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Extreme plurisubharmonic singularities

by Alexander Rashkovskii (Stavanger)

Abstract. A plurisubharmonic singularity is extreme if it cannot be represented as
the sum of non-homothetic singularities. A complete characterization of such singularities
is given for the case of homogeneous singularities (in particular, those determined by
generic holomorphic mappings) in terms of decomposability of certain convex sets in Rn.
Another class of extreme singularities is presented by means of a notion of relative type.

1. Introduction. Let C be a convex cone of a vector space V . A point
v ∈ C is called extreme if the relation v = v1 +v2 for vi ∈ C implies vi = λiv
with λi ≥ 0, i = 1, 2. The set of all extreme points plays an important role
due to Choquet’s representation theorem. The structure of this set depends
on the geometry of the cone, to be investigated in each concrete situation.

In complex analysis this task arises in various contexts. Concerning
pluripotential theory, we refer here to papers [L], [D1] on extremal currents,
and especially to [CeTh] where different types of extremal plurisubharmonic
functions were considered; in particular, classical single pole pluricomplex
Green functions were shown to be extreme. In [CaW], Green functions with
several poles were considered.

In this note, we work with the cone of plurisubharmonic singularities at
a fixed point on a complex manifold (basically, 0 ∈ Cn), that is, the equiva-
lence classes of asymptotics of plurisubharmonic functions at that point. By
using the technique of local indicators from [LR], we obtain a necessary and
sufficient condition for a ‘homogeneous’ singularity to be extreme, in terms
of decomposability of certain convex sets in Rn (Theorem 3.4). Another class
of extreme singularities, related to plurisubharmonic valuations [BFJ], is de-
scribed in Theorem 3.7 with the help of a notion of relative type introduced
in [R3]. Both classes contain the logarithmic singularity, as well as other
‘standard’ singularities. In Section 4 we apply this to extreme functions.
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2. Plurisubharmonic singularities. For basics on plurisubharmonic
functions, see, e.g., [Kl].

Let PSHGp be the cone of germs of all plurisubharmonic functions at a
point p of a complex manifold. A plurisubharmonic germ is singular at p if
it is not bounded (from below) in any neighborhood of p. The asymptotic
behavior of a plurisubharmonic function near its singularity point can be
very complicated.

We say that u ∼ v if u(z) = v(z)+O(1) for z → p. The equivalence class
cl(u) is called the plurisubharmonic singularity of u [R4] (in [Z], a closely
related object was introduced under the name of standard singularity). The
collection of all plurisubharmonic singularities at p is denoted by PSHSp.
Until the last section, we assume p = 0 ∈ Cn.

Plurisubharmonic singularities form a convex cone whose extreme rays
we will study.

2.1. Characteristics of singularities. A fundamental characteristic
of a singularity u ∈ PSHS0 is its Lelong number

ν(u) = lim inf
z→0

u(z)

log |z|

for any u ∈ u (it is independent of the choice of the representative). If f is
a holomorphic function, then ν(log |f |) equals the multiplicity of f at 0.

A refined version, due to Kiselman [Ki1] (see also [Ki2]), is the directional
Lelong number in a direction a = (a1, . . . , an) ∈ Rn+ (that is, a1, . . . , an > 0),

ν(u, a) = lim inf
z→0

u(z)

φa(z)
, u ∈ u,

where

(2.1) φa(z) = max
k

a−1k log |zk|.

In particular, ν(u) = ν(u, (1, . . . , 1)).

For polynomials or, more generally, for analytic functions f =
∑
cJz

J ,
it can be computed as

(2.2) ν(log |f |, a) = inf{〈a, J〉 : cJ 6= 0},

the expression on the right-hand side being known in number theory as the
index of f with respect to the weight a, while in commutative algebra it is
called a monomial valuation.

An even more general characteristic was introduced in [R3]. Recall that
an isolated singularity ϕ ∈ PSHS0 is called maximal if there exists a rep-
resentative that is a maximal plurisubharmonic function on a punctured
neighborhood of 0. The relative type of u with respect to a maximal singu-
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larity ϕ is

(2.3) σ(u, ϕ) = lim inf
z→0

u(z)

ϕ(z)
, u ∈ u.

Its counterpart in algebra (in the case of both u and ϕ with an algebraic or
analytic singularity) is the asymptotic Samuel function. Note that σ(u, φa) =
ν(u, a).

The relative type gives an upper bound for any u ∈ u:

(2.4) u ≤ σ(u, ϕ)ϕ+O(1).

