Markov's property for k th derivative

by MirosŁaw Baran (Kraków), Beata Milówka (Tarnów) and Pawee Ozorka (Tarnów)

Dedicated to Professor Józef Siciak on the occasion of his 80th birthday

Abstract

Consider the normed space $\left(\mathbb{P}\left(\mathbb{C}^{N}\right),\|\cdot\|\right)$ of all polynomials of N complex variables, where $\left\|\|\right.$ a norm is such that the mapping $L_{g}:\left(\mathbb{P}\left(\mathbb{C}^{N}\right),\|\cdot\|\right) \ni f \mapsto g f \in$ $\left(\mathbb{P}\left(\mathbb{C}^{N}\right),\|\cdot\|\right)$ is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality $$
\left\|\frac{\partial}{\partial z_{j}} P\right\| \leq M(\operatorname{deg} P)^{m}\|P\|, \quad j=1, \ldots, N, P \in \mathbb{P}\left(\mathbb{C}^{N}\right)
$$ with positive constants M and m is equivalent to the inequality $$
\left\|\frac{\partial^{N}}{\partial z_{1} \ldots \partial z_{N}} P\right\| \leq M^{\prime}(\operatorname{deg} P)^{m^{\prime}}\|P\|, \quad P \in \mathbb{P}\left(\mathbb{C}^{N}\right)
$$ with some positive constants M^{\prime} and m^{\prime}. A similar equivalence result is obtained for derivatives of a fixed order $k \geq 2$, which can be more specifically formulated in the language of normed algebras. In addition, we give a nontrivial example of Markov's inequality in the Wiener algebra of absolutely convergent trigonometric series and show that the Banach algebra approach to Markov's property furnishes new tools in the study of polynomial inequalities.

1. Introduction. Let $m>0$. A compact subset E of $\mathbb{K}^{N}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ is called a Markov set with exponent m if for every $P \in \mathbb{P}\left(\mathbb{C}^{N}\right)$ the following Markov inequality holds:
($\mathcal{M}(m)$)

$$
\||\operatorname{grad} P|\|_{E} \leq M(\operatorname{deg} P)^{m}\|P\|_{E},
$$

where $\|f\|_{E}=\max \{|f(x)|: x \in E\},\left|\left(z_{1}, \ldots, z_{N}\right)\right|=\left(\sum_{j=1}^{N}\left|z_{j}\right|^{2}\right)^{1 / 2}$ and M is independent of P. If E is such a set, we shall write $E \in \mathcal{M}(m)$.

Since $|z|=\max _{|v|=1}\left|v_{1} z_{1}+\cdots+v_{N} z_{N}\right|,(\mathcal{M}(m))$ is equivalent to the existence of N linearly independent vectors v_{1}, \ldots, v_{N} and positive constans

[^0]$m_{j}, M_{j}, j=1, \ldots, N$, such that $\left\|D_{v_{j}} P\right\|_{E} \leq M_{j}(\operatorname{deg} P)^{m_{j}}\|P\|_{E}$ for $j=$ $1, \ldots, N$ and $m=\max _{1 \leq j \leq N} m_{j}$.

Let us recall the classical result: if $E=[-1,1] \subset \mathbb{C}$, then Markov's inequality holds with $M=1$ and $m=2$. These constants are the best possible because for each n and $P=T_{n}$, where T_{n} is the nth Chebyshev polynomial of the first kind, we have $\left\|T_{n}\right\|_{E}=1$ and $T_{n}^{\prime}(1)=n^{2}$.

Markov's exponent of a Markov set E is, by definition, the best exponent in $(\mathcal{M}(m))$, i.e. $m(E):=\inf \{m>0: E \in \mathcal{M}(m)\}$. If E is not a Markov set, we put $m(E):=\infty$. Note also that there are examples such that $E \in$ $\mathcal{M}(m(E)+\varepsilon)$ but $E \notin \mathcal{M}(m(E))$ (see [BBM]). Let us also remark that in the one-dimensional case the constants M and m are related to lower bounds of the logarithmic capacity of E (cf. [B-C1], [B-C2]).

The importance of Markov's property was explained by W. Pleśniak in [P1] (cf. [P2]). The notion of the Markov exponent was introduced in [BaPl] and we refer the reader to that paper for further properties of $m(E)$ (see also [BBM] and [M2]).

