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Relative tangent cone of analytic sets

by Danuta Ciesielska (Kraków)

Abstract. We give a characterization of the relative tangent cone of an analytic
curve and an analytic set with an improper isolated intersection. Moreover, we present
an effective computation of the intersection multiplicity of a curve and a set with s-para-
metrization.

1. Introduction. We consider an analytic curve X and an analytic set
Y in a neighbourhood Ω of a in Cm such that X ∩ Y = {a} and study their
relative tangent cone, Ca(X,Y ). The relative tangent cone and the intersec-
tion multiplicity of analytic sets are additive, so we restrict our attention,
without loss of generality, to an analytic curve with irreducible germ at a.

The main result of this paper is the formula Ca(X,Y )+Ca(X)=Ca(X,Y )
(see Theorem 2.2), where by Ca(X) we mean the classical Whitney cone at
a point (see [Whi 65]). This theorem, giving a strong geometric characteri-
zation of the relative tangent cone of an analytic curve and an analytic set,
is an improvement of the result from [Cie 99].

In the last section we effectively calculate the intersection multiplicity of
an analytic set with s-parametrization and an analytic curve.

2. Main result. LetX and Y be analytic sets in an open neighbourhood
Ω of a point a ∈ Cm such that a is an isolated point of X ∩ Y .

Definition 2.1. The relative tangent cone Ca(X,Y ) of the sets X,Y
at a is defined to be the set of v ∈ Cm with the property that there exist
sequences (xν) of points of X, (yν) of points of Y and (λν) of complex
numbers such that xν → a, yν → a and λν(xν − yν)→ v as ν →∞.

The relative cone depends only on germs of analytic sets and is a closed
cone with vertex at 0. If Ω is distinguished with respect to X and Y , then
Ca(X,Y ) = C0(Y −X) and dim(Y −X)0 = dim(X)a+dim(Y )a; moreover,
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if X has a p-dimensional germ at a and Y has a q-dimensional germ at a,
then the relative cone Ca(X,Y ) is a (p+ q)-dimensional algebraic cone.

In the definition of the Whitney tangent cone the scalars λν may be taken
to be positive real numbers (see [Whi 65, Sec. 7, Rem. 3D]). Moreover, if A
is a locally analytic set in some neighbourhood of a and λν → +∞ is an
arbitrary sequence of positive real numbers and v ∈ Ca(A), then there exists
a sequence (aν) of points of A such that aν → a and λν(aν − a) → v. For
the proof let Γ : (−ε, ε) → A be a C1-parametrization such that Γ (0) = a
and Γ ′(0) = v. Then λν(Γ (1/λν)− a))→ v for ν →∞. Due to the relation
between the relative tangent cone and the Whitney cone, the scalars in the
definition of the relative tangent cone may be taken in a form suitable for
computation. For a detailed study of the relative tangent cone see [ATW 90],
in which this object appeared for the first time. In fact the relative tangent
cone is the limit of a join variety in the case that X and Y meet in one point
(for definition and detailed study see [FOV 99]).

Without loss of generality we consider only analytic sets in a neighbour-
hood Ω of the origin. For the rest of the paper we assume that X is a pure
1-dimensional analytic set with irreducible germ at 0 (and for short will call
it an analytic curve) with Puiseux parametrization

U 3 t 7→ (tp, ϕ(t)) ∈ X, ordϕ > p,

where ordϕ = min{ordϕi : i = 2, . . . ,m} (see [Łoj 91, II 6.2; Puiseux Theo-
rem]).

The main goal of this paper is the following theorem.

Theorem 2.2. If X ∩ Y = {0}, then C0(X,Y ) + C0(X) = C0(X,Y ).

Proof. The Whitney cone C0(X) is a complex line (see: [Łoj 91] or
[Chi 89]). If this line is transverse to Y , which means that C0(X) ∩ C0(Y )
= {0}, then by [ATW 90, Property 2.9] we have C0(X,Y ) = C0(X)+C0(Y ).
In the opposite case, we have C0(X) ⊂ C0(Y ). Then, after a suitable biholo-
morphic change of coordinates, C0(X) = C1 := {x ∈ Cm : x2 = · · · =
xm = 0}. Fix v = (v1, . . . , vm) ∈ C0(X,Y ) and (c, 0, . . . , 0) ∈ C1 = C0(X).
By the definition of the relative tangent cone there are sequences (tν) of
complex numbers and (y1,ν , . . . , ym,ν) of points of Y such that tν → 0; for
i ∈ {1, . . . ,m} we have yi,ν → 0 and νp(tpν−y1ν)→ v1; and for i ∈ {2, . . . ,m}
we have

νp(ϕi(tν)− yi,ν)→ vi.