2.2. Indicators and Newton polyhedra. The function t 7→ ψu(t)
= −ν(u,−t), t ∈ Rn− = −Rn+, is convex and increasing in each tk, so
ψu(log |z1|, . . . , log |zn|) can be extended (in a unique way) to a function
Ψu(z) plurisubharmonic in the unit polydisk Dn ⊂ Cn, the (local) indicator
of u at 0 (see [LR]). Observe that

(2.5) Ψu+v = Ψu + Ψv.

The indicators have the log-homogeneity property

Ψu(z1, . . . , zn) = Ψu(|z1|, . . . , |zn|) = c−1Ψu(|z1|c, . . . , |zn|c) ∀c > 0,

and any nonpositive plurisubharmonic function Φ in Dn with this property is
called an indicator, which is justified by the relation ΨΦ = Φ. The collection
of all indicators is a convex cone.

The homogeneity implies (ddc Ψu)
n = 0 on {Ψu > −∞}, so if Ψu is locally

bounded outside 0, then (ddc Ψu)
n = Nuδ0 for some Nu ≥ 0 (the Newton

number of u), and Nu = 0 if and only if Ψu ≡ 0 (δ0 being Dirac’s δ-function
at 0).

The indicators are plurisubharmonic characteristics of plurisubharmonic
singularities:

(2.6) u(z) ≤ Ψu(z) +O(1).

When u has an isolated singularity at 0, this implies (by Demailly’s com-
parison theorem [D2]) a relation between the Monge–Ampère measures:

(ddcu)n ≥ (ddc Ψu)n = Nuδ0.

Due to the homogeneity, the convex image ψu(t) = Ψu(e
t1 , . . . , etn) of the

indicator Ψu coincides with the support function to the convex set

Γu = {b ∈ Rn+ : ψu(t) ≥ 〈b, t〉 ∀t ∈ Rn−},
that is,

ψu(t) = sup {〈t, a〉 : a ∈ Γu}.
We will call the set Γu the indicator diagram of u. For u = cl(log |f |) this is
precisely the Newton polyhedron of the function f =

∑
cJz

J at 0, i.e., the
convex hull of the set {J + Rn+ : cJ 6= 0} (see (2.2)).
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Let C+ be the collection of all closed convex subsets Γ of Rn+ that are
complete in the following sense: a ∈ Γ ⇒ a + Rn+ ⊂ Γ . We have just
established an isomorphism between the cone of indicators and the cone
C+ endowed with Minkowski’s addition

Γ1 + Γ2 = {a+ b : a ∈ Γ1, b ∈ Γ2}.
By (2.5) and the corresponding property of the support function,

(2.7) Γu+v = Γu + Γv.

Note also that the Newton number Nu of an isolated singularity u can be
computed as

(2.8) Nu = n! Vol(Rn+ \ Γu)
(see [R1]).

3. Extreme singularities

Definition 3.1. We say that a singularity u ∈ PSHS0 is extreme if the
relation u = u1 + u2 for ui ∈ PSHS0 implies ui = λiu with λi ≥ 0.

In terms of germs, this means that the relation u = u1 + u2 + O(1) for
ui ∈ PSHG0 implies u = λiui +O(1) with λi ≥ 0, i = 1, 2.

3.1. Indicator diagram test. We are going to study singularities by
means of their indicator diagrams.

Definition 3.2. A set K ⊂ C+ is called decomposable if there exist sets
K1,K2 ∈ C+, non-homothetic to K, such that K = K1+K2. (A set A ∈ C+

is homothetic to B if A = cB + x for c ≥ 0 and x ∈ Rn+.)

For the case of arbitrary convex polyhedra in Rn, this notion has been
extensively studied: see e.g. [Shn], [Shp], [Me], [K], [M], [Sm] where a number
of results on (in)decomposability of polyhedra are obtained. Decomposabil-
ity of Newton polyhedra (with application to reducibility of polynomials and
analytic functions) was considered, for example, in [Shn], [Li], [G]. Observe
that for such an application one does not exclude homothetic polyhedra,
while we have to do that in order to treat extreme singularities. Our defini-
tion is thus closer to that from [Sm].