If we replace the uniform norm in the space $\mathbb{P}\left(\mathbb{C}^{N}\right)$ by an L_{p} norm with respect to a probability measure μ on E or by an arbitrary norm $\|\cdot\|$ in $\mathbb{P}\left(\mathbb{C}^{N}\right)$, then we may ask about Markov's property of polynomials and Markov's exponent with respect to such a norm. Then, in general, the situation becomes much more complicated. As an example, let us recall the classical Hille-Szegö-Tamarkin theorem [HST] for $E=[-1,1]$ and $\mu=\frac{1}{2} d x,\|P\|_{p}=\left(\frac{1}{2} \int_{E}|P|^{p} d \mu\right)^{1 / p}, 1 \leq p<\infty$, which reads as follows. For each $p \in[1, \infty)$, there is $C_{p}>0$ such that for each $P \in \mathbb{P}(\mathbb{C})$ one has $\left\|P^{\prime}\right\|_{p} \leq C_{p}(\operatorname{deg} P)^{2}\|P\|_{p}$. An exact value of C_{p} is known only for $p=2$, and the fact that $\lim _{p \rightarrow \infty} C_{p}=1$ was proved by Baran [B] 60 years after [HST]. A similar result to that of Hille-Szegö-Tamarkin is true for E being the closure of a domain in \mathbb{R}^{N} with Lipschitz boundary (see [G]). However, if E is a fat domain with cusps, no example is known of E where Markov's exponent is calculated with respect to the L_{p} norm, for some $1 \leq p<\infty$.

Milówka (M2 discussed a Markov type inequality for elements in Banach algebras.

Let x be an element of a normed complex algebra $(\mathcal{A},\| \|)$ with unity e. Then x has Markov's property if there exist positive constants M, m such that for each polynomial P of one variable we have
$(\mathcal{M}(m, x))$

$$
\left\|P^{\prime}(x)\right\| \leq M(\operatorname{deg} P)^{m}\|P(x)\|
$$

If e.g. E is a compact subset of \mathbb{C} and $x=\operatorname{id}_{E} \in\left(\mathcal{C}(E),\| \|_{E}\right)$ then x has Markov's property iff $E \in \mathcal{M}(m)$. In the general case of an algebra \mathcal{A} we define $m(x)=\inf \{m>0: x \in \mathcal{M}(m)\}$.

Now we shall give an interesting example (cf. [O]), which justifies investigating Markov's inequality in normed algebras.

Let $\|z\|_{p}=\left\|\left(z_{1}, \ldots, z_{N}\right)\right\|_{p}=\left(\left|z_{1}\right|^{p}+\cdots+\left|z_{N}\right|^{p}\right)^{1 / p}$ for $1 \leq p<\infty$ and $\|z\|_{\infty}=\lim _{p \rightarrow \infty}\|z\|_{p}=\max \left(\left|z_{1}\right|, \ldots,\left|z_{N}\right|\right)$. We denote by B_{p}^{N} (resp. S_{p}^{N-1}) the closed unit ball (the unit sphere resp.) in $\left(\mathbb{C}^{N},\|\cdot\|_{p}\right)$. If $\operatorname{extr}(E)$ denotes the set of extreme points of a convex body $E \subset \mathbb{C}^{N}$, then for $1<p<\infty$ we have $\operatorname{extr}\left(B_{p}^{N}\right)=S_{p}^{N-1}$. But in the case $p=1$ one has $\operatorname{extr}\left(B_{1}^{N}\right)=\left\{\eta_{1} e_{1}, \ldots, \eta_{N} e_{N}:\left|\eta_{j}\right|=1, j=1, \ldots, N\right\}$, where e_{1}, \ldots, e_{N} is the canonical basis in \mathbb{C}^{N}. Moreover, in case $p=\infty$ we have a simple description: $\operatorname{extr}\left(B_{\infty}^{N}\right)=\mathbb{T}^{N}$, where \mathbb{T}^{N} denotes the N-dimensional torus.

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}=\sum_{j=0}^{n} a_{j}(P) z^{j}$, then we shall denote by $a(P)$ the vector

$$
a(P)=\left[\begin{array}{c}
a_{0}(P) \\
\vdots \\
a_{n-1}(P) \\
a_{n}(P)
\end{array}\right]
$$

Let $\mathcal{A}(\mathbb{T})$ denote the complex Wiener algebra of absolutely convergent trigonometric series $y=\sum_{k=-\infty}^{\infty} a_{k} e^{i k t}$ equipped with Wiener's norm $w_{1}(y)$ $=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|$.

The Chebyshev polynomials T_{k} are linearly independent in $\mathbb{P}(\mathbb{C})$. Hence if $P \in \mathbb{P}_{n}(\mathbb{C})=\{P \in \mathbb{P}(\mathbb{C}): \operatorname{deg} P \leq n\}$, then $P(z)=\sum_{k=0}^{n} \alpha_{k} T_{k}(z)$. Thus $P\left(\frac{1}{2}\left(e^{-i t}+e^{i t}\right)\right)=\sum_{k=0}^{n} \alpha_{k} T_{k}(\cos k t)=\sum_{k=0}^{n} \alpha_{k} \cos k t=\sum_{k=0}^{n} \alpha_{k} \frac{1}{2}\left(e^{-i k t}+e^{i k t}\right)$, and for $x=\cos t=\frac{1}{2}\left(e^{-i t}+e^{i t}\right) \in \mathcal{A}(\mathbb{T})$ we obtain $w_{1}(P(x))=\sum_{k=0}^{N}\left|\alpha_{k}\right|$.

