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Hartogs type extension theorems
on some domains in Kähler manifolds

by Takeo Ohsawa (Nagoya)

Abstract. Given a locally pseudoconvex bounded domain Ω, in a complex mani-
fold M , the Hartogs type extension theorem is said to hold on Ω if there exists an arbi-
trarily large compact subset K of Ω such that every holomorphic function on Ω −K is
extendible to a holomorphic function on Ω. It will be reported, based on still unpublished
papers of the author, that the Hartogs type extension theorem holds in the following two
cases: 1) M is Kähler and ∂Ω is C2-smooth and not Levi flat; 2) M is compact Kähler
and ∂Ω is the support of a divisor whose normal bundle is nonflatly semipositive.

Introduction. Analyzing the boundary behavior of holomorphic func-
tions is one of the principal objectives of complex analysis. Accordingly,
structures of the sets of singular points of analytic functions are of basic
importance in function theory.

Hartogs [H] first studied analytic functions of several variables from
this viewpoint, and established the pseudoconvexity of domains of holo-
morphy by proving that, for any polydisc S = {(z′, zn) | z′ ∈ S′, zn ∈ σ}
(z′ = (z1, . . . , zn−1)) in Cn, for any point p ∈ S′, for any neighborhood U of
({p}×σ)∪ (S′×∂σ), and for any holomorphic function f on U , there exists

uniquely a holomorphic function f̃ on S satisfying f̃ |U = f (the Hartogs ex-
tension theorem). If this extendibility holds for holomorphic maps from S to
a domain Ω in Cn, then Ω is said to be pseudoconvex in the sense of Hartogs.
Based on this, Levi [L] and Krzoska [Kr] described a geometric condition
which every domain of holomorphy must satisfy at the smooth boundary
points. After that, Cartan and Thullen [C–T] found that domains of holo-
morphy are holomorphically convex and vice versa. Exploiting the notion
of holomorphic convexity, Oka [O-1,2,3], Stein [S] and Cartan [C] general-
ized the one-variable theorems of Mittag-Leffler, Weierstrass and Runge to
the domains of holomorphy and Stein manifolds. As for the pseudoconvex-
ity, especially in view of the works of Oka [O-4,5] and Grauert [G-1], the
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equivalence of 1-completeness and Steinness is known for complex manifolds
(solution of the Levi problem).

Let us recall that M is said to be q-complete (resp. q-convex ) if it admits
an exhaustion function of class C2 whose Levi form has everywhere (resp.
outside a compact subset) at most q−1 nonpositive eigenvalues. M is called
weakly 1-complete if it carries a C∞ plurisubharmonic function.

By the Hartogs type extendibility we shall mean that, for any compact set
K ⊂ Ω such that Ω −K does not contain relatively compact components,
holomorphic functions on Ω − K are extendible to Ω. In this sense, the
assertion that H1

c (M,O) vanishes is equivalent to a Hartogs type extension
theorem. Here O denotes the structure sheaf of M and H1

c (M,O) denotes
the O-valued first cohomology group of M with compact support. By a
theorem of Andreotti and Grauert in [A–G], the above is known to hold if
M is a connected (n − 1)-complete manifold of dimension n. The notions
of q-completeness and q-convexity were introduced in [A–G] to generalize
the vanishing theorems and finiteness theorems for the sheaf cohomology on
Stein manifolds. The theory of q-convex manifolds and subsequent works of
Nakano [N] and Takayama [T] on weakly 1-complete manifolds with positive
line bundles generalize also Kodaira’s characterization of projective algebraic
manifolds (cf. [K]), as well as Oka–Grauert’s solution of the Levi problem
(see also [G-2] and [G–R-2]).

It must be noted that the Hartogs type extension theorem does not
generalize to arbitrary (n − 1)-convex manifolds, because the complement
of any (possibly disconnected) complex curve in CPn is obviously (n − 1)-
convex. Therefore some additional condition is needed. An answer was given
by a theorem of Grauert and Riemenschneider [G–R-1] which says that
H1
c (Ω,O) vanishes as long as Ω is a smoothly bounded relatively compact

domain with hyper-(n−1)-convex boundary (for the definition, see §2 below)
in a connected Kähler manifold of dimension n.

