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Abstract. The paper deals with logarithmic capacities, an important tool in pluri-
potential theory. We show that a class of capacities, which contains the L-capacity, has
the following product property:

Cu(Er x Ez) = min(Cy, (E1), Cu, (E2)),

where F/; and v; are respectively a compact set and a norm in CN (j=1,2),andvisa
norm in CN“LNZ, v =11 @p v2 with some 1 < p < oo.

For a convex subset E of CY denote by C(E) the standard L-capacity and by wg
the minimal width of E, that is, the minimal Euclidean distance between two supporting
hyperplanes in R*¥. We prove that C(E) = wg/2 for a ball E in CV, while C(F) = wg/4
if E is a convex symmetric body in RY. This gives a generalization of known formulas
in C. Moreover, we show by an example that the last equality is not true for an arbitrary
convex body.

1. Introduction. Siciak’s extremal function is defined for a compact
subset E of CV by the formula

(1.1) @p(z) = B(E, 2) = sup{|P(z)|"/9 " deg P > 1, ||P||p <1}, zeCN.

We refer to [S11,1S2) [S3][K2] for definitions and basic properties related to this
important tool in pluripotential theory and its applications to approximation
theory.

If v is a complex norm in CV then we define the v-capacity of E as the
quantity

(1.2) logCy(F) = lirginf(log v(z) —log ®(E, 2)),

which is finite for any compact set £ C CV. Here and subsequently, we write
z — oo when v(z) — oco. If v(2) = ||2]|2 is the standard Euclidean norm then
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we get the so called L-capacity and we put C,(E) = C(E). Kotodziej |[Ko|
has proved that C(F) is a Choquet capacity. Since any two norms v and p
in CV are equivalent, we have

Q

: v(E
B0 S 5 < )
By a well known result of Siciak (see [S1,S3]), C,,(E) = 0 if and only if E is
a pluripolar set.

Following [BC1l, BC2| assume that there exists a norm v = vy (which
depends on E) such that we can replace the liminf in (1.2) by lim (we
shall denote such a modification by (1.2)*). If v is another norm with this
property then it must be a positive multiple of vg. Indeed, if vy, vy satisfy
(1.2)* then the limit

v1(2)

Zlggo o(2) =a € (0,+00)
exists, whence
a = liminf n(z) = min vi(z) = limsup n(z) = max v(z),
z2—00 I/O(Z) vo(z)=1 2—00 VO(Z) vo(z)=1

which means 1 = argy. We shall call vy that satisfies (1.2)* and C,,(E) =1
the C-norm for E and denote it by hg. So, if the C-norm exists, then for an
arbitrary norm v we have

1
Cy(F)= min v(z)= = (Id: (CV,v) = (CN,h -1
(B) =, min v(2) = ooy = (142 (€Y0) = (€, b))
where || - || is the usual norm of linear mappings. Hence, if L is a linear

isomorphism of CV we get the following connection between the v-capacity
of E and L(E):
Co(L(E)) = (JIL7: (CY,v) = (CV, hp) )~
Let ¥(E, -) be Siciak’s homogeneous extremal function for E. Taking into
account the results of [S1], [S2] [S3], it is not difficult to check the following

PROPOSITION 1.1. Assume that a compact E C CN possesses the C-
norm. Then

(a)
(1.3) he(z) = lim %@(E, r2) > W(E,z), =zeCV

(b) If F ¢ CM also possesses the C-norm then so does E x F and

hixr(z,w) = max(hg(2), hp(w)), (z,w) € CNHM,

(c) If L is a linear isomorphism of CVN then hip) =hgo L1,
(d) If Er = {z € CV : &(E, 2) < R} then hg,, = (1/R)hg.
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EXAMPLE 1.2. If ¢ is a norm in CY and E = {z € CV : ¢(2) < 1} then
hi(2) = (=) = (B, 2), 2 € CV.

REMARK 1.3. If for a compact E C CV the limit
fe(2) = lim r'®(E,rz2)
r—00

exists for z € CV (asin (1.3)), then we shall call fg the C-h-function of E (it
is a positive homogeneous function) whenever additionally fz is continuous
and lim, oo P(E, 2)/fE(2) = 1.