Note that a polyhedron is decomposable in the class of all convex sets in
C+ if and only if it is decomposable in the class of convex polyhedra in C+.
A straightforward example of an indecomposable set in C+ is

Γa = {x ∈ Rn+ : 〈x, a〉 ≥ 1}, a ∈ Rn+.
Relation (2.7) makes one hope that there should be a strong connec-

tion between extremity and indecomposability. However, things are not that
simple.
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Example 3.3. The Newton diagram of the function

(3.1) u = log(|z31 |+ |z31 + z21z2|+ |z21 + z1z2|+ |z21 + 2z1z2 + z22 |)

is Γ(2,2) and therefore is indecomposable. At the same time, u is not extreme,

just because u = log(|z1|+ |z2|) + log(|z21 |+ |z2|).

The property of being extreme is obviously coordinate independent,
while Newton polyhedra are very sensitive to the choice of coordinates, For
instance, under the linear transform ζ1 = z1, ζ2 = z1 + z2, the function u of
Example 3.3 turns into

(3.2) v(ζ) = log(|ζ31 |+ |ζ21ζ2|+ |ζ1ζ2|+ |ζ22 |)

whose indicator diagram Γv is generated by the points (3, 0), (1, 1), and
(0, 2), so it equals the sum Γ(1,1) + Γ(2,1), none of the summands being
homothetic to Γv.

In addition, we refer to the well-known problem of existence of isolated
singularities ϕ that have zero Lelong number but nonzero residual Monge–
Ampère mass at 0. The indicator of such a singularity is identically zero, so
the indicator diagram of any u ∈ PSHS0 coincides with that of the nonex-
treme function u+ ϕ.

To avoid these problems, we restrict ourselves to a subclass of singular-
ities. According to [R2], a function u ∈ PSHG0 is almost homogeneous if
Ψu ∈ cl(u), that is, the inequality in (2.6) becomes an equality. This means
that one can always find a homogeneous representative Ψu of cl(u), so we
call it a homogeneous singularity.

As was proved in [R3], a function u ∈ PSHG0 with an isolated singularity
is almost homogeneous if and only if its residual mass (ddcu)n(0) coincides
with that of its indicator. By Kouchnirenko’s theorem ([Kou], [AYu]), the
latter is true for u = log |F |, where F is a generic holomorphic mapping
with a given Newton polyhedron. Other examples of almost homogeneous
functions can be found in [R1], [R2].

Theorem 3.4. A homogeneous singularity is extreme if and only if its
indicator diagram is indecomposable.

Proof. Let u be a homogeneous singularity and Ψ be its indicator repre-
sentative. Then Ψ = u1 + u2 +O(1) with ui ∈ PSHG0 if and only if

(3.3) Ψ = Ψu1 + Ψu2 .

Since ui ≤ Ψui + O(1), one then has ui = Ψui + O(1), so the singularities
cl(ui) are homogeneous as well. Therefore, u is extreme if and only if the
representation (3.3) is possible with Ψui = λiΨ only, which exactly means
that Γu is indecomposable.
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Remark 3.5. The function v defined by (3.2) is almost homogeneous
because v ≥ Ψv, so the decomposability of its indicator diagram reflects
perfectly the nonextremity of v. In contrast, the function u from (3.1) has
indecomposable indicator diagram, but it is not extreme. This is caused
by the fact that u is not almost homogeneous, which can be checked by a
direct computation of the residual Monge–Ampère masses by means of (2.8):
(ddcu)n(0) = (ddcv)n(0) = (ddcΨv)

n(0) = 6, while (ddcΨu)n(0) = 5.

3.2. Additive types. Another class of extreme singularities comes from
the notion of relative type (2.3). As follows from the definition, the type with
respect to any maximal singularity ϕ satisfies σ(

∑
ui, ϕ) ≥

∑
σ(ui, ϕ).

Definition 3.6. We will say that a maximal singularity ϕ is additive if

σ
(∑

ui, ϕ
)

=
∑

σ(ui, ϕ) ∀ui ∈ PSHS0.

For example, flat weights considered in [R5] have this property; in partic-
ular, so do the simplicial singularities φa and ϕ = log(|z1|s+|f |) in C2, s > 0,
where f is any irreducible holomorphic function whose zero set is transverse
to {z1 = 0} and the multiplicity at 0 is at most s (see [FJ]). More generally,
all plurisubharmonic weights generating quasimonomial valuations on Cn
(see [BFJ] and [R4]), are additive.

Theorem 3.7. Any additive maximal singularity is extreme.

Proof. Let ϕ be a fixed representative of the given additive maximal
singularity, and assume

(3.4) ϕ = u1 + u2 +O(1).