Although there need not exist nonconstant holomorphic functions on
(n − 1)-convex domains, generalizations of Hartogs type extension to dif-
ferential forms have significant consequences in complex geometry. For in-
stance, a generalization of [G–R-1] was given in [Oh-1] in the framework of
L2 Hodge theory, and recently applied to study existence questions on Levi
flat hypersurfaces in CPn and complex tori (cf. [Oh-3,4]).

On the purely function-theoretic side, it is still anticipated that Hartogs
type extension for functions holds for locally pseudoconvex bounded do-
mains with Levi nonflat smooth boundary, because it will then strengthen
a solution of the Levi problem on two-dimensional manifolds (cf. [D–Oh]).
A supporting evidence for that can be seen in a potential-theoretic study
of complete Kähler manifolds by Napier and Ramachandran [N–R-1, The-
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orem 3.5]. By the way, it is known that there is a dichotomy between
H1
c (M,O) = 0 and the existence of proper holomorphic maps from M onto a

noncompact Riemann surface if M is a weakly 1-complete Kähler manifold
with precisely one end (cf. [N–R-2]).

With this background, the author has focused on the function-theoretic
side of the Hartogs type extension and obtained the following two results.

Theorem 0.1 (cf. Theorem 3.2 in [Oh-5]). Let M be a complex manifold
admitting a Kähler metric and let Ω ⊂M be a bounded locally pseudoconvex
domain with C2-smooth boundary. Then the Hartogs type extension theorem
holds on Ω, unless ∂Ω is everywhere Levi flat. In particular, ∂Ω is connected
unless it is Levi flat.

Theorem 0.2 (cf. Theorem 0.2 in [Oh-6]). Let M be a connected com-
pact Kähler manifold and let D be an effective divisor on M. Assume that
the line bundle associated to D has a fiber metric whose curvature form is
semipositive on the Zariski tangent spaces of the support |D| of D and not
identically zero there. Then the Hartogs type extension theorem holds on
M − |D|. In particular |D| is connected.

Whether or not Theorem 0.2 is a limiting case of Theorem 0.1 is an
open question. In general, it is true that there exist locally pseudoconvex
bounded domains in complex manifolds which are not an increasing union
of locally pseudoconvex domains with smooth boundary, e.g. the comple-
ment of exceptional divisors. However, it is likely that M − |D| becomes
weakly 1-complete under the assumption of Theorem 0.2 as suggested by
a theory of Ueda (cf. [U]). It will be shown in §4 that this is actually the
case if dimM ≤ 2. It might be worthwhile to note that Diederich and For-
naess [D–F] found a locally pseudoconvex bounded domain Ω with smooth
boundary in a non-Kähler manifold such that Ω is not weakly 1-complete.
Anyway, at least at the moment, it must be understood that Theorems 0.1
and 0.2 just concern hyperbolic ends and parabolic ends, respectively. In
the recent terminology of pluripotential theory, this distinction is between
pluricomplex Green function and Siciak’s extremal function.

The purpose of the present article is to give outlines of the proofs of
these theorems following [Oh-5,6], trying to unify the presentation, and to
make some remarks in §4 on the structure of M−|D| as above in connection
with Theorem 0.2.

1. L2 ∂-cohomology: a general tool. Let (M, g) be a connected Her-
mitian manifold of dimension n and let (E, h) be a Hermitian holomorphic
vector bundle over M . Let ∂ (resp. ∂) denote the complex exterior derivative
of type (0, 1) (resp. (1, 0)) and put ∂h = h−1 ◦∂ ◦h, regarding h as a smooth
section of Hom(E,E∗). Let ϑh (resp. ϑ) be the formal adjoint of ∂ (resp. ∂h)
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with respect to g and h. Let ω be the fundamental form of g and let Λ be
the adjoint of the exterior multiplication by ω. Let Θh be the curvature form
of h, identified with its exterior multiplication from the left. Then it is easy
to see that

(1.1) (∂ϑh − ∂hϑ)u =
√
−1ΘhΛu

for any C∞ E-valued (n, n)-form u on M .

Let (u, v) denote the inner product of C∞ E-valued compactly supported
forms u and v, and let ‖u‖2 = (u, u). By (1.1),

(1.2) ‖ϑhu‖2 − ‖ϑu‖2 = (
√
−1ΘhΛu, u)

if u is compactly supported.

