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer, Berlin, 1986.
[Lu] M. Lundin, The extremal plurisubharmonic function for convex symmetric subsets of \mathbb{R}^{N}, Michigan Math. J. 32 (1985), 197-201.
[Ko] S. Kołodziej, The logarithmic capacity in \mathbb{C}^{n}, Ann. Polon. Math. 48 (1988), 253267.
[S1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
[S2] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^{N}, Ann. Polon. Math. 39 (1981), 175-211.
[S3] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in \mathbb{C}^{n}, Sophia Kokyuroku Math. 14, Sophia Univ., Tokyo 1982.
$[\mathrm{Sz}] \quad$ T. Szlachetka, Some properties of capacities in \mathbb{R}^{n} and \mathbb{C}^{n}, in preparation.
Mirosław Baran, Leokadia Bialas-Ciez
Institute of Mathematics
Faculty of Mathematics and Computer Science
Jagiellonian University
30-348 Kraków, Poland
E-mail: Miroslaw.Baran@im.uj.edu.pl
Leokadia.Bialas-Ciez@im.uj.edu.pl

Received 23.11.2011
and in final form 18.5.2012

[^0]: 2010 Mathematics Subject Classification: Primary 32U20; Secondary 32U15.
 Key words and phrases: logarithmic capacity, product property, Siciak's extremal function, convex set, convex symmetric body.

