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Plurisubharmonic functions on compact sets

by Rafał Czyż (Kraków), Lisa Hed (Umeå)
and Håkan Persson (Uppsala)

Abstract. Poletsky has introduced a notion of plurisubharmonicity for functions de-
fined on compact sets in Cn. We show that these functions can be completely characterized
in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods
of the compact.

1. Introduction. The classical notion of plurisubharmonicity is well
known and of undisputed importance for complex analysis and complex ge-
ometry. An upper semicontinuous function on an open set in Cn is said to
be plurisubharmonic if its restrictions to complex lines are subharmonic. It
is remarkable that an upper semicontinuous function is plurisubharmonic if
and only if its compositions with analytic disks are subharmonic. Since this
definition do not make any reference to the affine structure of Cn, it can
easily be extended to complex manifolds, or even complex spaces. There are
however well-known examples of compact subsets of Cn that do not contain
any analytic disks, but still exhibit very interesting behavior from a complex
analytic point of view. Best known among these are probably the examples
by Stolzenberg [St] and Wermer [We] of compact sets X with non-trivial
polynomial hull X̂ such that X̂ \X has no analytic structure. An appropri-
ate notion of plurisubharmonicity on compact sets would make it possible to
study such compact sets and shed some light on their pathological behavior.

In [Po4], Poletsky proposed a notion of plurisubharmonicity that does
not require the existence of an analytic structure, but merely what could be
called an “approximately analytic structure”, in a sense that will be made
precise later. Using this notion, Poletsky could answer questions about uni-
form algebras on Wermer type sets and he was also able to explain a patho-
logical example regarding plurisubharmonic extension from [Si]. Recently,
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Poletsky and Sigurdsson [PS] have focused on plurisubharmonic functions
on compacts and studied them from the point of view of several different
generalized Dirichlet problems.

Although it is beyond doubt that Poletsky’s plurisubharmonic functions
on compact sets are both useful and interesting, many aspects of their nature
are still wrapped in mystery. The purpose of this paper is to study these
functions and put them into the context of more familiar concepts. To this
end our presentation of Poletsky’s plurisubharmonicity will avoid most of the
technical refinements and instead focus on the main ideas. At some points we
will need results from [Po4], and in these cases for the reader’s convenience
we will present the full proofs in our somewhat stripped-down context.

The main result of this paper is the following theorem.

Main Theorem 1.1. Let X ⊂ Cn be a compact set. Then u is plurisub-
harmonic on X if and only if it can be pointwise approximated on X by a
decreasing sequence {uj} of functions continuous and plurisubharmonic on
neighborhoods of X.

This theorem has two natural interpretations. On one hand, it is an
approximation theorem for plurisubharmonic functions on compact sets; on
the other hand it relates the rather abstract notion of plurisubharmonicity
on compact sets to the well-known notion of classical plurisubharmonicity.

Another of the main points of this paper is the strong connection between
Poletsky’s notion of plurisubharmonicity and Sibony’s notion of B-regularity
[Si]. In fact it has been shown by Nguyễn, Dung and Hung [NDH] that the
Jensen measures in the sense of Sibony can be taken as the basis for an
equivalent definition of plurisubharmonic functions on compact sets. How-
ever, in our opinion this fact has not been given proper emphasis, and we
try to make up for this with an explicit treatment of the subject.

2. Notation. Throughout this paper, D denotes the unit disk in C and
T := ∂D its boundary. We will always denote an arbitrary compact set in
Cn by X, and open and connected sets in Cn will be denoted by Ω. As usual
we will denote the plurisubharmonic functions on Ω by PSH(Ω). The set
of plurisubharmonic functions on the compact set X will also be denoted
by PSH(X), so that the meaning of PSH(E) will depend on whether E is
compact or open. We will repeatedly make use of the set of functions that
are the restrictions to X of continuous plurisubharmonic functions defined
on neighborhoods of X. These will be denoted by PSHo(X). The Dirac
measure at the point z will be denoted by δz.

A bounded holomorphic mapping f : D → Cn will be called an ana-
lytic disk. It follows from Fatou’s theorem that such a mapping has radial
boundary values almost everywhere and so we will consider analytic disks
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as mappings from D to Cn. By σ, we will mean the normalized arc length
measure on T. As is common in the literature, we will also allow ourselves
to confuse an analytic disk with its image.

