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Some novel ways of generating Cantor and Julia type sets

by Marta Kosek (Kraków)

To Professor Józef Siciak on the occasion of his 80th birthday

Abstract. It is a survey article showing how an enhanced version of the Banach
contraction principle can lead to generalizations of attractors of iterated function systems
and to Julia type sets.

1. Introduction. Note that the standard proof of the Banach contrac-
tion principle deals with a sequence of images of a point under iterations
of a contraction. One should therefore expect that this principle can be a
useful tool in looking for special sets associated with iterations. Actually one
can state the principle in the following way: If we have a complete metric
space (Y, %) and a contraction f : Y → Y , then the sequence (fn)∞n=1 of
iterates converges pointwise to a constant mapping, whose value is exactly
the desired fixed point. By fn we mean of course the composition of n copies
of f .

Iterating means repeating the same thing again and again. However, since
as in Szymborska’s poem, “Nothing can ever happen twice” (cf. [S, p. 15]),
one might want to be able to change the mapping at each step, and that is
the reason for considering the following result [KK1, see Lemma 4.5 and its
proof].

Theorem 1.1 (Enhanced version of the Banach contraction principle).
Let (Y, %) be a complete metric space and let (Hn)

∞
n=1 be a sequence of con-

tractions of Y with contraction ratios not greater than L < 1. If

∀x ∈ Y : Mx := sup
n≥1

%(Hn(x), x) <∞,

then the sequence (H1 ◦ · · · ◦Hn)
∞
n=1 converges pointwise to a constant map-

ping.
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Moreover, if MK := supx∈KMx <∞ for some K ⊂ Y , then the conver-
gence is uniform on K.

Hutchinson uses the standard version of the Banach contraction principle
(see [H, 3.3(1)]) to show (in one of two independent approaches) the exis-
tence, uniqueness and compactness of the so called invariant set associated
with a system of contractions {f1, . . . , fk} on a complete metric spaceX. The
invariant set appears namely to be the unique fixed point of the contraction

Φ : CB(X) 3 A 7→
k⋃
j=1

fj(A) ∈ CB(X),

where CB(X) is the family of all non-empty closed bounded subsets of X
furnished with the Hausdorff metric.

In a similar way Baribeau and Roy deal with a special type of countable
(not necessarily finite) iterated function systems (see [BR, Lemma 1]), called
for short IFSs. The corresponding invariant set, called here the attractor of
the IFS, is not always closed in the infinite case. In order to apply the Banach
contraction principle as before, one has to take the closure in the formula of
the mapping, i.e.

Φ : A 7→
⋃
j∈J

fj(A),

and the unique fixed point is the closure of the attractor.
It is natural to ask what would happen if we took a sequence (Hn) as in

Theorem 1.1 instead of the sequence (Φn) of iterates. It turns out that this
leads to a (bigger) family of (generalized) attractors, but we deal only with
the closures.

Another area in which we can apply Theorem 1.1 is complex dynamics.
The Julia set associated with a holomorphic mapping f is also defined by
iterates (fn)∞n=1. Let us restrict our investigations to a polynomial mapping
P : CN → CN (this choice will be explained later). The associated filled-in
Julia set can be defined by

K+[P ] := {z ∈ CN : (Pn(z))∞n=1 is bounded}.
Can the Banach contraction principle be used here? It can. Klimek [K2] de-
fined a special complete metric space consisting of specific non-empty com-
pact subsets of CN such that if the Łojasiewicz exponent of P , i.e.

expt(P ) := sup

{
δ : lim inf
|z|→∞

|P (z)|
|z|δ

> 0

}
(| · | denotes the Euclidean norm in CN ; for background on the Łojasiewicz
exponent see [Pł]), is greater than 1, then the mapping

Ψ : K 7→ P−1(K)
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is a contraction in this space and the filled-in Julia set K+[P ] is the unique
fixed point obtained from the Banach contraction principle (cf. [K2]).

It was quite natural for Klimek to follow in a way the idea of Hutchinson,
namely to take a finite family of polynomial mappings {P1, . . . , Pk} with
Łojasiewicz exponents greater than 1 and to define a mapping

Ψ : K 7→
̂k⋃

j=1

P−1j (K)

(Â denotes the polynomially convex hull of the set A; just like the closure in
the case of infinite iterated function systems, here the polynomially convex
hull is needed). Since one deals here with inverse images, Klimek called the
family {P1, . . . , Pk} the inverse iteration system and the unique fixed point
the composite Julia set (see also [K3]). The family of all composite Julia sets
defined in this way is a proper and dense subset in a special metric space
defined by Klimek (see [K4, Theorem 3]).

Once again a natural question is what happens if one takes a sequence
of mappings instead of the iterations of Ψ and if one applies Theorem 1.1.
Well, one can obtain a (bigger) family of Julia type sets.