Without loss of generality we may assume that (νtν) is convergent in Ĉ, so
the application of [Cie 99, Lemma 2.1] to the sequence (tν) yields a sequence
(hν) with the following properties:

(i) hν → 0,
(ii) νd((tν + hν)

d − tdν)→ c,
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(iii) for any holomorphic function ϕ : Ω → C defined in an open neigh-
bourhood Ω of 0 ∈ C with ordϕ > d we have

νd(ϕ(tν + hν)− ϕ(tν))→ 0.

Substituting tν + hν for tν in the Puiseux parametrization of the curve we
move the points a little along the curve. Then for the first coordinate we
obtain

νp((tν + hν)
p − y1,ν) = νp((tν + hν)

p − tpν) + νp(tpν − y1,ν)
and observe that the left-hand side converges to the first coordinate of some
vector in Ca(X,Y ), whereas the summands converge respectively to c and v1.
Similarly for i ∈ {2, . . . ,m} we have

νp(ϕi(tν + hν)− yi,ν) = νp(ϕi(tν + hν)− ϕi(tν)) + νp(ϕi(tν)− yi,ν)
and observe that the left-hand side converges to the ith coordinate of the
vector in C0(X,Y ), whereas the first term on the right converges to 0 and the
second converges to vi. Let u denote the vector of the left-hand side limits,
so u ∈ C0(X,Y ) and u = v + (c, 0, . . . , 0). Since C0(X) = C1 we conclude
that C0(X,Y ) + C0(X) = C0(X,Y ) and the theorem follows.

The following corollary is an elegant geometric description of the relative
tangent cone of a curve and a set:

Corollary 2.3. Let X be an analytic curve and let Y be an analytic
set, such that X ∩ Y = {0}. If the tangent cone of X is the axis C1, then
there exists an algebraic cone S ⊂ Cm−1 such that C0(X,Y ) = C× S.

Note that dimS = dimY . Moreover, if Y is an analytic curve, then the
relative tangent cone C0(X,Y ) is a set-theoretic finite union of complex
planes (for an effective formula see [Kra 01]).

3. Multiplicity of the intersection of analytic sets. The effective
formulas for the intersection multiplicity of two analytic curves are presented
in [Kra 01] and [KN 03]. Now we present an effective computation of the
intersection multiplicity of an analytic curve and a pure dimensional analytic
set.

Let Ω be an open neighborhood of 0 ∈ Cm. Consider an analytic curve
X ⊂ Ω, irreducible at the origin and with a Puiseux parametrization. Let
Y ⊂ Ω be an irreducible k-dimensional set for which there exists a proper,
finite holomorphic mapping Ψ : D 3 τ 7→ ψ(τ) ∈ Y , defined on a k-
dimensional manifold D, such that Ψ is an s-sheeted analytic cover over
the regular part of Y . Following [TW 89], the mapping Ψ will be called
an s-parametrization of Y . Moreover, we assume that X ∩ Y = {0} and
Ψ−1(0) = {0}. By Corollary 2.3 there exists a k-dimensional algebraic cone
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S ⊂ Cm such that

C0(X,Y ) = C× S = C1 + ({0} × S) ⊂ C× Cm−1 = Cm.

For the computation of the intersection multiplicity we state a simpler
version of [TW 89, Theorem 4.2] more suitable for our purpose.

Theorem 3.1. In the setting introduced above, for any holomorphic map-
ping f : Ω → Ck, if dim f−1(0) = m− k and f−1(0) ∩ Y = {a}, then

deg(Zf · Y ; a) =
1

s

∑
b∈Ψ−1(a)

deg(Zf◦Ψ ; b).