3. Holomorphic measures and plurisubharmonic functions. One
way to look at plurisubharmonicity is to say that an upper semicontinu-
ous function on an open set Ω is plurisubharmonic on Ω if it satisfies the
mean value inequality with respect to integration on each complex line in Ω.
A natural generalization of plurisubharmonicity is to allow for a wider range
of measures to integrate against. This is the idea of Poletsky.

We start by noting that every analytic disk f induces a measure on Cn
by pushing forward the arc-length measure on the unit disk. To be more
precise:

Definition 3.1. For E ⊂ Cn and f an analytic disk in Cn, let

µf (E) := f∗σ(E) =
�

T∩f−1(E)

dσ.

Next we consider the weak-∗ closure of such measures.

Definition 3.2. Let L = {fj} be a uniformly bounded sequence of
analytic disks. We say that L is weak-∗ convergent if the measures µfj weak-

∗

converge on Cn, that is, there is a measure µL such that�
φdµL = lim

j→∞

�
φdµfj , ∀φ ∈ C(Cn).

Given such a sequence, we will denote its limit measure by µL and let
limj fj(0) = zL.

To confine our attention to measures on specific sets, we introduce the
notion of the cluster of a sequence of analytic disks.

Definition 3.3. Let L = {fj} be a sequence of analytic disks. The
cluster of L, denoted K(L), is the set of all z ∈ Cn such that the set

{j ∈ N : fj(D) ∩B(z, r) 6= ∅}
is infinite for every r > 0.

Remark 3.4. Since the complement of the cluster is easily seen to be
open, the cluster itself will always be a closed set.

We are now ready to define what we mean by a holomorphic measure.

Definition 3.5. Suppose that L is a uniformly bounded sequence of
analytic disks. If K(L) ⊂ X and L is weak-∗ convergent, we say that µL is a
holomorphic measure at the point z := zL. We denote of all such measures
byMz(X).
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Remark 3.6. It follows from the definition of weak-∗ convergence that
all holomorphic measures are probability measures.

Remark 3.7. Given z ∈ X, let fj(ζ) = z. Then limµfj = δz, which
means that δz ∈Mz(X).

The above definition of holomorphic measure is worth some extra com-
ments. Although this is the original definition given by Poletsky [Po4], one
may ask if it is too general. To achieve the full power of Poletsky theory, it
is often necessary to work with analytic disks that are holomorphic not only
in the interior of D but in a neighborhood of D. To make this precise, we
introduce the following definition.

Definition 3.8. Let Ω ⊂ Cn be a bounded open set. We define Hz(Ω)
to be the class of mappings f from D to Ω such that f(0) = z and f is
holomorphic in a neighborhood of D.

The following proposition shows that we end up with the same class of
holomorphic measures if we demand the analytic disks in Definition 3.5 to
be holomorphic in a neighborhood of D.

Proposition 3.9. If µ ∈ Mz(X), then there is a domain Ω ⊃ X and
a sequence L = {fj} ⊂ Hzj (Ω) of analytic disks such that K(L) ⊂ X and
{µfj} converges weak-∗ to µ.

To prove the proposition, we need the following compactness result.

Lemma 3.10 ([PS]). Suppose that {Xj} is a decreasing sequence of com-
pact sets in Cn such that X =

⋂
Xj. Suppose also that µj ∈ Mzj (Xj).

Then there is a subsequence µj(k) converging to a measure µ ∈Mz(X) with
z = lim zj(k).

Proof. Let B be the closure of a ball such that X1 ⊂ B. It follows from
the Riesz representation theorem that the probability measures on B can
be identified with the dual space of C(B) equipped with the uniform norm,
and so the Banach–Alaoglu theorem implies that the space of probability
measures on B is compact when equipped with the weak-∗ topology of C(B).
This means that there is a subsequence µj(k) converging to a probability
measure µ on B. It remains to show that µ ∈Mz(X).

For notational comfort, we begin by renaming our subsequence µk. By
definition, there exist sequences {fk`} of analytic disks such that lim fk`(0) =
zk, µfk` weak-

∗ converges to µk and K({fk`}) ⊂ Xk. Since C(B) is separable,
a diagonal argument yields a sequence L := {fk`k} ⊂ {fk`} such that µL = µ.
Obviously K({fk`k}) ⊂ X and lim fk`k(0) = z, and we are done.