Let $\left[\ell_{j k}(n)\right] \in \mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$. Set $z^{k}=\sum_{j=0}^{n} \ell_{j k}(n) T_{j}(z), k=0, \ldots, n$. Then $a\left(z^{k}\right)=\sum_{j=0}^{n} \ell_{j k}(n) a\left(T_{j}(z)\right)$, which means that

$$
\begin{aligned}
a_{m}\left(z^{k}\right) & =\sum_{j=0}^{n} \ell_{j k}(n) a_{m}\left(T_{j}(z)\right) \\
& =\sum_{j=0}^{n} a_{m}\left(T_{j}(z)\right) \ell_{j k}(n)=\delta_{m k}, \quad k, l \in\{0, \ldots, n\}
\end{aligned}
$$

whence $\left[\ell_{j k}(n)\right]^{-1}=\left[a_{j}\left(T_{k}(z)\right)\right]$. In particular,

$$
\left[\ell_{j k}(n)\right]^{-1} e_{m}=\left[a_{j}\left(T_{k}(z)\right)\right] e_{m}=a\left(T_{m}\right)
$$

and we have

$$
P(z)=\sum_{k=0}^{n} a_{k}(P) \sum_{l=0}^{n} \ell_{l k}(n) T_{l}(z)=\sum_{l=0}^{N}\left(\sum_{k=0}^{n} a_{k}(P) \ell_{l k}(n)\right) T_{l}(z)
$$

Thus

$$
a_{l}(P)=\sum_{k=0}^{n} a_{k}(P) \ell_{l k}(n) \quad \text { and } \quad w_{1}(P(x))=\sum_{l=0}^{n}\left|\sum_{k=0}^{n} a_{k}(P) \ell_{l k}(n)\right|
$$

Let $\widetilde{X}_{n}=\left(\mathbb{P}_{n}(\mathbb{C}), w_{1}(P(x))\right)$ and $\mathcal{B}^{n}(x)=\left\{P \in \widetilde{X}_{n}: w_{1}(P(x)) \leq 1\right\}$.
Theorem 1.1. For each $n \in \mathbb{Z}_{+}$,

$$
\operatorname{extr}\left(\mathcal{B}^{n}(x)\right)=\left\{\eta_{0} T_{0}, \ldots, \eta_{n} T_{n}:\left|\eta_{j}\right|=1, j=0, \ldots, n\right\}
$$

Proof. If $P \in \operatorname{extr}\left(\mathcal{B}^{n}(x)\right)$, then $\left[\ell_{j k}(n)\right] a(P) \in \operatorname{extr}\left(B_{1}^{n+1}\right)$, whence $a(P) \in\left[\ell_{j k}(n)\right]^{-1}\left(\operatorname{extr}\left(B_{1}^{n+1}\right)\right)$. Thus, for some $m \in\{0, \ldots, n\}$, we must have

$$
a(P)=\left[\ell_{j k}(n)\right]^{-1} \eta_{m} e_{m}=\eta_{m} a\left(T_{m}\right) \Leftrightarrow P=\eta_{m} T_{m},\left|\eta_{m}\right|=1
$$

Proposition 1.2. For each $n \geq 1$ and all $P \in \mathbb{P}_{n}(\mathbb{C})$, we have

$$
w_{1}\left(P^{\prime}(x)\right) \leq n^{2} w_{1}(P(x)) \quad \text { with } x=\cos t
$$

where equality holds only for $P=\eta T_{n}$ with $|\eta|=1$.
Proof. By Theorem 1.1, it is sufficient to consider the case of $P \in \mathbb{P}_{n}(\mathbb{C})$ of the form $P=\eta T_{n},|\eta|=1$. Then $P^{\prime}(\cos t)=\eta n U_{n-1}(\cos t)$, where U_{n-1} is the Chebyshev polynomial of the second kind. One has

$$
\begin{aligned}
w_{1}\left(P^{\prime}(x)\right) & =n w_{1}\left(U_{n-1}(\cos t)\right)=n w_{1}\left(\frac{\sin (n t)}{\sin t}\right)=n w_{1}\left(\frac{\left(e^{i t}\right)^{n}-\left(e^{-i t}\right)^{n}}{e^{i t}-e^{-i t}}\right) \\
& =n w_{1}\left(\sum_{k=1}^{n} e^{i t(n-2 k+1)}\right)=n^{2}=n^{2} w_{1}(P(x))
\end{aligned}
$$