2. Generalized attractors in Banach spaces. Let (E, ‖ · ‖) be a
Banach space and L(E) be the space of bounded linear operators on E
furnished with the operator norm. Denote by A(E) the space of continuous
affine operators on E. One can write A(E) = L(E)⊕ E, since

∀T ∈ A(E) : T̃ := T − T (0) ∈ L(E),

and consider it with the natural norm ‖T‖ = ‖T̃‖ + ‖T (0)‖. Note that
T ∈ A(E) is a contraction if and only if ‖T̃‖ < 1.

We have a first consequence of Theorem 1.1 (cf. [KK3, Lemma 2.2]):

Proposition 2.1. If (Tn)
∞
n=1 is a sequence in A(E) such that

sup
n≥1
‖T̃n‖ < 1,

then (T1 ◦ · · · ◦ Tn)∞n=1 converges uniformly on bounded sets to a constant
mapping.

But we want to generalize iterated function systems. First of all take a
bounded family T ⊂ A(E). Then the mapping

ΦT : CB(E) 3 K 7→
⋃
T∈T

T (K) ∈ CB(E)

is well defined, and if the closure of T in A(E) is compact, then ΦT maps
compact sets to compact sets (see [KK3, Proposition 3.1]). This is the case
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in particular if E is of finite dimension or the family T is finite. Furthermore,
if

sup
T∈T
‖T̃‖ < 1,

then ΦT is a contraction on CB(E) furnished with the Hausdorff metric.
Take now a matrix M := [Tn,j ]

∞
n,j=1 with entries in A(E) such that

QM := sup
n,j≥1

‖Tn,j‖ <∞ and LM := sup
n,j≥1

‖T̃n,j‖ < 1.

Put
Tn := {Tn,j : j ≥ 1}, n ≥ 1.

Note that Tn is bounded for each n ≥ 1. One can apply the first part of
Theorem 1.1 to the sequence (ΦTn)

∞
n=1 (see [KK3, Proposition 4.1]) and

obtain a constant limit mapping. We call the value of this mapping the at-
tractor of the matrix M . Note that actually the order in any row of the
matrix does not matter for the attractor. It suffices to take a sequence
(Tn)∞n=1 of countable (finite or not) families of continuous affine operators
such that

QM = sup
T∈

⋃
n≥1 Tn

‖T‖ <∞ and LM = sup
T∈

⋃
n≥1 Tn

‖T̃‖ < 1

and one can define the attractor of the sequence (Tn)∞n=1. The setting with
matrices was however useful to show analytic dependence of the attractor
on the initial object. It would be more difficult to define any notion of an-
alyticity for mappings with arguments being sequences of sets. We will not
speak here about the analyticity, referring the reader to [KK3].

But the idea of starting with a sequence of sets may make it easier to
realize that this is a generalization of IFSs. Namely if Tn = T1 for all n ≥ 1,
then we have exactly the iterated function system T1 and “our” attractor is
the closure of the attractor in the sense of IFSs. However, our construction
leads to new attractors, hence is a real generalization. Namely, if (ln)∞n=0 is a
given sequence of positive numbers such that l0 = 1 and 2ln < ln−1, n ≥ 2,
and we put

Tn :=

{
C 3 z 7→ ln

ln−1
z ∈ C, C 3 z 7→ ln

ln−1
z + 1− ln

ln−1
∈ C

}
, n ≥ 1,

then the sequence (Tn)∞n=1 satisfies the above assumptions (cf. [KK3, Sec-
tion 7]). We can choose (ln)n≥1 in such a way that the attractor cannot
be obtained by any IFS (which follows from a result in [CR]). Let us note
that the Cantor type sets we obtained here are important examples in the
constructive theory of functions (cf. [P]).
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3. Generalized filled-in Julia sets. If K is a compact set in CN , we
denote by VK the pluricomplex Green function of K with a pole at infinity
(see [K1, Chapter 5]). The set K is pluriregular if VK is continuous. Let us
recall a beautiful transformation formula for the pluricomplex Green function
of inverse images ([K1, Theorem 5.3.1]):

Theorem 3.1. Let α, β be positive numbers and let f : CN → CN be a
holomorphic mapping. The following conditions are equivalent:

• f is a polynomial mapping of degree not greater than β and of Ło-
jasiewicz exponent not smaller than α;
• f is proper and for every compact set K ⊂ CN ,

1

β
VK ◦ f ≤ Vf−1(K) ≤

1

α
VK ◦ f.

Let R denote the family of all compact pluriregular polynomially convex
subsets of CN and put

Γ (K1,K2) := ‖VK1 − VK2‖CN = max{‖VK1‖K2 , ‖VK2‖K1}, K1,K2 ∈ R.
[K2, Theorem 1] says that (R, Γ ) is a complete metric space. Hence in view
of Theorem 3.1 the mapping

ΨP : R 3 K 7→ P−1(K) ∈ R
is a contraction if P is a polynomial mapping of Łojasiewicz exponent greater
than 1. Moreover, because of the equivalence in Theorem 3.1 it seems that
we cannot use in this construction a holomorphic mapping which is not
polynomial.