Proof of Proposition 3.9. By the definition of Mz(X), there is a uni-
formly bounded sequence L′ = {fj} of analytic disks such that µfj weak-∗
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converges to µ. Pick a domain Ω such that fj(D) b Ω for all j ∈ N. Define

fjk(ζ) = fj((1− 1/k)ζ).

We note that all the functions fjk are in Hzj (Ω).
By Lemma 3.10, there is a weak-∗ convergent subsequence L of {fjj}

such that µL ∈ Mz(X). By definition, this measure must be identical to µ.
Of course K(L) ⊂ K(L′) ⊂ X. This finishes the proof.

With this technical question settled, we can define Poletsky’s notion of
plurisubharmonicity on compact sets.

Definition 3.11. Let u be an upper semicontinuous function on X. We
say that u is plurisubharmonic on X if for all z ∈ X,

u(z) ≤
�
u dµ, ∀µ ∈Mz(X).

We denote the set of all plurisubharmonic functions on X by PSH(X).

The following elementary examples show that the class PSH(X) shares
some basic properties with classical plurisubharmonic functions defined on
open sets.

Example 3.12. Let u, v ∈ PSH(X). Then it follows from the properties
of the integral that su+ tv ∈ PSH(X) for all s, t ≥ 0.

Example 3.13. Let u1, u2 ∈ PSH(X). Then for z ∈ X and µ ∈Mz(X),
�
max(u1, u2) dµ ≥

�
ui dµ ≥ ui(z) for i = 1, 2.

Hence max(u1, u2) ∈ PSH(X).

Example 3.14. Let u ∈ PSH(X) and let φ be a convex, strictly in-
creasing function on the range of u. Then φ ◦ u ∈ PSH(X) by Jensen’s
inequality.

Example 3.15. Let u be a plurisubharmonic function defined in a neigh-
borhood of X. Suppose that z ∈ X and µ ∈Mz(X). This means that there
are analytic disks fj such that

�
φdµ = lim

j→∞

�

T

φ ◦ fj dσ

for all φ ∈ C(Cn). Since u can be approximated by a decreasing sequence uk
of smooth plurisubharmonic function defined in a slightly smaller neighbor-
hood of X, the functions uk ◦ fj are subharmonic on D. It follows that

�
u dµ = lim

j,k→∞

�

T

uk ◦ fj dσ ≥ lim
j,k→∞

uk ◦ fj(0) = u(z),

which shows that u ∈ PSH(X).
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Example 3.16. Let X be a compact set with interior points and suppose
that u ∈ PSH(X). Then u is plurisubharmonic in the classical sense on the
interior of X. This follows from the fact that every complex line in the
interior of X determines a holomorphic measure µ ∈Mz(X).

4. Approximation of plurisubharmonic functions. The key tool in
proving our main theorem on approximation of plurisubharmonic functions
on compact sets will be an Edwards type duality theorem for plurisubhar-
monic functions and holomorphic measures. A very similar theorem was
proved by Poletsky [Po4], whose proof we will also follow.

Theorem 4.1. Suppose that φ ∈ C(X) for a compact set X ⊂ Cn.
Define

u(z) = inf
{ �

φdµ : µ ∈Mz(X)
}
,

v(z) = sup{ψ(z) : ψ ∈ PSHo(X), ψ ≤ φ}.
Then u = v on X and there is an increasing sequence uj ∈ PSHo(X)
converging pointwise to this function.

Before we prove the theorem, we define a notion of holomorphic measure
on open sets. This definition should be compared to the holomorphic current
Φ1 (the Poisson functional) of [Po3, Example 3.1].

Definition 4.2. Suppose that Ω b Cn is an open set. We defineMz(Ω)
to be the weak-∗ closure of the set {µf : f ∈ Hz(Ω)}.

Remark 4.3. Since Mz(Ω) is a closed subset of the set of probability
measures, and since the set of probability measures is weak-∗ compact, the
same holds true forMz(Ω).

Remark 4.4. Suppose that µ ∈ Mz(Ω). Then µ is the weak-∗ limit of
some sequence µfj for fj ∈ Hz(Ω). The sequence L = {fj} is uniformly
bounded and K(L) ⊂ Ω. HenceMz(Ω) ⊂Mz(Ω).

We are now ready to prove the duality theorem.

Proof of Theorem 4.1. Since δz ∈ Mz(X), it follows that u ≤ φ. If
ψ ∈ PSHo(X), ψ ≤ φ and µ ∈Mz(X), then

ψ(z) ≤
�
ψ dµ ≤

�
φdµ.