Let ψ be any C∞ real-valued function on M . We recall a local expres-
sion for the differential form

√
−1 ∂∂ψΛv for any (n,m)-form v on M . Let

{σ1, . . . , σn} be a local frame of the holomorphic cotangent bundle of M
such that ω =

√
−1

∑
i σi ∧ σi and ∂∂ψ =

∑
i λiσi ∧ σi for λ1 ≤ · · · ≤ λn.

Note that all λi are continuous on M .

Then, by letting

v =
∑
K

vKσ∗ ∧ σK ,

where σ∗ = σ1 ∧ · · · ∧ σn and σK = σk1 ∧ · · · ∧ σkm for K = (k1, . . . , km), we
have

(1.3)
√
−1 ∂∂ψΛv =

∑
λKvKσ∗ ∧ σK ,

where λK = λk1 + · · ·+ λkm . We put λ∗ = λ1...n for simplicity.

Combining (1.2) and (1.3) with Θhe−ψ = Θh + IdE ⊗ ∂∂ψ, one easily de-
duces an inequality which implies the following by Hahn–Banach’s theorem
(cf. [A–V]).

Theorem 1.1. If (M, g) is complete, the infimum of λ∗ on M is positive,
and Θh is bounded on M with respect to g and h, then there exists c0 ∈ R
such that, for any c > c0 and for any E-valued L2 (n, n)-form v with respect
to g and h exp(−cψ), there exists an E-valued L2 (n, n − 1)-form u with
respect to g and h exp(−cψ) satisfying ∂u = v.

Let Ω ⊂M be a bounded domain with C2-smooth pseudoconvex bound-
ary. Then there exist a defining function % of ∂Ω with inf % > −1 such that %
is C∞ on Ω, and a positive number L such that g∗ := Lg+∂∂(1/log(−%)) is a
complete Hermitian metric on Ω. Since 1/log(−%) is bounded, the following
is a corollary of Theorem 1.1.

Theorem 1.2. Let (M, g) and (E, h) be as above and let Ω ⊂ M be a
bounded domain with C2-smooth pseudoconvex boundary. Then, with respect
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to the metrics g∗ and h|Ω, for any E-valued L2 (n, n)-form v on Ω there
exists an E-valued L2 (n, n− 1)-form u on Ω satisfying ∂u = v.

With respect to g∗ and h as above, we denote by Hp,q
(2)(Ω,E) the E-

valued L2 ∂-cohomology group of Ω of type (p, q). Then the conclusion of
Theorem 1.2 is expressed as Hn,n

(2) (Ω,E) = {0}.
Since g∗ is complete, Theorem 1.2 implies the following by duality.

Proposition 1.1. In the situation of Theorem 1.2, H0,1
(2) (Ω,E) is Haus-

dorff.

(E, h) is arbitrary so far. Imposing some curvature condition on h, a van-

ishing theorem for H0,1
(2) (Ω,E) will be obtained. For the moment, we shall

be contented with the case where E is the trivial line bundle and h = 1. In
this case H0,1

(2) (Ω,E) will be denoted by H0,1
(2) (Ω).

Theorem 1.3. Let M be a complex manifold admitting a Kähler metric
and let Ω be a bounded domain in M with C2-smooth pseudoconvex boundary

such that ∂Ω, is not everywhere Levi flat. Then H0,1
(2) (Ω) = {0}.

Proof. Since ∂Ω is pseudoconvex and not Levi flat, there exists a point
x ∈ ∂Ω and a neighborhood U of x in M such that the Levi form of %
has at least one positive eigenvalue everywhere on U ∩ ∂Ω. Let χ be a
nonnegative C∞ function on M such that x ∈ suppχ ⊂ U . Then one can
find ε > 0 such that, for any C∞ convex increasing function τ on R, the
sums of n − 1 eigenvalues of ∂∂τ(1/log(−%) + εχ) with respect to g∗ are
nonnegative everywhere on Ω.

By choosing τ to be strictly increasing on (0,∞) and τ(t) = 0 on (−∞, 0],
one has a bounded C∞ function Ψ := τ(1/log(−%) + εχ/2) on Ω such that
the sums of n − 1 eigenvalues of ∂∂Ψ are nonnegative on Ω, and strictly
positive on V ∩Ω for some neighborhood V of x.

