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Abstract. The paper deals with logarithmic capacities, an important tool in pluri-
potential theory. We show that a class of capacities, which contains the L-capacity, has
the following product property:

Cν(E1 × E2) = min(Cν1(E1), Cν2(E2)),

where Ej and νj are respectively a compact set and a norm in CNj (j = 1, 2), and ν is a
norm in CN1+N2 , ν = ν1 ⊕p ν2 with some 1 ≤ p ≤ ∞.

For a convex subset E of CN, denote by C(E) the standard L-capacity and by ωE
the minimal width of E, that is, the minimal Euclidean distance between two supporting
hyperplanes in R2N . We prove that C(E) = ωE/2 for a ball E in CN , while C(E) = ωE/4
if E is a convex symmetric body in RN . This gives a generalization of known formulas
in C. Moreover, we show by an example that the last equality is not true for an arbitrary
convex body.

1. Introduction. Siciak’s extremal function is defined for a compact
subset E of CN by the formula
(1.1) ΦE(z) = Φ(E, z) = sup{|P (z)|1/degP : degP ≥ 1, ‖P‖E ≤ 1}, z ∈CN.
We refer to [S1, S2, S3, K2] for definitions and basic properties related to this
important tool in pluripotential theory and its applications to approximation
theory.

If ν is a complex norm in CN then we define the ν-capacity of E as the
quantity
(1.2) logCν(E) = lim inf

z→∞
(log ν(z)− logΦ(E, z)),

which is finite for any compact set E ⊂ CN . Here and subsequently, we write
z →∞ when ν(z)→∞. If ν(z) = ‖z‖2 is the standard Euclidean norm then
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we get the so called L-capacity and we put Cν(E) = C(E). Kołodziej [Ko]
has proved that C(E) is a Choquet capacity. Since any two norms ν and µ
in CN are equivalent, we have

min
µ(z)=1

ν(z) ≤ Cν(E)

Cµ(E)
≤ max

µ(z)=1
ν(z).

By a well known result of Siciak (see [S1, S3]), Cν(E) = 0 if and only if E is
a pluripolar set.

Following [BC1, BC2] assume that there exists a norm ν = ν0 (which
depends on E) such that we can replace the lim inf in (1.2) by lim (we
shall denote such a modification by (1.2)∗). If ν1 is another norm with this
property then it must be a positive multiple of ν0. Indeed, if ν0, ν1 satisfy
(1.2)∗ then the limit

lim
z→∞

ν1(z)

ν0(z)
= α ∈ (0,+∞)

exists, whence

α = lim inf
z→∞

ν1(z)

ν0(z)
= min

ν0(z)=1
ν1(z) = lim sup

z→∞

ν1(z)

ν0(z)
= max

ν0(z)=1
ν1(z),

which means ν1 = αν0. We shall call ν0 that satisfies (1.2)∗ and Cν0(E) = 1
the C-norm for E and denote it by hE . So, if the C-norm exists, then for an
arbitrary norm ν we have

Cν(E) = min
hE(z)=1

ν(z) =
1

maxν(z)=1 hE(z)
= (‖Id : (CN , ν)→ (CN , hE)‖)−1

where ‖ · ‖ is the usual norm of linear mappings. Hence, if L is a linear
isomorphism of CN we get the following connection between the ν-capacity
of E and L(E):

Cν(L(E)) = (‖L−1 : (CN , ν)→ (CN , hE)‖)−1.

Let Ψ(E, ·) be Siciak’s homogeneous extremal function for E. Taking into
account the results of [S1, S2, S3], it is not difficult to check the following

Proposition 1.1. Assume that a compact E ⊂ CN possesses the C-
norm. Then

(a)

(1.3) hE(z) = lim
r→∞

1

r
Φ(E, rz) ≥ Ψ(E, z), z ∈ CN .

(b) If F ⊂ CM also possesses the C-norm then so does E × F and

hE×F (z, w) = max(hE(z), hF (w)), (z, w) ∈ CN+M .