Taking the supremum of all such ψ we get

v(z) = sup{ψ(z) : ψ ∈ PSHo(X), ψ ≤ φ} ≤
�
φdµ.

Now we take the infimum over all µ ∈Mz(X) to get v ≤ u ≤ φ on X.
The idea is now to approximate u with functions smaller than v, to see

that u and v have to be equal. Let {Ωj} be a sequence of bounded open
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domains such that X ⊂ Ωj+1 b Ωj and
⋂∞
j=1Ωj = X. By the Tietze

extension theorem there exists a continuous extension ϕ̃ of ϕ onto Ω1. Since
Mz(Ωj) is weak-∗ compact (see Remark 4.3), the point-evaluation functional
defined by µ 7→

	
Ωj
ϕ̃ dµ, being continuous in the weak-∗ topology, must

attain its minimum onMz(Ωj), so there exists µzj ∈Mz(Ωj) such that
�
φ̃ dµzj = inf

{�
φ̃ dµf : f ∈ Hz(Ωj)

}
.

We know that µzj ∈ Mz(Ωj) by Remark 4.4. Also
	
φ̃ dµzj increases with j

(since Ωj+1 b Ωj). By letting Xj = Ωj we are in the situation of Lemma
3.10, and hence {µzj} has a subsequence µzk = µzj(k) which weak-∗ converges
to µz ∈Mz(X). Define

uk(z) =
�
φ̃ dµzk − 1/k.

By the Poletsky minimum principle [Po1, Theorem 1], uk ∈ PSH(Ωk) and
by the observation above uk+1 > uk. We also have

lim
k→∞

uk =
�
φdµz.

Since µz ∈ Mz(X), it follows that limk→∞ uk(z) ≥ u(z). By definition, we
know that uk ∈ PSHo(X), and uk ≤ ϕ since δz ∈ Mz(Ωk). Hence uk ≤ v.
As we have already noted that v ≤ u, this gives v = u.

Poletsky noted that this theorem immediately gives an approximation
theorem for continuous plurisubharmonic functions.

Corollary 4.5. Suppose that u ∈ PSH(X) ∩ C(X). Then there is a
sequence uj ∈ PSHo(X) such that uj ↗ u.

Proof. Since δz ∈Mz(X),

u(z) = inf
{ �

u dµ : µ ∈Mz(X)
}
,

and by Theorem 4.1, this function can be approximated by a monotone
sequence uk ∈ PSHo(X).

Corollary 4.6. PSH(X)∩C(X) is the uniform closure of PSHo(X).

Proof. This follows directly from the previous corollary and Dini’s theo-
rem.

The previous corollary only applies to continuous functions on X, but as
announced in the introduction, all plurisubharmonic functions on X can be
characterized by monotone convergence.

Theorem 4.7 (Main Theorem). A function u belongs to PSH(X) if and
only if there is a sequence uj ∈ PSHo(X) such that uj ↘ u on X.
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Proof. First assume that u can be approximated as in the statement.
Then, being the decreasing limit of continuous functions, u is upper semi-
continuous. Since all uj belong to PSH(X), for z ∈ X and µ ∈ Mz(X) we
have

u(z) = lim
j→∞

uj(z) ≤ lim
j→∞

�
uj dµ =

�
u dµ,

where in the last inequality we have used the fact that {uj} is monotone.
Conversely, suppose that u ∈ PSH(X). We begin by showing that for

every f ∈ C(X) such that u < f on X, we can find v ∈ PSHo(X) such that
u < v ≤ f . Let

F (z) := sup{ϕ(z) : ϕ ∈ PSHo(X), ϕ ≤ f} = inf
{ �

f dµ : µ ∈Mz(X)
}
.

As in the proof of Theorem 4.1, for each z ∈ X we can find µz ∈ Mz(X)
such that F (z) =

	
f dµz. Since

F (z) =
�
f dµz >

�
u dµz ≥ u(z),

we have u < F . By the construction of F , for every z ∈ X there exists
vz ∈ PSHo(X) such that vz ≤ F and u(z) < vz(z) ≤ F (z). As u − vz is
upper semicontinuous, the set Uz := {w ∈ X : u(w) − vz(w) < 0} is open
in X. By the compactness of X there are finitely many points z1, . . . , zk
with corresponding functions vz1 , . . . , vzk and open sets Uz1 , . . . , Uzk such
that u < vzj in Uzj and X =