For our generalization we will consider a simpler situation. If P : CN →
CN is a polynomial mapping of degree d and P̃ is the homogeneous part of
P of degree d, we say that P is regular if P̃−1(0) = {0}. If P is regular of
degree d > 2, then expt(P ) = d and the contraction ratio of ΨP equals 1/d.
The regularity of P is equivalent to the condition

bP c := inf
|z|=1
|P̃ (z)| > 0.

Take now any complex norm ‖ · ‖ in the space Pd of all polynomial
mappings P : CN → CN of degree not greater than d. We have (cf. [KK1,
Proof of Theorem 4.6])

Proposition 3.2. If (Pn)∞n=1 is a sequence in Pd such that

sup
n≥1
‖Pn‖ <∞ and inf

n≥1
bPnc > 0,

then
∀K ∈ R : sup

n≥1
Γ (K,ΨPn(K)) <∞.
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Hence we may apply Theorem 1.1 once again. We obtain a constant
mapping, denote its value by K+[(Pn)

∞
n=1] and call it the filled-in Julia set

of the sequence (Pn)
∞
n=1. This set is also given by the formula

K+[(Pn)
∞
n=1] = {z ∈ CN : ((Pn ◦ · · · ◦ P1)(z))

∞
n=1 is bounded}.

4. Generalization of a composite Julia set. The following construc-
tion is similar to the one from Section 2 but we take inverse images under
polynomial mappings instead of images under affine contractions. In order
to obtain analytic dependence of the limit set on the mappings one has to
use more complicated arguments (see [KK1] and [KK2]) but we will only
sketch the construction leading to Julia type sets here. We will use the same
spaces as in Section 3.

Take now a sequence (Υn)
∞
n=1 of families Υn ⊂ Pd, define Υ :=

⋃
n≥1 Υn

and assume that

sup
P∈Υ
‖P‖ <∞ and inf

P∈Υ
bP c > 0.

Under these assumptions the mapping

ΨΥn : R 3 K 7→ ̂⋃
P∈Υn

P−1(K) ∈ R

is a well defined contraction with contraction ratio 1/d (cf. [KK1]). Note
however that the relevant union is not always closed.

Now a straightforward generalization of Proposition 3.2 which follows
from the behaviour of Γ on unions of sets allows an application of Theorem
1.1 to the sequence (ΨΥn) and leads to a Julia type set K+[(Υn)

∞
n=1]. This

set can also be defined in terms of bounded orbits, namely K+[(Υn)
∞
n=1] =

̂k+[(Υn)∞n=1], where k+[(Υn)
∞
n=1] is defined to be the set of all z ∈ CN for

which the orbit ((Pn ◦ · · · ◦ P1)(z))
∞
n=1 is bounded for some sequence (Pn)n

with Pn ∈ Υn, n ∈ N (see [KK2]). Note that this last set is the union of all
generalized filled-in Julia sets associated with sequences (Pn) with Pn ∈ Υn,
n ≥ 1.

It may be worth noting that it is really necessary to take the polynomially
convex hull in the relationship between K+[(Υn)

∞
n=1] and k+[(Υn)∞n=1] which

can be shown by the following example in the one-dimensional case.

Example 4.1. For j ∈ {1, 2, 3, 4}, put aj := 2ij−1 and take the finite
family Υn = {P1, P2, P3, P4} for n ≥ 1, where

Pj : C 3 z 7→ Pj(z) := −
2i

aj
(z − aj)2 − iaj + aj ∈ C, j = 1, 2, 3, 4.

Then k+[(Υn)∞n=1] is not polynomially convex.



Generating Cantor and Julia type sets 213

Proof. Pj is conjugate to z 7→ z2 − 2 and therefore its filled-in Julia set
is K+[Pj ] = [aj − iaj , aj + iaj ]. Since⋃

j∈{1,2,3,4}

K+[Pj ] ⊂ k+[(Υn)],

the origin lies in the polynomially convex hull of this set. However, |Pj(0)| =
2
√
10 and |Pj(z)− aj + iaj | = |z − aj |2, therefore 0 /∈ k+[(Υn)].

We end this short survey with open questions. It was shown in Section 2
that we deal there really with a generalization of attractors of iterated func-
tion systems. We have no such proof for the last two sections, though we
are almost sure that we obtain here much bigger families of sets than only
the class of all filled-in Julia sets (each associated with only one polynomial
mapping). Can one exhibit a filled-in Julia set of a sequence of polynomial
mappings which is not a filled-in Julia set of one polynomial mapping? Can
one find such a generalized composite (filled-in) Julia set?
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