If fg is a C-h-function of E and v is an arbitrary complex norm in CV
then
C(B) : inf () = pu(S7,(0,1)) = (S50, 1))

= = inf v(z) = 1)) = sw 1))
v Sup, (=1 [E(2)  fe(z)=1 Pt o V\Pfe

where S, (0,1) = {z € CV : fp(z) = 1}.

We do not know when a C-h-function exists and when it is a norm in CV.

EXAMPLE 1.4. Let Q = (Q1,...,Qn) : CV — CV be a polynomial
mappmg such that deg@; =d > 1,7 =1,...,N, and Q = Q + R, where

Q (Ql, cee QN) is the main (homogeneous) part of @ of degree d, deg R
< d and Q71({0}) = {0}. Then, by the Klimek theorem [KI] (see also [K2,
Thm. 5.3.1]), for an arbitrary compact E we have

H(Q(E),2) = (B(E, Q)" zecCV.
If E possesses the C-norm then Q~!(E) possesses a C-h-function and
fo-i(m) = (hi o QY.

REMARK 1.5. Note the following result of Klimek [K1]: if F': CV — CV
is a polynomial mapping of degree d > 1 and lim inf, o (|| F'(2)||2/|2]|2) > 0
then for every compact set E in CV,

CF~H(B) timint [F()ll/ 215 < (C(E))
CF~(B) Limsup | F(2)a/ 15

IN

It follows from [BCT] that if for a compact £ C CV there exists a C-norm
then

oo (E) = doo(Bny (0,1)),
where B}, (0,1) is the unit ball for the C-norm and dw(E) denotes the

transfinite diameter for E. By the Shestakov formula for L(E), where L is a
linear isomorphism of C (cf. [BCI]), we have

doo(L(E)) = Y/|det L| doo (E
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A product property was first proved in [BCI| (see also [BC2|, [CM|, BES]):

M _ Ny
oo (En X E) = doo (E1) MFN2 doo (E) N1 72,

where By € CN, Ey € CM2. We see that the given formula for C,(L(E)) is
much more complicated, but the product property for capacities is simpler,
as we shall see later.

2. Product property for capacities in CV. If f : CV — R is locally
bounded and v is a norm in CV, then we put

M, (f,r) =sup{f(2) :v(z) <r}, r>0.

Moreover, if f is plurisubharmonic, then by the maximum principle we can
write MV(fa ’I") = SUPy(z)=r f(Z)

For a locally bounded function f : C¥ — R we denote by f* its upper
regularization: f*(z) = limsup,,_,, f(w), which is upper semicontinuous.

It is well known (Siciak’s theorem, see e.g. [S3|) that if C(E) = 0 then
@*(E, z) = +oc. In the case C(E) > 0 we have log®*(E,-) € PSH(CY) N
L2 (CN) and log@*(E,z) — logr(z) = O(1) for an arbitrary norm v as

loc
v(z) — oo.

PROPOSITION 2.1. If C(E) > 0 then:

(a) for an arbitrary norm v and for all r > 0,

M, (®gp,r) = M, (P, r) = sup ®*(E,z) = sup P(F,z);
v(z)=r v(z)=r

(b) for each r > 0 exists 2z, € CN such that v(z,.) = r and &*(E, z,) =

MV(@*E7 T),’

(c) M,(log®%,€') is an increasing convez function in R;

(d) M,(log ®%,e') —t =0(1) as t = +oc.

Proof. Part (a) is a consequence of the maximum principle for plurisub-
harmonic functions (see [K2, Cor. 2.9.9]) and Bedford—-Taylor theory (see
[K2]): the set {z € CN : ®(E, 2) < ®*(E, )} is pluripolar if it is non-empty.
Since psh functions are upper semicontinuous, this implies (b). Assertion (c)

is a special case of Prop. 1.4 in [LG]. The last part follows from Siciak’s
result (see [S2 [K2|). u

LEMMA 2.2. For any a € R, if ¢ : (a,+00) — R is a convez function
such that p(t) = o(t) ast — 400, then ¢ is a decreasing function.