(c) If L is a linear isomorphism of CN then hL(E) = hE ◦ L−1.
(d) If ER = {z ∈ CN : Φ(E, z) ≤ R} then hER = (1/R)hE.
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Example 1.2. If q is a norm in CN and E = {z ∈ CN : q(z) ≤ 1} then
hE(z) = q(z) = Ψ(E, z), z ∈ CN .

Remark 1.3. If for a compact E ⊂ CN the limit

fE(z) = lim
r→∞

r−1Φ(E, rz)

exists for z ∈ CN (as in (1.3)), then we shall call fE the C-h-function of E (it
is a positive homogeneous function) whenever additionally fE is continuous
and limz→∞ Φ(E, z)/fE(z) = 1.

If fE is a C-h-function of E and ν is an arbitrary complex norm in CN
then

Cν(E) =
1

supν(z)=1 fE(z)
= inf

fE(z)=1
ν(z) =: ρν(SfE (0, 1)) =:

1

2
ων(SfE (0, 1)),

where SfE (0, 1) = {z ∈ CN : fE(z) = 1}.
We do not know when a C-h-function exists and when it is a norm in CN .

Example 1.4. Let Q = (Q1, . . . , QN ) : CN → CN be a polynomial
mapping such that degQj = d ≥ 1, j = 1, . . . , N, and Q = Q̂ + R, where
Q̂ = (Q̂1, . . . , Q̂N ) is the main (homogeneous) part of Q of degree d, degR

< d and Q̂−1({0}) = {0}. Then, by the Klimek theorem [K1] (see also [K2,
Thm. 5.3.1]), for an arbitrary compact E we have

Φ(Q−1(E), z) = (Φ(E,Q(z)))1/d, z ∈ CN .

If E possesses the C-norm then Q−1(E) possesses a C-h-function and

fQ−1(E) = (hE ◦ Q̂)1/d.

Remark 1.5. Note the following result of Klimek [K1]: if F : CN → CN
is a polynomial mapping of degree d ≥ 1 and lim infz→∞(‖F (z)‖2/‖z‖d2) > 0
then for every compact set E in CN ,

C(F−1(E)) lim inf
z→∞

‖F (z)‖2/‖z‖d2 ≤ (C(E))1/d

≤ C(F−1(E)) lim sup
z→∞

‖F (z)‖2/‖z‖d2.

It follows from [BC1] that if for a compact E ⊂ CN there exists a C-norm
then

d∞(E) = d∞(BhE (0, 1)),

where BhE (0, 1) is the unit ball for the C-norm and d∞(E) denotes the
transfinite diameter for E. By the Shestakov formula for L(E), where L is a
linear isomorphism of CN (cf. [BC1]), we have

d∞(L(E)) = N
√
|detL| d∞(E).
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A product property was first proved in [BC1] (see also [BC2, CM, BES]):

d∞(E1 × E2) = d∞(E1)
N1

N1+N2 d∞(E2)
N2

N1+N2 ,

where E1 ⊂ CN1 , E2 ⊂ CN2 . We see that the given formula for Cν(L(E)) is
much more complicated, but the product property for capacities is simpler,
as we shall see later.

2. Product property for capacities in CN . If f : CN → R is locally
bounded and ν is a norm in CN , then we put

Mν(f, r) = sup{f(z) : ν(z) ≤ r}, r > 0.

Moreover, if f is plurisubharmonic, then by the maximum principle we can
write Mν(f, r) = supν(z)=r f(z).

For a locally bounded function f : CN → R we denote by f∗ its upper
regularization: f∗(z) = lim supw→z f(w), which is upper semicontinuous.

It is well known (Siciak’s theorem, see e.g. [S3]) that if C(E) = 0 then
Φ∗(E, z) ≡ +∞. In the case C(E) > 0 we have logΦ∗(E, ·) ∈ PSH(CN ) ∩
L∞loc(CN ) and logΦ∗(E, z) − log ν(z) = O(1) for an arbitrary norm ν as
ν(z)→∞.