⋃k
j=1 Uzj . The function v = max{vz1 , . . . , vzk}

belongs to PSHo(X) and u < v ≤ f .
It is now easy to prove that u can be approximated as desired. Indeed,

since u is upper semicontinuous, it can be approximated by a decreasing
sequence fj of continuous functions. We can find v1 ∈ PSHo(X) such that
u < v1 ≤ f1. Assuming that we have found a decreasing sequence {v1, . . . , vk}
such that vj ∈ PSHo(X) and u < vj < fj for j = 1, . . . , k, we find vk+1 ∈
PSHo(X) such that u < vk+1 and vk+1 ≤ min{fk+1, vk}. Now the conclusion
follows by induction.

5. A Choquet-theoretic definition of holomorphic measures. In
[Si], Sibony used a Choquet-theoretic approach to study the Dirichlet prob-
lem for plurisubharmonic functions. For this he studied the class of Jensen
measures with respect to a certain class of plurisubharmonic functions, and
by analysing these measures he was able to draw far-reaching conclusions
regarding the solvability of the Dirichlet problem. Specifically he studied
sets whose only Jensen measures are the Dirac measures, so called B-regular
sets, and put these in connection with Catlin’s Property (P) [Ca] and the
∂̄-Neumann problem.

In [Po4], Poletsky hinted at a connection between his holomorphic mea-
sures and Sibony’s Jensen measures, but without making any explicit state-
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ments. Later Nguyễn, Dung and Hung showed in an appendix to their paper
[NDH] that the two classes of measures actually coincide. Thus, Poletsky’s
results on holomorphic measures give an approximation result for Jensen
measures which should be compared to that of Bu and Schachermayer [BS]
on classical Jensen measures.

Since we believe that this result has got neither the attention nor the
presentation it deserves, we dedicate the last section of the paper to it. We
emphasize that even though the result of this section is already known, the
method of proof is new.

Definition 5.1. A probability measure µ on X is said to be a Jensen
measure at z ∈ X if

(5.1) u(z) ≤
�
u dµ, ∀u ∈ PSHo(X).

The set of all Jensen measures at z is denoted by Jz(X).

Remark 5.2. This set is always non-empty, since δz ∈ Jz(X).

Remark 5.3. In the terminology of Choquet theory the measures in
Jz(X) are said to be representation measures or PSHo-measures for z.
A good reference for Choquet theory is the monograph [Ga] by Gamelin.

For clarity, we point out that there is a certain freedom of choice in
defining Jz(X). We have chosen to use the set PSHo(X), but this is more
or less a matter of taste. We could for example require the inequality (5.1)
to hold for merely upper semicontinuous plurisubharmonic functions (as in
[NDH]), or for those functions on X that can be uniformly approximated by
functions in PSHo(X) (as in [Si]). In both cases it is easy to see that we end
up with the same Jensen measures.

For our purposes it is important to notice that PSHo(X) is a convex
cone of continuous functions containing the constants and separating points.
This means that we can apply the techniques of Choquet theory; specifically,
we automatically get an analogue to Theorem 4.1.

Theorem 5.4 (Edwards’ Theorem [Ed]). Let φ be a lower semicontinu-
ous function on X. Then

sup{ψ(z) : ψ ∈ PSHo(X), ψ ≤ φ} = inf
{ �

φdν : ν ∈ Jz(X)
}
.

As the suprema in Theorems 5.4 and 4.1 are the same, this theorem pro-
vides a link between Jensen measures and holomorphic measures. Together
with the Hahn–Banach separation theorem, this will enable us to prove that
Jz(X) =Mz(X). To be able to use the Hahn–Banach theorem, we have to
prove the convexity of the set of holomorphic measures.

The following lemma is a variant of a theorem of Bu and Schachermayer
[BS], but the proof we present is due to Poletsky [Po2].
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Lemma 5.5. The setMz(X) is convex.

Proof. Without loss of generality, we may assume that z = 0. We want
to show that λµ + (1 − λ)ν ∈ Mz(X) for all µ, ν ∈ Mz(X) and λ ∈ [0, 1].
By the definition ofMz(X), the measures µ and ν are weak-∗ limits of some
sequences, {µfj} and {νgj} respectively, where K({fj}),K({gj}) ⊂ X and
the disks {fj} and {gj} all lie in B(0,M) for some large M > 0.