REMARK 1.3. If $f \in \mathcal{A}(\mathbb{T})$ is a trigonometric polynomial of degree n, that is, $f=\sum_{k=-n}^{n} a_{k} e^{i k t},\left|a_{n}\right|+\left|a_{-n}\right|>0$, then we have the bounds

$$
\begin{aligned}
\|f\|_{\infty} & =\max _{|t| \leq \pi}|f(t)| \leq w_{1}(f) \leq(2 n+1)^{1 / 2}\left\|\left(a_{-n}, \ldots, a_{n}\right)\right\|_{2} \\
& =(2 n+1)^{1 / 2}\|f\|_{2} \leq(2 n+1)^{1 / 2}\|f\|_{\infty}
\end{aligned}
$$

Since $\|f\|_{\infty}=\rho(f)$, the radial norm in $\mathcal{A}(\mathbb{T})$, we can write $\rho(f) \leq w_{1}(f) \leq$ $(2 n+1)^{1 / 2} \rho(f)$. If $x=\cos t$, we get

$$
\begin{aligned}
\rho\left(P^{\prime}(x)\right) & \leq w_{1}\left(P^{\prime}(x)\right) \leq(\operatorname{deg} P)^{2} w_{1}(P(x)) \\
& \leq(2 \operatorname{deg} P+1)^{1 / 2}(\operatorname{deg} P)^{2} \rho(P(x))
\end{aligned}
$$

which is Markov's inequality for $E=[-1,1]$ with exponent $5 / 2$. It is probably one of the simplest proofs establishing Markov's property of an interval.

Definition 1.4. Let $\mathcal{T} \subset \mathbb{N}^{N} \backslash\{0\}$ be a finite (test) set. A set $E \subset \mathbb{C}^{N}$ is said to have Markov's property with exponent m with respect to \mathcal{T}, briefly
$E \in \mathcal{M}(\mathcal{T}, m)$, if there exist positive constants M and m such that for all $P \in \mathbb{P}\left(\mathbb{C}^{N}\right)$,
$(\mathcal{M}(\mathcal{T}, m)) \quad\left\|D^{\alpha} P\right\| \leq M^{|\alpha|}(\operatorname{deg} P)^{|\alpha| m}\|P\|, \quad \alpha \in \mathcal{T}$,
where $\|\cdot\|$ is a given norm in $\mathbb{P}\left(\mathbb{C}^{N}\right)$. One can also consider a similar property in a normed algebra \mathcal{A} by replacing $\left\|P^{(k)}\right\|$ and $\|P\|$ with $\left\|P^{(k)}(x)\right\|$ and $\|P(x)\|$, where x is a fixed element of \mathcal{A}.

Remark 1.5. If E has Markov's property (with respect to a norm $\|\cdot\|$) and Markov's inequality (\mathcal{M}) holds with constants M, m then Markov's inequality $(\mathcal{M}(\mathcal{T}, m))$ holds with the same constants and thus E has Markov's property with respect to \mathcal{T}. Note that standard Markov's property is with respect to the set $\mathcal{T}_{1}=\left\{e_{1}, \ldots, e_{N}\right\}$.

By M1, if E admits Markov's inequality in the uniform norm with constants M and m with respect to $\mathcal{T}_{k}=\left\{k e_{1}, \ldots, k e_{n}\right\}$, then it admits (\mathcal{M}) with constants $M C_{k}$ and m_{k}, where C_{k} and m_{k} depend only on k. Let us briefly recall the argument leading to this result.

In M1, Milówka has discovered the following polynomial identity

$$
\begin{equation*}
\left(P^{\prime}\right)^{k}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} P^{j}\left(P^{k-j}\right)^{(k)} \tag{I}
\end{equation*}
$$

where P is an arbitrary polynomial of one variable. It has been applied to show the following two results:

Proposition 1.6 ([М1, Thm. 3.5]). If $E \subset \mathbb{C}$ has the Markov property with respect to the k th derivative, then E has Markov's property (\mathcal{M}). More precisely, if

$$
\left\|P^{(k)}\right\|_{E} \leq C^{k} n^{k m}\|P\|_{E} \quad \text { for all } P \in \mathbb{P}_{n}(\mathbb{C}) \text { and a fixed } k \in \mathbb{Z}_{+}
$$

then

$$
\left\|P^{\prime}\right\|_{E} \leq 6 C k^{m-1} n^{m}\|P\|_{E}
$$

Proposition 1.7 ([M1, Thm. 3.9]). Let E be a compact set in \mathbb{C}^{N}. Then E has Markov's property if and only if there exists an integer $k \geq 1$ and positive constants C, m such that

$$
\left\|D^{\alpha} P\right\|_{E} \leq C^{k} n^{k m}\|P\|_{E} \quad \text { for } P \in \mathbb{P}_{n}\left(\mathbb{C}^{N}\right)
$$

for all α with $|\alpha|=k$. Moreover, $m(E, k)=k m(E, 1)=k m(E)$, where $m(E, k)=\inf \left\{s:\left\|D^{\alpha} P\right\|_{E} \leq \mathrm{const} \cdot n^{s}\|P\|_{E}\right.$ for $P \in \mathbb{P}_{n}\left(\mathbb{C}^{N}\right)$ and $\left.|\alpha|=k\right\}$.