Proposition 2.1. If C(E) > 0 then:

(a) for an arbitrary norm ν and for all r > 0,

Mν(ΦE , r) = Mν(Φ∗E , r) = sup
ν(z)=r

Φ∗(E, z) = sup
ν(z)=r

Φ(E, z);

(b) for each r > 0 exists zr ∈ CN such that ν(zr) = r and Φ∗(E, zr) =
Mν(Φ∗E , r);

(c) Mν(logΦ∗E , e
t) is an increasing convex function in R;

(d) Mν(logΦ∗E , e
t)− t = O(1) as t→ +∞.

Proof. Part (a) is a consequence of the maximum principle for plurisub-
harmonic functions (see [K2, Cor. 2.9.9]) and Bedford–Taylor theory (see
[K2]): the set {z ∈ CN : Φ(E, z) < Φ∗(E, z)} is pluripolar if it is non-empty.
Since psh functions are upper semicontinuous, this implies (b). Assertion (c)
is a special case of Prop. 1.4 in [LG]. The last part follows from Siciak’s
result (see [S2, K2]).

Lemma 2.2. For any a ∈ R, if ϕ : (a,+∞) → R is a convex function
such that ϕ(t) = o(t) as t→ +∞, then ϕ is a decreasing function.

Proof. Let a < t1 < t2 < t and t2 = (1− α)t1 + αt. Then α = t2−t1
t−t1 and,

by convexity of ϕ,

ϕ(t2) ≤ (1− α)ϕ(t1) + αϕ(t) = (1− o(1))ϕ(t1) + o(1),

which gives ϕ(t2) ≤ ϕ(t1).
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Theorem 2.3. Let ν be a norm in CN and C(E) > 0. Put

Λν(E, t) := Mν(logΦ∗E , e
t) = Mν(logΦE , e

t).

Then

(a) Λν(E, t)− t is a convex decreasing function on R;
(b) for all t ∈ R,

Λν(E, t)− t ≥ − logCν(E),

lim
t→∞

(Λν(E, t)− t) = inf
t∈R

(Λν(E, t)− t) = − logCν(E).

Proof. Λν(E, t) − t is a convex function on R as a sum of two convex
functions. By Proposition 2.1(d) and Lemma 2.2 this function is decreasing,
which implies (a) and (b) except the fact that Λν(E, t) − t → − logCν(E).
To show this, we need to prove the crucial fact

Cν(E) = lim
r→∞

r

Mν(Φ∗E , r)
.

By Proposition 2.1(b), we have

lim
r→∞

r

Mν(Φ∗E , r)
= lim

r→∞

ν(zr)

Φ∗(E, zr)

≥ lim inf
ν(z)→∞

ν(z)

Φ∗(E, z)
≥ lim inf

ν(z)→∞

ν(z)

supν(w)≤ν(z) Φ
∗(E,w)

= lim
r→∞

r

Mν(Φ∗E , r)
,

which completes the proof.

Corollary 2.4.

Cν(E) = lim
r→∞

r

Mν(ΦE , r)
= sup

r>0

r

Mν(ΦE , r)
≥ 1

supν(z)=1 Φ
∗(E, z)

.

Corollary 2.5. For all r > 0,

sup
ν(z)=r

Φ(E, z) ≥ r

Cν(E)
.

Let n be a norm in R2 such that n(x1, x2) = n(x2, x1) = n(|x1|, |x2|), for
each r ≥ 0 the function n(r, ·) is increasing on R+, n(1, 0) = n(0, 1) = 1 and
n(x1, x2) ≥ max(|x1|, |x2|). If ν1 is a norm in CN and ν2 is a norm in CM
then ν(z, w) = n(ν1(z), ν2(w)) is a norm in CN ×CM and {(z, w) ∈ CN+M :
ν(z, w) = r} = {(r1z, r2w) : ν1(z) = 1 = ν2(w), rj ≥ 0, n(r1, r2) = r}. Note
that the norms n with the above properties form a convex set.