By deg(Zf◦Ψ ; b) we mean the degree (Lelong number) at b ∈ Ψ−1(a) of
the cycle of zeros Zf◦Ψ , and deg(Zf · Y ; a) is the degree of the intersection
cycle Zf · Y at a. For a linear surjection l : Cm−1 → Ck we denote

fl : Cm × Cm 3 (x, y) = ((x1, x
′), (y1, y

′)) 7→ (x1 − y1, l(x′ − y′)) ∈ Ck+1.

Using the above notation and the multiplicity of the holomorphic map we
have an effective formula:

Theorem 3.2. If Ψ−1(0) = {0}, fl ◦ (Φ× Ψ) has an isolated zero at the
origin and ker l ∩ S = {0}, then

i(X,Y ; 0) =
1

s
µ0(fl ◦ (Φ× Ψ)).

Proof. Let T := X × Y, π : Cm × Cm 3 (x, y) 7→ x − y ∈ Cm and
∆ := kerπ. By the theory developed in [ATW 90], to compute the multiplic-
ity of the isolated intersection ofX and Y we should calculate the multiplicity
of the isolated intersection of T with the subspace∆ at the point 0 ∈ Cm×Cm
([ATW 90, Def. 5.1]). Observe that ker fl is a linear subspace of Cm × Cm
of codimension k + 1 and by [ATW 90, Lemma 2.4] we have C0(T,∆) =
π−1(C× S) = {(x, y) ∈ Cm ×Cm | x′ − y′ ∈ S}. Thus ker fl ∩C0(T,∆) = ∆
and since it is easy to see that the origin is an isolated point of ker fl ∩ T ,
by [ATW 90, Theorem 4.4] we conclude that i(X · Y ; 0) = i(T · ker fl; 0).
The mapping Φ × Ψ : U × D → T = X × Y is an s-parametrization of
T and ker fl = Zfl is the cycle of zeros of fl. By Theorem 3.1 we have
deg(T ·Zfl ; 0) =

1
s deg(Zfl◦(Φ×Ψ); 0) and deg(T ·Zfl ; 0) = deg(T · ker fl; 0) =

i(X,Y ; 0), so deg(Zfl◦(Φ×Ψ); 0) = µ0(fl ◦ (Φ × Ψ)), which completes the
proof.

Example 3.3. Consider the analytic curve

X = {(t3, t5, 0, 0) ∈ C4 | t ∈ C}
and the pure dimensional analytic set

Y = {(τ2, τ2%, τ%2, %3) ∈ C4 | τ, % ∈ C}
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of dimension 2. The curve X has the Puiseux parametrization, Y has the
3-parametrization

Ψ : C2 3 (τ, %) 7→ (τ3, τ2%, τ%2, %3) ∈ Y
and X ∩Y = {0}. Moreover, the axis C1 is the Whitney cone C0(X) and lies
in C0(Y ). The relative tangent cone C0(X,Y ) has the form C× S for some
algebraic 2-dimensional cone S. Observe that (0, 1, 1) /∈ S. By Theorem 3.1,
i(X,Y ; 0) = 1

3µ0(fl) where

fl : C3 3 (t, τ, %) 7→ (t3 − τ3, l(t5 − τ2%, τ%2, %3)) ∈ C3

and l : C3 → C2 is a linear surjection such that ker l ∩ S = {0}. Consider
l : C3 3 (x2, x3, x4) 7→ (x2, x3 − x4) ∈ C2, so ker l = {(0, t, t) : t ∈ C} and
ker l ∩ S = {0}.

We now compute the multiplicity µ0(fl) using Theorem 4.3 from [TW 89].
Denote

g : C3 3 (t, τ, %) 7→ t5 − τ2% ∈ C,
h : C3 3 (t, τ, %) 7→ (t3 − τ3, τ%2 − %3) ∈ C2.

To compute the multiplicity of fl=(g, h) at 0, we observe that Zh=2A1+A2

where A1 and A2 are the sets of three lines with respective equations t3− τ3
= 0, % = 0 and t3−τ3 = 0, τ−% = 0. Now, we have µ0(fl) = 3·2·5+3·3 = 39,
so i(X,Y ; 0) = 13.

Note that in our method we do not need to know the form of the relative
tangent cone. It is enough to know a suitable linear subspace which allows
one to choose a linear surjection.
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