Proof. Let a < t; <ty <tandty = (1—a)t; +at. Then a = tf:ttll and,
by convexity of ¢,

p(t2) < (1= a)p(tr) + ap(t) = (1= o(1))p(t1) + o(1),
which gives ¢(t2) < p(t1). =
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THEOREM 2.3. Let v be a norm in CN and C(E) > 0. Put
Ay (E,t) := M,(log %, e") = M, (log g, e').
Then
(a) A (E,t) —t is a convex decreasing function on R;
(b) for allt € R,
Ay(Et) —t > —log Cy(E),
Y (A, (E.1) ~ 1) = inf (4, (E.1) - 1) = - log Oy (E).

Proof. A,(E,t) —t is a convex function on R as a sum of two convex
functions. By Proposition 2.1(d) and Lemma 2.2 this function is decreasing,
which implies (a) and (b) except the fact that A,(E,t) —t — —log C,(E).
To show this, we need to prove the crucial fact

By Proposition 2.1(b), we have

5 r i v(zr)
im —— = lim ————
r—oo M, (P%,,r) 100 O*(E, 2,)

> liminf LZ) > liminf _
v(z)—o00 P* (E Z) -~ v(z)—oo SUPy (w)<v(z) QS*(Ea w) roo MV(SP*Ev T)7

which completes the proof. =

COROLLARY 2.4.

C,(E lim ——— =su > .
(E) = r—o0 M, (ng, T) T>ISM (dSE, T) supy(z)zlgp*(E,z)

COROLLARY 2.5. For allr > 0,
sup P(E,z) >

v(z)=r

Cu(E)

Let n be a norm in R? such that n(z1,x9) = n(xg, 1) = n(|x1], |22]), for
each r > 0 the function n(r,-) is increasing on R+, n(1,0) =n(0,1) =1 and
n(ry, ) > max(|z1], |ze|). If v1 is a norm in CV¥ and vy is a norm in CM
then v(z,w) = n(v1(2), v2(w)) is a norm in CV x CM and {(z,w) € CN+M .
v(z,w) =1} ={(r1z,row) : v1(2) =1 = ra(w), r; > 0, n(ry,r2) = r}. Note
that the norms n with the above properties form a convex set.

THEOREM 2.6 (Product property). If E and F are compact subsets of
RN and RM respectively, then for the norm v defined above

M, (Pgxr,r) = max(M,, (Pg,r), My, (Pp,r)), 1 >0,

and
Cy(E x F) =min(Cy, (E),C,,(F)).
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Proof. 1t suffices to prove the first part, which easily implies the second.
We have

sup P(E X F,(z,w)) = sup max(P(E,z),P(F,w))
v(z,w)=r v(z,w)=r
= sup max(P(E,r1z), (F,row))
n(ri,re)=r,v1(z)=1=va(w)
= sup max(M,, (Pg,r1), My, (Pr,r2))

n(ri,re)=r

max(M,, (Pg,r), My, (Pr,r)).

IN

On the other hand,
sup max(M,, (Pg,m1), My, (Pr,12))

n(ri,re)=r
> max(max(M,, (Pg,r), My, (PE,0)), max(M,,(Pr,r), M,,(Pr,0)))
= max(M,, (Pg,r), My, (Pp,T)),
which completes the proof. m
COROLLARY 2.7. If E C CN and F ¢ CM are compact sets then
C(E x F) =min(C(E),C(F)).
Moreover for E = Ey x --- x En, E; C C, we have C(E) < ds(E), with
equality if and only if C(E1) =--- = C(EN).
For 1 < p < oo we take
12l = (|17 + -+ [z )P, [|2]|oo = max(|al, .., 2w ])-
vy =1 llp va = Il llp, nlz1,22) = (21, 22)[|p then we put Cp(E) =
Ciiiy (E)-
COROLLARY 2.8. If E C CN and F ¢ CM are compact sets then
Cp(E x F) =min(Cp(E), Cp(F)).