Applying (\mathcal{I}), by a similar argument to that of M1 one can extend Proposition 1.7 as follows.

Theorem 1.8. $\operatorname{Let}(\mathcal{A},\| \|)$ be a normed algebra, and $x \in \mathcal{A}$ be such that $\rho(P(x)) \geq(K \operatorname{deg} P+1)^{-\kappa}\|P(x)\|$ with nonnegative constants K, κ. Assume
that for some $k \geq 1,\left\|P^{(k)}(x)\right\| \leq C^{k}(\operatorname{deg} P)^{k m}\|P(x)\|$. Then

$$
\rho\left(P^{\prime}(x)\right) \leq 6 C k^{m-1}(\operatorname{deg} P)^{m}\|P(x)\|
$$

and consequently

$$
\begin{gathered}
\left\|P^{\prime}(x)\right\| \leq 6 C k^{m-1}(\operatorname{deg} P)^{m}(K \operatorname{deg} P+1)^{\kappa}\|P(x)\| \\
\left.\rho\left(P^{\prime}(x)\right) \leq 6 C k^{m-1}(\operatorname{deg} P)^{m}(K \operatorname{deg} P+1)^{\kappa} \rho(P(x))\right)
\end{gathered}
$$

Hence $m(x, 1) \leq \kappa+m(x, k) / k$.
Remark 1.9. An inspection of the proof of Proposition 1.6 in (M1] shows that the constant 6 in the above three statements can be replaced by $2 e$.

Using Theorem 1.1 and Proposition 1.6 we get Markov's inequality for $E=[-1,1]$ with exponent $m=2$ and constant $M=e^{2}$. The proof is surprisingly simple. The most difficult point of it is the well-known fact that

$$
\left\|T_{n}^{(k)}\right\|_{[-1,1]}=T_{n}^{(k)}(1)=\frac{n^{2}\left(n^{2}-1\right) \cdots\left(n^{2}-(k-1)^{2}\right)}{1 \cdot 3 \cdots(2 k-1)} \leq \frac{n^{2 k}}{(2 k-1)!!}
$$

(cf. [BE, Exercise E2 c, p. 256]).
Now, if $P \in \mathbb{P}_{n}(\mathbb{C}), n \geq 1$, then by Theorem 1.1 and Remark 1.3,
$w_{1}\left(P^{(k)}(x)\right) \leq \max _{0 \leq l \leq n} w_{1}\left(T_{l}^{(k)}(x)\right) w_{1}(P(x))$

$$
\leq \sqrt{2 n+1} \max _{0 \leq l \leq n}\left\|T_{l}^{(k)}\right\|_{[-1,1]} w_{1}(P(x)) \leq \sqrt{2 n+1} \frac{n^{2 k}}{(2 k-1)!!} w_{1}(P(x))
$$

where $x=\cos t \in \mathcal{A}(\mathbb{T})$. Again, by Remark 1.3, we get

$$
\begin{aligned}
\left\|P^{(k)}\right\|_{[-1,1]} & \leq \sqrt{2 n+1} w_{1}\left(P^{(k)}(x)\right) \leq(2 n+1) \frac{n^{2 k}}{(2 k-1)!!}\|P\|_{[-1,1]} \\
& \leq 4 \frac{n^{2 k+1}}{(2 k-1)!!}\|P\|_{[-1,1]}
\end{aligned}
$$

Finally, by applying Proposition 1.6 with $C=\sqrt[k]{4 /(2 k-1)!!}, m=2+1 / k$, we obtain

$$
\left\|P^{\prime}\right\|_{[-1,1]} \leq 2 e \sqrt[k]{4}(k / \sqrt[k]{(2 k-1)!!}) n^{2+1 / k}\|P\|_{[-1,1]}
$$

and, since $\lim _{k \rightarrow \infty} k / \sqrt[k]{(2 k-1)!!}=e / 2$, letting $k \rightarrow \infty$ gives

$$
\left\|P^{\prime}\right\|_{[-1,1]} \leq e^{2} n^{2}\|P\|_{[-1,1]}
$$

2. Identities for derivatives of polynomials. Unfortunately the polynomial identity (\mathcal{I}) cannot be applied outside normed algebras. To omit this difficulty we shall find other identities that give relations between the first derivative of a polynomial and some derivatives of higher orders. This way we obtain results weaker than in the case of normed algebras, but the new tools will work in a very general situation.