Then, by the boundedness of Ψ , in view of Nakano’s identity on Kähler
manifolds, there exists a nonnegative C∞ function c on M with c(x) > 0
such that

‖∂∗u‖2 + ‖∂u‖2 ≥ (cu, u)

for any C∞ compactly supported (0, 1)-form u on Ω. Here | · | denotes the
L2 norm with respect to g∗, and ∂∗ the adjoint of ∂.

This implies that every element of H0,1
(2) (Ω) is in the closure of {0}

by virtue of the unique continuation theorem of Aronszajn. On the other
hand, it is known from Proposition 1.1 that H0,1

(2) (Ω) is Hausdorff. Therefore

H0,1
(2) (Ω) = {0},as required.

It is clear that, for any compact subset K of Ω, there exist no L2 holo-
morphic functions on Ω −K with respect to g. Hence we obtain
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Corollary 1.1. In the above situation, H1
c (Ω, 0) = {0}. In particular,

the restriction map

H0(Ω,O)→ lim−→H0(Ω \K,O)

is surjective. Here K runs through the compact subsets of Ω.

Proof of Theorem 0.1. If ∂Ω were neither connected nor Levi flat, one
would have a locally constant but noncostant holomorphic function on Ω,
which is an absurdity.

In [D–Oh], the following was proved.

Theorem 1.4. Let Ω be a relatively compact domain with smooth real-
analytic boundary in a complex manifold M . Assume that dimM = 2 and
∂Ω is connected and strongly pseudoconvex at some point. Then there is a
compact analytic subset A ⊂ Ω, a Stein space Ω∗, and a proper holomorphic
map $ : Ω → Ω∗ such that Ω\A and Ω∗\$(A) are biholomorphic under $.

By Theorem 0.1, the connectedness assumption on ∂Ω is a consequence
of the Levi nonflatness assumption if M is Kählerian.

2. q-convex and q-concave. As in §1, let Ω ⊂M be a bounded domain
whose boundary ∂Ω is C2-smooth. Recall that a defining function % of ∂Ω
is a real-valued C2 function defined on a neighborhood, say U , of the closure
Ω of Ω such that Ω = {x ∈ U ; %(x) < 0} and d% vanishes nowhere on ∂Ω.

Let us denote by T (∂Ω) the tangent bundle of ∂Ω which is naturally
embedded in the tangent bundle of M . We put

(2.1) T 1,0(∂Ω) = {v ∈ T 1,0M ∩ (T (∂Ω)⊗ C); ∂%(v) = 0},
where T 1,0M stands for the holomorphic tangent bundle of M .

By the Levi signature of ∂Ω at x ∈ ∂Ω we shall mean the signature of
the Hermitian form

T 1,0(∂Ω)× T 1,0(∂Ω) // C

∈ ∈

(v, w) // ∂∂%(v ∧ w)

Note that ∂∂% is the (1, 1)-part of −d∂%. It is clear that the Levi signature
does not depend on the choices of defining functions of Ω. If a Hermitian
metric g is given onM , the eigenvalues of ∂∂%(v∧w) with respect to g depend
on the choice of %, but only up to multiplication by a positive function on ∂Ω.

If the Levi signature (s, t) of ∂Ω everywhere satisfies s ≥ n − q (resp.
t ≥ n − q), we say that ∂Ω is q-convex (resp. q-concave). If a Hermitian
metric g is given on a neighborhood of Ω and the sums of q eigenvalues of
∂∂%(v∧w) with respect to g are everywhere positive (resp. negative) on ∂Ω,
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then we say ∂Ω is hyper-q-convex (resp. hyper-q-concave) with respect to g.
We say that Ω is q-convex, q-concave and so on if so is ∂Ω.

M is called a q-complete manifold if there exists a C2 exhaustion function
ϕ on M such that ϕ is everywhere q-convex in the sense that the Hermitian
form

T 1,0M × T 1,0M // C

∈ ∈

(v, w) // ∂∂ϕ(v ∧ w)

which is called the Levi form of ϕ, has everywhere at least n− q+1 positive
eigenvalues. The Levi form of ϕ will be denoted simply by ∂∂ϕ. Hyper-
q-convexity of a function is similarly defined with respect to a Hermitian
metric.