3. L-capacity for convex sets in CV. If E is a convex body in K%,
K =C or K=R, and if we put

pv(E):= sup sup{r >0:B,(a,r) C E},
aEintKE
then p,(E) is the v inner radius of E and w,(E) = 2p,(F) is the v width of
E in KV,
EXAMPLE 3.1. Let ¢ be a norm in CY and £ = {z € CV : ¢(2) < 1}
be its closed unit ball. Then ([S1]) ®(E,2) = max(1,q(z)), which gives
hg(z) = q(z). Thus for every norm v,

Cy(E) = py(E) = 50, (E).
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In the next example we shall use dual norms in CV. If v is a complex norm
then v*(2) := sup{|(z,w)| : v(w) < 1} where (z,w) := z1W1 + - - - + 2NUN.

EXAMPLE 3.2. Let ¢ be a norm in RY and E = {z € RV : ¢(z) < 1}.
Then ([Lul, see also [B1], [K2, Th. 5.4.6])

P(E, 2) = max h(5l(z,w) + 1] + 3z, w) — 1)),

where E* = {x € RY : [(z,y)| < 1 Vy € E} is the dual ball and h(t) =
t++vt2 —1,t > 1. Thus we get

h(max(1,q(=))) < B(E,2) < h(1+4(2)), (=) = ma | (z,u)]
(see [B4] for the properties of E* and ¢). Hence we get hg(z) = 2§(z) and
for every norm v,

1 1 1
C,(E)== inf v(z)=z————.
(E) 2 4(2)=1 (=3 SUpP,(z)=1 4(#)
Denote g (2) = sup,cg |{z,w)|, 2 € KV. Then
o - L ! o !
Y 2 max, (z)=1 MaXyecE* ‘<Z7 w>‘ 2 maxyep- maxy(z)=1 ’<27 w>|
1 1 1 1
2 maxyepr Max, = [(w, 2)| 2 maxyeps v*(w)
1 1 1
- = =— inf (v"|py)g(x)
2 max(l,ﬂ]RN)i(x):l MaXy e F* ’<£I},’U}>’ 2 g(z)=1 RNJR
1 1
= 5 Perlen)z (B) = 4 Worlon); (B)-

If v satisfies (1*|gn )5 (7) = v(2) for all z € RY then we get
Cy(E) = tw,(B).
The norms v(z) = ||z||p, p > 1, and in particular the Euclidean norm, have
this property.
Now we shall consider the case when v is the Euclidean norm, i.e. C, = C

is the standard L-capacity.

ExaMpLE 3.3. We shall denote by S]gfl the unit Euclidean sphere in
KN . If E is a convex body in KV and

Hg(E) = {z e KV : Re(z,¢) = gleijlz’lRe (z,6) = ag(E)},

HY(E) = {z e KV : Re (2,§) = maxRe (2,§) = bg(E)}

are supporting hyperplanes then
pe(E) :=inf{|z —w|2: 2 € Hg, (NS Hg} =be(E) — ag(F)
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is the width of F in direction £, and

wgp = inf pe(F
gesyt e(£)

is the minimal width of E. If E is a compact subset of RY then we put
WE = Weonv(E)-

Note the following property: if E is a convex body in KN and F is a
convez body in RM then

WExF = Min(wg, wr).

Indeed, it is easily seen that wpxr < min(wg,wr). Next, observe that
ey 60) (B X F) = [[€1]l2ag, /e, 1, (E) + 1€2ll2ae, 116y 1o (),
b1 &) (B X F) = [|&1ll2be, ey 1o (B) + 1€2112bg2 e (F),

Per,e) (B X F) = [|€1ll2p¢, 1611, (E) + [1€2]l2p¢, /116111 (F)
WEXF > r<n1n awg + V1 — a?2wp = min(wg, wr).

If E={zcRY:q(x) <1} is a ball then for £ € Sﬂ]g*l we have
pe(E) = 2dist(0, Hg) = 2sup [(z,8)| = 2¢°(£),
zel
1
inf q*(€) = ———— = 20(E),
cesy ! SUPg*(z)=1 (E41P
which gives a generalization of the one-dimensional case of an interval,
C(E) = twg.
If E={2€C": ¢q(z) <1} is a complex ball then for ¢ € Sg_l we have
pe(E) = 2dist(0, Hy) = 2sup (2,6)| = 247(€),
zE€
— 1
inf ¢*E)=— 0 = C(E),
cesy ! SUPg*(z)=1 2|2
which gives a generalization of the one-dimensional case of a disc,

C(E) = wg.