Our first basic lemma is
Lemma 2.1. Fix $k \in \mathbb{N}, k \geq 2$. If P is a polynomial of one variable then

$$
\begin{align*}
P^{\prime}(x) & =\frac{(-1)^{k-1}}{k!} \sum_{l=0}^{k-1} \frac{(-1)^{l}}{l!}\left(P(x) x^{l}\right)^{(k)}\left(x^{k-1}\right)^{(l)} \tag{1}\\
& =\frac{(-1)^{k-1}}{k!} \sum_{l=0}^{k-1} \frac{(-1)^{l}}{l!}\left(Q_{l}(x)\right)^{(k)}\left(x^{k-1}\right)^{(l)} .
\end{align*}
$$

Proof. Applying Cauchy's integral formula we can write

$$
\begin{aligned}
P^{\prime}(x) & =\frac{1}{2 \pi i} \oint_{\mathbb{T}} P(\zeta)(\zeta-x)^{-2} d \zeta=\frac{1}{2 \pi i} \oint_{\mathbb{T}}(\zeta-x)^{k-1} P(\zeta)(\zeta-x)^{-k-1} d \zeta \\
& =(-1)^{k-1} x^{k-1} \frac{1}{2 \pi i} \oint_{\mathbb{T}}\left(1-\frac{\zeta}{x}\right)^{k-1} P(\zeta)(\zeta-x)^{-k-1} d \zeta \\
& =(-1)^{k-1} x^{k-1} \sum_{l=0}^{k-1}\binom{k-1}{l}(-1)^{l} x^{-l} \frac{1}{2 \pi i} \oint_{\mathbb{T}} P(\zeta) \zeta^{l}(\zeta-x)^{-k-1} d \zeta .
\end{aligned}
$$

Hence, by Leibniz's formula, we get

$$
\begin{aligned}
P^{\prime}(x) & =\frac{(-1)^{k-1}}{k!} \sum_{l=0}^{k-1}\binom{k-1}{l}(-1)^{l} x^{k-l-1}\left(P(x) x^{l}\right)^{(k)} \\
& =\frac{(-1)^{k-1}}{k!} \sum_{l=0}^{k-1} \frac{(-1)^{l}}{l!}\left(P(x) x^{l}\right)^{(k)}\left(x^{k-1}\right)^{(l)}
\end{aligned}
$$

Proposition 2.2. Fix $1 \leq j \leq N$ and $k \geq 2$ and put $\alpha=k e_{j} \in \mathbb{N}^{N}$. If $P \in \mathbb{P}\left(\mathbb{C}^{N}\right)$ and $Q_{j, l}(x)=P(x) x_{j}^{l}$, then

$$
\begin{equation*}
D_{j} P(x)=\frac{(-1)^{k-1}}{k!} \sum_{l=0}^{k-1} \frac{(-1)^{l}}{l!} D^{\alpha}\left(Q_{j, l}(x)\right)\left(x_{j}^{k-1}\right)^{(l)} . \tag{1}
\end{equation*}
$$

The next lemma will be applied later in the case where $f(x)=P(x)$ is a polynomial of N variables.

For $j=1, \ldots, N$, define $\varphi_{j}(x)=x_{1} \cdots \widehat{x_{j}} \cdots x_{N}$. We shall denote by $\mathcal{P}_{j}(N)$ the set of all monomials $\psi(x)$ such that $\operatorname{deg}_{j} \psi(x)=0$ and $\operatorname{deg}_{i} \psi(x)$ ≤ 1 for all i (so $\operatorname{deg} \psi(x) \leq N-1$). If $\psi(x) \in \mathcal{P}_{j}(N)$, then there is exactly one $\psi^{*}(x) \in \mathcal{P}_{j}(N)$ such that $\psi(x) \psi^{*}(x)=\varphi_{j}(x), j=1, \ldots, N$.

Lemma 2.3. Let $f \in \mathcal{O}\left(\mathbb{C}^{N}\right)$ and $\alpha=(1, \ldots, 1)=e_{1}+\cdots+e_{N} \in \mathbb{N}^{N}$. Then

$$
\begin{equation*}
D_{j} f(x)=\sum_{\psi \in \mathcal{P}_{j}(N)}(-1)^{\operatorname{deg} \psi} D^{\alpha}(f(x) \psi(x)) \cdot \psi^{*}(x), \quad j=1, \ldots, N . \tag{2}
\end{equation*}
$$