Theorem 2.6 (Product property). If E and F are compact subsets of
RN and RM respectively, then for the norm ν defined above

Mν(ΦE×F , r) = max(Mν1(ΦE , r),Mν2(ΦF , r)), r > 0,

and
Cν(E × F ) = min(Cν1(E), Cν2(F )).
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Proof. It suffices to prove the first part, which easily implies the second.
We have

sup
ν(z,w)=r

Φ(E × F, (z, w)) = sup
ν(z,w)=r

max(Φ(E, z), Φ(F,w))

= sup
n(r1,r2)=r, ν1(z)=1=ν2(w)

max(Φ(E, r1z), Φ(F, r2w))

= sup
n(r1,r2)=r

max(Mν1(ΦE , r1),Mν2(ΦF , r2))

≤ max(Mν1(ΦE , r),Mν2(ΦF , r)).

On the other hand,

sup
n(r1,r2)=r

max(Mν1(ΦE , r1),Mν2(ΦF , r2))

≥ max(max(Mν1(ΦE , r),Mν1(ΦE , 0)),max(Mν2(ΦF , r),Mν2(ΦF , 0)))

= max(Mν1(ΦE , r),Mν2(ΦF , r)),

which completes the proof.

Corollary 2.7. If E ⊂ CN and F ⊂ CM are compact sets then

C(E × F ) = min(C(E), C(F )).

Moreover for E = E1 × · · · × EN , Ej ⊂ C, we have C(E) ≤ d∞(E), with
equality if and only if C(E1) = · · · = C(EN ).

For 1 ≤ p ≤ ∞ we take

‖z‖p = (|z1|p + · · ·+ |zN |p)1/p, ‖z‖∞ = max(|z1|, . . . , |zN |).
If ν1 = ‖ · ‖p, ν2 = ‖ · ‖p, n(x1, x2) = ‖(x1, x2)‖p then we put Cp(E) =
C‖‖p(E).

Corollary 2.8. If E ⊂ CN and F ⊂ CM are compact sets then

Cp(E × F ) = min(Cp(E), Cp(F )).

3. L-capacity for convex sets in CN . If E is a convex body in KN ,
K = C or K = R, and if we put

ρν(E) := sup
a∈intKE

sup{r ≥ 0 : Bν(a, r) ⊂ E},

then ρν(E) is the ν inner radius of E and ων(E) = 2ρν(E) is the ν width of
E in KN .

Example 3.1. Let q be a norm in CN and E = {z ∈ CN : q(z) ≤ 1}
be its closed unit ball. Then ([S1]) Φ(E, z) = max(1, q(z)), which gives
hE(z) = q(z). Thus for every norm ν,

Cν(E) = ρν(E) = 1
2ων(E).
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In the next example we shall use dual norms in CN . If ν is a complex norm
then ν∗(z) := sup{|〈z, w〉| : ν(w) ≤ 1} where 〈z, w〉 := z1w1 + · · ·+ zNwN .

Example 3.2. Let q be a norm in RN and E = {x ∈ RN : q(x) ≤ 1}.
Then ([Lu], see also [B1], [K2, Th. 5.4.6])

Φ(E, z) = max
w∈E∗

h
(

1
2 |〈z, w〉+ 1|+ 1

2 |〈z, w〉 − 1|
)
,

where E∗ = {x ∈ RN : |〈x, y〉| ≤ 1 ∀y ∈ E} is the dual ball and h(t) =
t+
√
t2 − 1, t ≥ 1. Thus we get

h(max(1, q̌(z))) ≤ Φ(E, z) ≤ h(1 + q̌(z)), q̌(z) = max
w∈E∗

|〈z, w〉|

(see [B4] for the properties of E∗ and q̌). Hence we get hE(z) = 2q̌(z) and
for every norm ν,

Cν(E) =
1

2
inf

q̌(z)=1
ν(z) =

1

2

1

supν(z)=1 q̌(z)
.