Choose 0 < rj < 1 and consider the mappings

hj(ζ) = fj(ζ) + gj(rj/ζ),

defined on the annuli Rj = {ζ : rj < ζ < 1}.
For every ζ ∈ D, either |ζ| or rj/|ζ| is less than √rj . Hence choosing rj

small enough will guarantee that hj(Rj) lies in an arbitrarily small neigh-
borhood of fj(D) ∪ gj(D). Suppose from now on that rj → 0.

Now let ψj be the conformal mapping from D to {ζ : log rj < Re ζ < 0}
defined by the formula

ψj(ζ) :=
i log rj
π

log

(
e−λiπ

ζ − eλiπ

ζ − e−λiπ

)
+ log rj .

Note that ψj(0) = (1 − λ) log rj , ψj(1) = 0 and ψj(−1) = log rj . Hence the
mapping ωj = eψj maps the arc γ1 := {eiθ : |θ| < λπ} onto T and the arc
γ2 := T \ γ1 onto rjT. Now pj := hj ◦ ωj is an analytic disk in Cn, and we
claim that the corresponding measures µpj weak-∗ converge to λµ+(1−λ)ν.

To prove this, first observe that K({pj}) ⊂ K({fj})∪K({gj}) ⊂ X. Next,
let φ ∈ C(Cn). Then

(5.2)
�
φdµpj =

�

γ1

φ
(
fj(ωj) + gj(rj/ωj)

)
dσ +

�

γ2

φ
(
fj(ωj) + gj(rj/ωj)

)
dσ.

We first study the integral over γ1. Since ωj maps γ1 onto T, and by the con-
struction of rj , the Schwarz lemma shows that for ζ ∈ γ1, |gj(rj/ωj(ζ))| → 0
as j →∞. By the continuity of φ it follows that

(5.3)
�

γ1

φ(fj(ωj) + gj(rj/ωj)) dσ =
�

γ1

φ(fj(ωj)) dσ + δj

for some δj → 0 as j →∞.
Now let uj be the harmonic function on D with boundary values uj(ζ) :=

φ(fj(ζ)). Since every uj is bounded by

K := sup
z∈B(0,M)

φ(z),

by the Schwarz lemma we have

(5.4) |uj(ζ)− uj(0)| < K|ζ|, ∀j ∈ N.
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Since uj ◦ ωj is also a harmonic function it follows that

(5.5) uj(ωj(0)) =
�

T

uj(ωj) dσ =
�

γ1

φ(fj(ωj)) dσ +
�

γ2

uj(ωj) dσ.

Using (5.4) we know |uj(ωj(ζ))−uj(0)| < Krj for ζ ∈ γ2∪{0}. Putting this
together with (5.5) we see that

uj(0) =
�

γ1

φ(fj(ωj)) dσ + (1− λ)uj(0) + δ′j ,

where δ′j → 0. Rearranging and combining (5.3) and the definition of u we
arrive at �

γ1

φ(fj(ωj) + gj(rj/ωj)) dσ = λ
�

T

φ(fj(ζ)) dσ + δ′′j

for some sequence δ′′j → 0.
By a similar estimation of the integral over γ2 in (5.2), we conclude that

lim
j→∞

�
φdµpj = λ

�
φdµ+ (1− λ)

�
φdν.

With the question of convexity settled, we can finally prove the equality of
the Jensen measures and holomorphic measures. This was originally proved
by Nguyễn, Dung and Hung [NDH], who used another proof.

Theorem 5.6. For every z ∈ X, Jz(X) =Mz(X).

Proof. Suppose that µ ∈ Mz(X) and pick u ∈ PSHo(X). Then u can
be extended to a plurisubharmonic function on a neighborhood of X and
Example 3.15 yields

(5.6) u(z) ≤
�
u dµ,

which shows that µ ∈ Jz(X).
Conversely, suppose that there is a µ ∈ Jz(X) \Mz(X). Since we have

shown thatMz(X) is convex, and by Lemma 3.10 it is weak-∗ compact, the
Hahn–Banach separation theorem yields a φ ∈ C(X) such that
�
φdµ < inf

{�
φdν : ν ∈Mz(X)

}
= sup

{
ψ(z) : ψ ∈ PSHo(X), ψ ≤ φ

}
.

By Theorem 5.4, this supremum equals

inf
{�
φdν : ν ∈ Jz(X)

}
≤

�
φdµ,

and this is a contradiction.
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