Proof. We start with Cauchy's integral formula in \mathbb{C}^{N}. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ $\in \mathbb{N}^{N}$ and x is chosen from the unit polydisc, we have
$D^{\alpha} f(x)$
$=\alpha!\left(\frac{1}{2 \pi i}\right)^{N} \oint_{\mathbb{T}^{N}} f\left(\zeta_{1}, \ldots, \zeta_{N}\right)\left(\zeta_{1}-x_{1}\right)^{-\alpha_{1}-1} \cdots\left(\zeta_{N}-x_{N}\right)^{-\alpha_{N}-1} d \zeta_{1} \ldots d \zeta_{N}$.
If now $\alpha=e_{j}$, we can write
$D_{j} f\left(x_{1}, \ldots, x_{N}\right)$
$=\left(\frac{1}{2 \pi i}\right)^{N} \oint_{\mathbb{T}^{N}} f\left(\zeta_{1}, \ldots, \zeta_{N}\right)\left(\zeta_{j}-x_{j}\right)^{-1} \cdot \prod_{1 \leq l \leq N}\left(\zeta_{l}-x_{l}\right)^{-1} d \zeta_{1} \ldots d \zeta_{N}$
$=\left(\frac{1}{2 \pi i}\right)^{n} \oint_{\mathbb{T}^{N}} f\left(\zeta_{1}, \ldots, \zeta_{N}\right) \prod_{1 \leq l \leq N, l \neq j}\left(\zeta_{l}-x_{l}\right) \cdot \prod_{1 \leq l \leq N}\left(\zeta_{l}-x_{l}\right)^{-2} d \zeta_{1} \ldots d \zeta_{N}$.
Hence, as

$$
\prod_{1 \leq l \leq N, l \neq j}\left(\zeta_{l}-x_{l}\right)=\sum_{\psi \in \mathcal{P}_{j}(N)}(-1)^{\operatorname{deg} \psi} \psi(\zeta) \cdot \psi^{*}(x)
$$

we get
$D_{j} f(x)$
$=\sum_{\psi \in \mathcal{P}_{j}(N)}(-1)^{\operatorname{deg} \psi}\left(\frac{1}{2 \pi i}\right)^{N} \oint_{\mathbb{T}^{N}} f(\zeta) \psi(\zeta) \prod_{1 \leq l \leq N}\left(\zeta_{l}-x_{l}\right)^{-2} d \zeta_{1} \ldots d \zeta_{N} \cdot \psi^{*}(x)$ $=\sum_{\psi \in \mathcal{P}_{j}(N)}(-1)^{\operatorname{deg} \psi} D^{\alpha}(f(x) \psi(x)) \cdot \psi^{*}(x)$,
with $\alpha=e_{1}+\cdots+e_{N}$.
3. Markov's property for the derivative of order k. Consider a seminorm $\|\cdot\|$ in $\mathbb{P}\left(\mathbb{C}^{N}\right)$ such that for all polynomials f, one has $\left\|f z_{j}\right\| \leq$ $A_{j}\|f\|, j=1, \ldots, N$, where A_{j} are constants. Then for a fixed polynomial g, there exists a constant $A(g)$ such that $\|f g\| \leq A(g)\|f\|$ for all polynomials f. Such a seminorm $\|\cdot\|$ will be called an admissible seminorm in $\mathbb{P}\left(\mathbb{C}^{N}\right)$.

Any L_{p} norm with respect to a probability measure on a compact subset E of \mathbb{C}^{N} is admissible, since we can take $A(g)=\max _{E}|g|$. Another example may be obtained by considering a normed algebra \mathcal{A} with fixed elements $\omega_{1}, \ldots, \omega_{N} \in \mathcal{A}$ and $\|f\|=\left\|f\left(\omega_{1}, \ldots, \omega_{N}\right)\right\|$, where the right-hand side norm is the norm of \mathcal{A}; we can put now $A(g)=\|g\|$.

The optimal value of $A(g)$ is $\left\|L_{g}\right\|$, where $L_{g}:\left(\mathbb{P}\left(\mathbb{C}^{N}\right),\|\cdot\|\right) \ni f \mapsto f g \in$ $\left(\mathbb{P}\left(\mathbb{C}^{N}\right),\|\cdot\|\right)$. As an example of a norm that is not admissible, we can take $\|f\|=\int_{\mathbb{C}^{N}}|f(z)| e^{-|z|} d V(z)$, where $d V(z)$ is the Lebesgue measure. Let us also note (cf. [B-C2]) that if $E \subset \mathbb{C}$, the (Schur type) inequality $\|P\|_{L_{p}(E)} \leq$
$M(\operatorname{deg} P)^{m}\|P(x-a)\|_{L_{p}(E)}$, with M, m independent of $a \in \mathbb{C}$, is equivalent to Markov's inequality with respect to the L_{p} norm. An interesting question arises whether Schur's inequality is equivalent to Markov's inequality in a more general case.