Denote q∗K(z) = supw∈E |〈z, w〉|, z ∈ KN . Then

Cν(E) =
1

2

1

maxν(z)=1 maxw∈E∗ |〈z, w〉|
=

1

2

1

maxw∈E∗ maxν(z)=1 |〈z, w〉|

=
1

2

1

maxw∈E∗ maxν(z)=1 |〈w, z〉|
=

1

2

1

maxw∈E∗ ν∗(w)

=
1

2

1

max(ν∗|RN )∗R(x)=1 maxw∈E∗ |〈x,w〉|
=

1

2
inf

q(x)=1
(ν∗|RN )∗R(x)

=
1

2
ρ(ν∗|RN )∗R

(E) =
1

4
ω(ν∗|RN )∗R

(E).

If ν satisfies (ν∗|RN )∗R(x) = ν(x) for all x ∈ RN then we get

Cν(E) = 1
4ων(E).

The norms ν(z) = ‖z‖p, p ≥ 1, and in particular the Euclidean norm, have
this property.

Now we shall consider the case when ν is the Euclidean norm, i.e. Cν = C
is the standard L-capacity.

Example 3.3. We shall denote by SN−1
K the unit Euclidean sphere in

KN . If E is a convex body in KN and

H0
ξ (E) =

{
z ∈ KN : Re 〈z, ξ〉 = min

z∈E
Re 〈z, ξ〉 =: aξ(E)

}
,

H1
ξ (E) =

{
z ∈ KN : Re 〈z, ξ〉 = max

z∈E
Re 〈z, ξ〉 =: bξ(E)

}
are supporting hyperplanes then

ρξ(E) := inf{‖z − w‖2 : z ∈ H0
ξ , w ∈ H1

ξ } = bξ(E)− aξ(E)
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is the width of E in direction ξ, and

ωE = inf
ξ∈SN−1

K

ρξ(E)

is the minimal width of E. If E is a compact subset of RN then we put
ωE := ωconv(E).

Note the following property: if E is a convex body in KN and F is a
convex body in RM then

ωE×F = min(ωE , ωF ).

Indeed, it is easily seen that ωE×F ≤ min(ωE , ωF ). Next, observe that

a(ξ1,ξ2)(E × F ) = ‖ξ1‖2aξ1/‖ξ1‖2(E) + ‖ξ2‖2aξ2/‖ξ1‖2(F ),

b(ξ1,ξ2)(E × F ) = ‖ξ1‖2bξ1/‖ξ1‖2(E) + ‖ξ2‖2bξ2/‖ξ1‖2(F ),

ρ(ξ1,ξ2)(E × F ) = ‖ξ1‖2ρξ1/‖ξ1‖2(E) + ‖ξ2‖2ρξ2/‖ξ1‖2(F ),

ωE×F ≥ min
0≤α≤1

αωE +
√

1− α2 ωF = min(ωE , ωF ).

If E = {x ∈ RN : q(x) ≤ 1} is a ball then for ξ ∈ SN−1
R we have

ρξ(E) = 2 dist(0, H1
ξ ) = 2 sup

x∈E
|〈x, ξ〉| = 2q∗(ξ),

inf
ξ∈SN−1

R

q∗(ξ) =
1

supq∗(x)=1 ‖x‖2
= 2C(E),

which gives a generalization of the one-dimensional case of an interval,

C(E) = 1
4ωE .

If E = {z ∈ CN : q(z) ≤ 1} is a complex ball then for ξ ∈ SN−1
C we have

ρξ(E) = 2 dist(0, H1
ξ ) = 2 sup

z∈E
|〈z, ξ〉| = 2q∗(ξ),

inf
ξ∈SN−1

R

q∗(ξ) =
1

supq∗(x)=1 ‖x‖2
= C(E),

which gives a generalization of the one-dimensional case of a disc,

C(E) = 1
2ωE .

Example 3.4. Let now E be a convex body in RN . Then we have the
lower bound

Φ(E, z) ≥ sup
ξ∈SN−1

R

Φ([aξ(E), bξ(E)], 〈z, ξ〉)

= sup
ξ∈SN−1

R

Φ

(
[−1, 1],

2〈z, ξ〉
bξ(E)− aξ(E)

−
bξ(E) + aξ(E)

bξ(E)− aξ(E)

)
, z ∈ CN ,
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with equality if z ∈ RN (see [BCL]). This gives

sup
‖z‖2≤r

Φ(E, z) ≥ h
(

max

(
sup

ξ∈SN−1
R

∣∣∣∣bξ(E) + aξ(E)

bξ(E)− aξ(E)

∣∣∣∣, 2r

ωE

))
,

and therefore
C(E) ≤ 1

4ωE .