It was first proved by Greene and Wu [G–W] that M is n-complete if and
only if M is noncompact. The proof is based on an embedding theorem by
harmonic functions. An elementary proof of Greene–Wu’s theorem was given
in [Oh-2]. The proof of Proposition 2.1 below, which is a convexity assertion
needed for the proof of Theorem 0.2, is based on the argument of [Oh-2].

Given a compact complex submanifold S ⊂ M , the above-mentioned
convexity properties of neighborhoods of S are derived from the curvature
properties of the normal bundle of S. This relation naturally extends to the
case of effective divisors.

Let D be an effective divisor on M such that the line bundle [D] associ-
ated to D has a fiber metric b whose curvature form satisfies the assumption
of Theorem 0.2. (Neither compactness nor Kählerianity is assumed on M
here.)

We fix a canonical section s of [D] and denote by |s| the length of s with
respect to b. Let b∧ be a fiber metric of [|D|], let s∧ be a canonical section
of [|D|], and let |s∧| be the length of s∧ with respect to b∧.

If |D| is compact, then replacing b by b exp(−A|s∧|2) for sufficiently
large A > 0, we may assume in advance that the curvature form of b is
semipositive at every point of |D| and of rank ≥ 2 at some point x0 of |D|.

Proposition 2.1. If |D| is compact and x0 is as above, then, for any
Hermitian metric g on M and for any connected component D0 of |D| con-
taining x0, there exists an exhaustion function on M −D0 which is hyper-
(n− 1)-convex with respect to g outside a compact subset.

For the proof, see [Oh-6, proof of Proposition 1.2].

3. Proof of Theorem 0.2. Based on Proposition 2.1, the proof of
Theorem 0.2 proceeds similarly to §1. Let us describe a condition for the
vanishing of the L2 ∂-cohomology in a somewhat more general form.
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Let (M, g) be a connected complete Kähler manifold of dimension n and
let (E, h) be a holomorphic Hermitian vector bundle over M . The curvature
form Θh of h is said to be Nakano semipositive if it induces a semipositive
quadratic form on T 1,0M ⊗ E by contraction with h. (As before, for the
application to Theorem 0.2, E will be the trivial line bundle and h = 1.)

Let ψ be a real-valued C∞ function on M , let x ∈M and let {σ1, . . . , σn}
be a basis of (T 1,0M)∗, the holomorphic cotangent space of M at x, such
that ω =

√
−1
∑

i σi∧σi and ∂∂ψ =
∑

i λiσi∧σi (λ1 ≤ · · · ≤ λn) hold at x,
as before.

Then, by letting

u =
∑

uiσi at x

we have

(3.1)
√
−1Λ∂∂ψ ∧ u =

∑
(λ∗ − λi)uiσi at x,

where λ∗ is as before.
Let Hp,q

ψ (M,E) denote the L2 ∂-cohomology group of type (p, q) with

respect to g and h expψ. Since (M, g) is complete, combining (3.1) with
Oheψ = Θh − IdE ⊗ ∂∂ψ, from (3.1) one deduces the following similarly to
Theorem 1.3.

Theorem 3.1. Assume that the dual bundle of (E, h) is Nakano semi-
positive, inf λ∗ is positive for some compact set B ⊂ M , and λ∗ − λn is
everywhere nonnegative and somewhere positive. Then H0,0

ψ (M,E) = {0}
and H0,0

ψ (M,E) = {0}.
Proof of Theorem 0.2 (outline). Let M and D be as in Theorem 0.2. Let

D′ be the union of connected components of |D| along which the curvature
form of h is tangentially identically zero. By Proposition 2.1, one can find
an exhaustion function Ψ on the complement of |D| − D′ which is hyper-
(n − 1)-convex near |D| −D′ with respect to a Kähler metric g on M . Let
σ denote the fundamental form of g.

We fix c ∈ R in such a way that the sums of n−1 eigenvalues of ∂∂Ψ are
positive on the set V (c) = {x; Ψ(x) > c}. We may assume that V (c−1)∩D′
= ∅. Then we put

γ = inf{log |s(x)|; x ∈ ∂V (c)}
and

ωε =

{
ω − ε

√
−1 ∂∂λ(Ψ − c) on V (c),

ω − ε
√
−1 ∂∂ξ(− log |s|+ γ) on M − V (c)−D′,

where ε is a positive number, λ is a real-valued C∞ function on R satisfying
λ(t) = 0 if t < 1 and λ(t) = log t if t ≥ 2, and ξ : R → R is a C∞ function
with supp ξ ⊂ (1,∞) such that ξ(t) = t2 if t ≥ 2. It is easy to see that ωε is
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the fundamental form of a complete Kähler metric, say gε, on M − |D| if ε
is sufficiently small.