EXAMPLE 3.4. Let now E be a convex body in RY. Then we have the
lower bound

®(E,z) = sup P([ag(E),be(E)],(2))

gesN 1
- B 2(2,6)  be(E) +ag(E) LN
_665[,{;)1@([ bl be(E) —ag(E)  be(E) —as(E)>’ €C
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with equality if 2 € R (see [BCLJ). This gives
be(E) + ag(E) 27‘))
be(E) —ag(E) | wr /)’

C(E) < twg.

sup ®(E,z) > h<max< sup

llzll2<r cesy !

and therefore

It is known that we have equality in the above bound if F is a symmetric
(E = —F) convex body. There are some other cases when this is also true,
e.g. when E is the standard simplex Sy = {z € RN . zj >0, 21+ - +aN
< 1}. In this case we have (see [B1])

B(Sn,2) = h(lz1|+ -+ |zn| + |z + -+ 2v = 1)), zeC.
Hence we can easily deduce that
hsy(z) =2(Jz1] + -+ |2n| + |21 + - + 2n]),

1 1 1
C S = = = —
(Sx) Max, gy -1 hsy(z)  4vN 4

WSy -

ExaMpLE 3.5. Now we shall present a counterexample to the equality
C(E) = wg for a convex body.
Let L : C3 — C3? be given by
L(z1,22,23) = (22,222 + 23,21),  L7'(2) = (23, 21,22 — 221)
and put £ = L(S3). Then it is easy to check that twp = ﬁ.
On the other hand, C(E) = 1/|[L~: (C3, || ||2) — (C3, hs,)||. Hence

1/C(E)
= 2max{|z3] + |21| + |22 — 221] + |23 + 22 — 21| ¢ |21]? + |22 + |23 = 1}

w1 +w 3wy +w wy |? wal?
:2max{2|w3|—|—| 12 2’+| 13 2|—|—|w1|:‘ 21| +| 22| —|—|w3|2:1}

=2max{2r; + 3 + o1 sri+ 313+ 15 =1} = 4V/6,

which gives

1 1
— < —==-wg.
176 N
This example also proves that the equality C'(F) = iw g for a convex body

in RY is not invariant under linear maps if N > 3. The situation for N = 2
is not clear.

— C(E)

However, we can show that if E = Sy and L(z,y) = (ax + by, cx + dy),
ad — be # 0, then
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lad — be| mi { 1 1 1 }
wr(g) = |ad — bc| min : ) ;
L(E) Vie—d)?2+(a—0)? Va4 2 Vb2 + d?
IL71 (2, |l [l2) = (C2, hsy) |

2 max{ (e~ 0P 4 (@ 0PV + VB,

- lad — be| e

which implies C(L(E)) = le( g) and the equality C(T') = swr holds for an

1
arbitrary triangle T C R2.

4. Capacities in RY. Fix a norm v in RY. For a compact set E Cc RN

define (@)
v(z
Cyr(F) = liminf
JR( ) v(z)—o00 SUDy () <v(z) @(E, w)

and in the case v(z) = ||z||2 we put Cr(E) := C,g(E). Note that Cr(E) <
C(E) < Cr(F) (see |Sz]) and Cr(E) = 0 if and only if F is a pluripolar
subset of CV.

EXAMPLE 4.1. If E is an arbitrary convex body in RY then Cg(E) =
twe (see [BCI]).

REMARK 4.2. We can formulate a few problems for C) gr:

(1) Is C,r continuous with respect to sequences of sets E; with E; D
E;1?
j+1
(2) Does the limit
lim v(z)
v(z)—00 SUDy, () <v(x) (P(E, 'LU)

exist for any compact set £ C RN?

: ’ ) : : o
(3) Is the ratio S0y w2, B(Ew) A increasing function of r7

(4) When does the equality C(E) = Cg(E) hold? In particular, for which
convex bodies is it true?
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