Denote σi = σ(ui, ϕ). Then the additivity gives us σ1 + σ2 = 1. If σ1 = 0,
then σ2 = 1 and the bound (2.4) implies u2 ≤ ϕ+O(1). In view of (3.4) we
have, in addition, ϕ ≤ u2 + O(1), so u2 ∈ cl(ϕ), which proves the assertion
for this case.

Now we can assume σ1 > 0 and σ2 = 1− σ1 > 0. Denote

v = max
i

ui
σi
.

Then σ(v, ϕ) = 1, so v ≤ ϕ+O(1). On the other hand,

v = max
i

ui
σi
≥ σ1

u1
σ1

+ (1− σ1)
u2
σ2

= u1 + u2 = ϕ+O(1),

so v ∈ cl(ϕ). We claim that this implies u1/σ1 = u2/σ2 + O(1). Assuming
the contrary, there exists a sequence of points zk → 0 such that, for example,
u1(zk)/σ1 − u2(zk)/σ2 = Ak →∞. Therefore,

v(zk) =
u1(zk)

σ1
=
σ1u1(zk) + σ2u1(zk)

σ1
= u1(zk) + u2(zk) + σ2Ak,

which contradicts v ∈ cl(ϕ).
Therefore, v = ui/σi +O(1), so ui ∈ σi cl(ϕ).
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4. Extreme plurisubharmonic functions. The pluricomplex Green
function of a bounded hyperconvex domain Ω for a maximal singularity
u ∈ PSHSp was introduced in [Z] (in the case of continuous singularity) and
in [R3] (in the general case) as

Gu = sup{v ∈ PSH−(Ω) : v ∈ u}.
It is maximal on Ω\{p} and Gu ∈ u, and this is the unique plurisubharmonic
function with these properties.

When the singularity is homogeneous with a representative u = Ψ(·+ p)
for a given indicator Ψ , this coincides with the function introduced in [LR]
as the upper envelope of negative plurisubharmonic functions v in Ω such
that Ψv(·−p) ≤ Ψ . When Ψ = log |z|, this produces the standard pluricomplex
Green function Gp with pole at p.

In [CeTh], the classical pluricomplex Green functions were shown to be
extreme: Gp = u1 + u2 for u1, u2 ∈ PSH−(Ω) implies ui = λiGp, λi ≥ 0.

Theorem 4.1. The pluricomplex Green function for an extreme maxi-
mal singularity u at p ∈ Ω is extreme. When the singularity is homogeneous,
Ω = Dn and p = 0, the converse is true as well.

Proof. Let Gu = u1 + u2. Then each uj is maximal on Ω \ {p} and
zero on ∂Ω, which implies ui = Gcl(ui). In addition, cl(u1) + cl(u2) = u, so
cl(ui) = λiu, and again the uniqueness theorem yields Gcl(ui) = λiGu.

The second assertion follows immediately from Theorem 3.4 and the
observation that, in the case of p = 0 ∈ Dn = Ω, one has GΨ = Ψ .

For an arbitrary domain Ω, nonextremity of a singularity does not im-
ply nonextremity of the Green function. For example, the indicator of the
function v defined by (3.2) (i.e., its Green function for D2) is

Ψv(z) = max{3 log |z1|, 2 log |z1|+ log |z2|, log |z1|+ log |z2|, 2 log |z2|}
and it is the sum of

Ψ1(z) = max{log |z1|, log |z2|} and Ψ2(z) = max{2 log |z1|, log |z2|}.
On the other hand, let Gv be its Green function in the unit ball B2.

Assume that Gv = v1 + v2 for vi ∈ PSH−(B2). Then Ψv = Ψv1 + Ψv2 and
again, as in the proof of Theorem 3.4, we conclude that both v1 and v2
are almost homogeneous (since v is), and moreover, since Γv has a unique
decomposition into the sum of two diagrams (which is checked directly),
Ψv1 equals either Ψ1 or Ψ2. Therefore,

GΨvi
= Gvi ≥ vi,

so Gv = GΨ1 + GΨ2 . Substituting here GΨ1 = log |z| and a known formula
for Gv2 from [RSi], we see that the sum does not satisfy the homogeneous
Monge–Ampère equation outside 0.
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This observation leads us to the following

Conjecture. Any plurisubharmonic solution to the Dirichlet problem
in the unit ball Bn,

(ddcu)n = δp, u|∂Bn = 0,

is an extreme plurisubharmonic function.
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