Denoting by κ(x) the minimum of the sums of n − 1 eigenvalues of
∂∂(Ψ − c)2 at x ∈ M − |D| with respect to gε, it is easy to see that
inf{κ(x); Ψ(x) > c} diverges to∞ as c→∞. Hence, by composing a convex
increasing function with (Ψ − c)2 we obtain a function, say ϕ, satisfying the
conditions of ψ in Theorem 3.1 with respect to gε.

Then, by Theorem 3.1, for any neighborhood V ⊃ |D|, for any holomor-

phic function f on V − |D|, and for any C2 function f̂ on M − |D| which

coincides with f outside a compact subset, the equation ∂u = ∂f̂ has a so-
lution u on M − |D| which is square integrable with respect to the measure
defined as the product of the volume form of gε and expϕ. From the L2

condition, it is easy to see that u is extendible holomorphically across D′.

It is also clear that |s(x)|ν expϕ(x) diverges as x→|D|−D′ for any ν∈N.
Therefore u must vanish outside a compact subset of M − (|D| − D′). On
the other hand, it is easy to see by the maximum principle that u is locally
constant on a neighborhood of D′ (cf. [Oh-6, Proposition 1.5]). Combining
this with the infiniteness of the volume of gε around D′, we conclude that
u is zero on a neighborhood of D′. Thus f̂ − u is the desired extension of f .

Remark 3.1. Combining the last paragraph of the above proof with a
vanishing theorem of Demailly–Peternell [Dm–P], one gets a shorter proof
of Theorem 0.2 (cf. [Oh-6]).

4. Notes and remarks. If dimM ≤ 2, Theorem 0.2 can be strength-
ened as follows.

Theorem 4.1. Let M be a connected compact complex manifold of dimen-
sion 2 and let D be an effective divisor on M. If D2 > 0, then there exists a
connected component D∗ of |D| such that M −D∗ is 1-convex.

Proof. Replacing D, if necessary by an effective divisor D0 such that
D2

0 > 0, D − D0 is effective, |D − D0| ∩ |D0| = ∅ and |D0| is connected,
we may assume that D is connected. Let D =

∑m
i=1 niDi, where Di are

irreducible and ni ∈ N. Then D2 > 0 means that the matrix ∆ = (∆ij)
defined by ∆ij = Di ·Dj satisfies

(4.1)
∑

1≤i,j≤m
∆ijninj > 0.

From this property of ∆ it is easy to deduce that the image of the set (0,∞)m

under the linear map from Rm to itself defined by the matrix ∆ must have
a nonempty intersection with (0,∞)m. Hence one can find an element ν of
Nm whose image under ∆ does not have nonpositive components.
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Thus, replacing the coefficients of D by the components of ν, one has an
effective divisor D◦ satisfying |D◦| = |D| and D◦ · D > 0 for all j. Hence
M − |D| (= M − |D◦|) is 1-convex by Proposition 2.1.

Remark 4.1. There exists a compact complex manifold M of dimen-
sion 3 which admits a nonsingular divisor D with semipositive normal bun-
dle such that D3 > 0 holds but M − |D| is not holomorphically convex (cf.
[G-3]).

Remark 4.2. One can prove Theorem 4.1 also by combining Grothen-
dieck’s lemma asserting that H0(M, [µD]) 6= {0} for sufficiently large µ,
which follows from Riemann–Roch’s theorem and D2 > 0, and Simha’s
theorem [Sm] asserting that the complement of any closed complex curve
in a Stein surface is Stein. However, an advantage of the above proof is
that it naturally extends to pseudoholomorphic divisors in almost complex
surfaces. Since the notions of pseudoconvexity and Levi flatness are naturally
carried over to real hypersurfaces in almost complex manifolds, extension
of Theorems 0.1 and 0.2 to almost complex symplectic manifolds might be
interesting as a question of topology.
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