An immediate consequence of Corollary 2.2 is
Proposition 3.1. Let $k \geq 2$ and consider an admissible seminorm $\|\cdot\|$ in $\mathbb{P}\left(\mathbb{C}^{N}\right)$ such that $\|f g\| \leq A(g)\|f\|$. If there exist positive constants C_{k}, m_{k} such that $\left\|D^{k e_{j}} P\right\| \leq C_{k}(\operatorname{deg} P)^{m_{k}}\|P\|$, then

$$
\left\|D_{j} P\right\| \leq B_{j}(\operatorname{deg} P+1)^{m_{k}}\|P\|, \quad j=1, \ldots, N,
$$

where $B_{j}=\frac{C_{k}}{k!} A\left(x_{j}\right) \sum_{l=0}^{k-1} \frac{1}{l!} A\left(\left(x_{j}^{k-1}\right)^{(l)}\right)$.
Analogously, applying Lemma 2.3 with $\alpha=e_{1}+\cdots+e_{N} \in \mathbb{N}^{N}$ gives
Proposition 3.2. If there exist positive constants M^{\prime}, m^{\prime} such that

$$
\left\|\frac{\partial^{N}}{\partial z_{1} \ldots \partial z_{N}} P\right\| \leq M^{\prime}(\operatorname{deg} P)^{m^{\prime}}\|P\|, \quad P \in \mathbb{P}\left(\mathbb{C}^{N}\right)
$$

we have

$$
\left\|D_{j} P\right\| \leq M^{\prime} N^{m^{\prime}} \sum_{\psi \in \mathcal{P}_{j}(n)} A(\psi) A\left(\psi^{*}\right)(\operatorname{deg} P)^{m^{\prime}}\|P\|, \quad j=1, \ldots, N
$$

By combining Propositions 3.1 and 3.2, we get the main result of this paper:

Theorem 3.3.
(a) Let $\mathcal{T}=\left\{k_{1} e_{1}, \ldots, k_{N} e_{N}\right\}$, where $k_{j} \in \mathbb{Z}_{+}, k_{j} \geq 2,1 \leq j \leq N$. Then

$$
E \in \mathcal{M}(\mathcal{T}) \Leftrightarrow E \in \mathcal{M}
$$

(b) If $\alpha=e_{1}+\cdots+e_{N}$ and $\mathcal{T}=\{\alpha\}$, then

$$
E \in \mathcal{M}(\mathcal{T}) \Leftrightarrow E \in \mathcal{M}
$$

References

[B] M. Baran, New approach to Markov inequality in L^{p} norms, in: Approximation Theory, in Memory of A. K. Varma (N. K. Govil et al., eds.), Dekker, New York, 1998, 75-85.
[BaPl] M. Baran and W. Pleśniak, Markov's exponent of compact sets in \mathbb{C}^{n}, Proc. Amer. Math. Soc. 123 (1995), 2785-2791.
[BBM] M. Baran, L. Białas-Cież and B. Milówka, On the best exponent in Markov's inequality, Potential Anal., to appear; DOI: 10.1007/s11118-012-9290-0.
[B-C1] L. Białas-Cież, Markov sets in \mathbb{C} are not polar, Bull. Polish Acad. Sci. 46 (1998), 83-89.
[B-C2] L. Białas-Cież, Equivalence of Markov's and Schur's inequalities on compact subsets of the complex plane, J. Inequal. Appl. 3 (1999), 45-49.
[BJ] L. Białas-Cież and M. Jędrzejowski, Transfinite diameter of Bernstein sets in \mathbb{C}^{N}, J. Inequal. Appl. 7 (2002), 393-404.
[BE] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Grad. Texts in Math. 161, Springer, Berlin, 1995.
[G] P. Goetgheluck, On Markov's inequality on locally Lipschitzian compact subsets of \mathbb{R}^{N} in L^{p}-spaces, J. Approx. Theory 49 (1987), 303-310.
[HST] E. Hille, G. Szegö and J. Tamarkin, On some generalization of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729-739.
[M1] B. Milówka, Markov's inequality and a generalized Pleśniak condition, East J. Approx. 11 (2005), 291-300.
[M2] B. Milówka, Markov's property for derivatives of order k, PhD thesis, 2006, 45 pp . (in Polish).
[O] P. Ozorka, Applications of the complex method of interpolation to polynomial inequalities, PhD thesis, 2011, 65 pp. (in Polish).
[P1] W. Pleśniak, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory 61 (1990), 106-117.
[P2] W. Pleśniak, Inégalité de Markov en plusieurs variables, Int. J. Math. Math. Sci. 2006 art. ID $24549,12 \mathrm{pp}$.

Mirosław Baran
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: miroslaw.baran@im.uj.edu.pl

Beata Milówka, Paweł Ozorka
Institute of Mathematical and Natural Sciences State Higher Vocational School in Tarnów Mickiewicza 8
33-100 Tarnów, Poland
E-mail: bmilowka@wp.pl pozorka@op.pl

Received 30.11.2011
and in final form 17.5.2012

[^0]: 2010 Mathematics Subject Classification: Primary 31C10; Secondary 32U35, 41A17. Key words and phrases: Markov's property, polynomial inequalities, normed algebras.