It is known that we have equality in the above bound if E is a symmetric
(E = −E) convex body. There are some other cases when this is also true,
e.g. when E is the standard simplex SN = {x ∈ RN : xj ≥ 0, x1 + · · ·+ xN
≤ 1}. In this case we have (see [B1])

Φ(SN , z) = h(|z1|+ · · ·+ |zN |+ |z1 + · · ·+ zN − 1|), z ∈ CN .

Hence we can easily deduce that

hSN (z) = 2(|z1|+ · · ·+ |zN |+ |z1 + · · ·+ zN |),

C(SN ) =
1

maxz∈SN−1
C

hSN (z)
=

1

4
√
N

=
1

4
ωSN .

Example 3.5. Now we shall present a counterexample to the equality
C(E) = 1

4ωE for a convex body.
Let L : C3 → C3 be given by

L(z1, z2, z3) = (z2, 2z2 + z3, z1), L−1(z) = (z3, z1, z2 − 2z1)

and put E = L(S3). Then it is easy to check that 1
4ωE = 1

4
√

5
.

On the other hand, C(E) = 1/‖L−1 : (C3, ‖ ‖2)→ (C3, hS3)‖. Hence

1/C(E)

= 2 max{|z3|+ |z1|+ |z2 − 2z1|+ |z3 + z2 − z1| : |z1|2 + |z2|2 + |z3|2 = 1}

= 2 max

{
2|w3|+

|w1+w2|
2

+
|3w1+w2|

3
+ |w1| :

|w1|2

2
+
|w2|2

2
+ |w3|2 = 1

}
= 2 max{2r3 + 3r1 + r2 : 1

2r
2
1 + 1

2r
2
2 + r2

3 = 1} = 4
√

6,

which gives
1

4
√

6
= C(E) <

1

4
√

5
=

1

4
ωE .

This example also proves that the equality C(E) = 1
4ωE for a convex body

in RN is not invariant under linear maps if N ≥ 3. The situation for N = 2
is not clear.

However, we can show that if E = S2 and L(x, y) = (ax + by, cx + dy),
ad− bc 6= 0, then
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ωL(E) = |ad− bc|min

{
1√

(c− d)2 + (a− b)2
,

1√
a2 + c2

,
1√

b2 + d2

}
,

‖L−1 : (C2, ‖ ‖2)→ (C2, hS2)‖

=
2

|ad− bc|
max{

√
(c− d)2 + (a− b)2,

√
a2 + c2,

√
b2 + d2},

which implies C(L(E)) = 1
4ωL(E) and the equality C(T ) = 1

4ωT holds for an
arbitrary triangle T ⊂ R2.

4. Capacities in RN . Fix a norm ν in RN . For a compact set E ⊂ RN
define

Cν,R(E) = lim inf
ν(x)→∞

ν(x)

supν(w)≤ν(x) Φ(E,w)

and in the case ν(x) = ‖x‖2 we put CR(E) := Cν,R(E). Note that 1
2CR(E) ≤

C(E) ≤ CR(E) (see [Sz]) and CR(E) = 0 if and only if E is a pluripolar
subset of CN .

Example 4.1. If E is an arbitrary convex body in RN then CR(E) =
1
4ωE (see [BCL]).

Remark 4.2. We can formulate a few problems for Cν,R:

(1) Is Cν,R continuous with respect to sequences of sets Ej with Ej ⊃
Ej+1?

(2) Does the limit

lim
ν(x)→∞

ν(x)

supν(w)≤ν(x) Φ(E,w)

exist for any compact set E ⊂ RN?
(3) Is the ratio r

supν(w)≤r Φ(E,w) an increasing function of r?
(4) When does the equality C(E) = CR(E) hold? In particular, for which

convex bodies is it true?
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