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On absolutely monotone set-valued funtionsby Andrzej Smajdor (Kraków)Abstrat. We de�ne absolutely monotone multifuntions and prove their analytiityon an interval [0, b).1. Let f : [a, b) → R. The pth order di�erene ∆p
sf(t) of f is de�nedindutively as follows:

∆0
sf(t) = f(t), ∆p+1

s f(t) = ∆p
sf(t + s) − ∆p

sf(t)for every nonnegative integer p, t ∈ [a, b), s > 0 suh that t + (p + 1)s < b.We say that the funtion f is absolutely monotone in the interval [a, b)if ∆p
sf(t) ≥ 0 for a ≤ t ≤ t + ps < b, p = 0, 1, . . . . The following Bernsteintheorem is well known (see e.g. [3, Theorem 2.3.2℄):
Theorem. Every absolutely monotone funtion f : [0, b) → R is analyti:

f(t) =
∞∑

n=0

antnin [0, b) with an ≥ 0, n = 0, 1, . . . .2. In this paper we prove an analogue of S. Bernstein's theorem for ab-solutely monotone set-valued funtions. Let Y be a real normed spae andlet cc(Y ) denote the family of all nonempty ompat onvex subsets of Y .A set C ∈ cc(Y ) is the Hukuhara di�erene of A ∈ cc(Y ) and B ∈ cc(Y ) if
A = B + C = {b + c : b ∈ B, c ∈ C}(see [2℄). If the di�erene C = A − B exists, then it is unique. This is aonsequene of the following:

Lemma 1 (f. [5℄). Let A, B and C be subsets of a real topologial vetorspae suh that
A + B ⊂ C + B.If C is onvex losed and B is nonempty bounded , then A ⊂ C.2000 Mathematis Subjet Classi�ation: 26A48, 26A51, 26E25.Key words and phrases: absolutely monotone set-valued funtions.[113℄



114 A. SmajdorNow, let −∞ < a < b ≤ ∞ and let H : [a, b) → cc(Y ). We de�ne the pthdi�erenes ∆p
sH(t) by the reurrene

∆0
sH(t) = H(t), ∆p+1

s H(t) = ∆p
sH(t + s) − ∆p

sH(t)for every nonnegative integer p, t ∈ [a, b), s > 0 suh that t + (p + 1)s < b.A set-valued funtion is said to be absolutely monotone if all differenes
∆p

sH(t) exist and eah ontains zero.
Example. Let A ∈ cc(Y ) be suh that 0 ∈ A. Suppose that h :

[a, b) → [0,∞). Then H(t) = h(t)A is an absolutely monotone set-valuedfuntion if and only if h is an absolutely monotone real funtion.We an observe the following:
Remark. Let b and α be positive numbers, H : [0, b) → cc(Y ) and

G(t) = H(αt) on [0, b/α). Then G is absolutely monotone if and only if His absolutely monotone.Let G : [0, 1] → cc(Y ) be a given multifuntion. The polynomial
Bn(t) =

n∑

i=0

(
n

i

)
ti(1 − t)n−iG

(
i

n

)

is alled the nth Bernstein polynomial of G.
Theorem 1. If G : [0, 1] → cc(Y ) is ontinuous (with respet to theHausdor� metri d in (Y )), then

d(Bn(t), G(t)) ≤ 3

2
ω

(
1√
n

)
,where

ω(δ) = sup{d(G(t′′), G(t′)) : |t′′ − t′| < δ}.The proof of this theorem runs similarly to the proof of Bernstein's ap-proximation theorem (f. [3℄).
Lemma 2. Let G : [0, 1] → cc(Y ) be a multifuntion. Then

Bn(t) =

n∑

i=0

(
n

i

)
ti∆i

1/nG(0)(1)for positive integers n and t ∈ [0, 1].Proof. Let �∼� denote the Rådström equivalene relation between pairsof members of cc(Y ) de�ned by the formula
(A, B) ∼ (C, D) ⇔ A + D = B + C.For any pair (A, B), [A, B] denotes its equivalene lass. All equivalenelasses form a linear spae Ỹ with addition de�ned by the rule

[A, B] + [C, D] = [A + C, B + D]



Absolutely monotone set-valued funtions 115and salar multipliation
λ[A, B] =

{
[λA, λB] for λ ≥ 0,
λ[A, B] = [−λB,−λA] for λ < 0(f. [5℄).Consider the funtion g : [0, 1] → Ỹ de�ned as follows:

g(t) = [G(t), {0}].It an be proved by indution that
∆p

sg(t) = [∆p
sG(t), {0}](2)and

∆p
sg(t) =

p∑

i=0

(
p

i

)
ti(−1)p−ig(t + is)(3)

for nonnegative integers p, t ∈ [0, 1) and s > 0 suh that t + ps < 1.Let bn be Bernstein's polynomials of g:
bn(t) =

n∑

i=0

(
n

i

)
ti(1 − t)n−ig

(
i

n

)
.Then

bn(t) = [Bn(t), {0}].Using Newton's binomial formula, replaing j by j − i in the seond sumbelow, hanging the order of summation, and then making use of the identity(
n
i

)(
n−i
j−i

)
=

(
n
j

)(
j
i

) and equality (3) we obtain
bn(t) =

n∑

i=0

n−i∑

j=0

(
n

i

)(
n − i

j

)
(−1)jti+jg

(
i

n

)

=
n∑

i=0

n∑

j=i

(
n

i

)(
n − i

j − i

)
(−1)j−itjg

(
i

n

)

=
n∑

j=0

j∑

i=0

(
n

j

)(
j

i

)
(−1)j−itjg

(
i

n

)
=

n∑

j=0

(
n

j

)
tj∆j

1/ng(0).

Aording to (2) we have
[ n∑

i=0

(
n

i

)
ti∆i

1/nG(0), {0}
]

=
n∑

i=0

(
n

i

)
ti[∆i

1/nG(0), {0}]

=

n∑

i=0

(
n

i

)
ti∆i

1/ng(0) = bn(t) = [Bn(t), {0}].



116 A. SmajdorThus ( n∑

i=0

(
n

i

)
ti∆i

1/nG(0), {0}
)

∼ (Bn(t), {0})and (1) holds.
Lemma 3. Let 0 < c ≤ b and H : [0, b) → cc(Y ). If Ai, Bi ∈ cc(Y ),

i = 0, 1, . . . , are suh that
H(t) =

∞∑

n=0

tnAn for t ∈ [0, b),
H(t) =

∞∑

n=0

tnBn for t ∈ [0, c),then Ai = Bi for i = 0, 1, . . . .Proof. We see that A0 = H(0) = B0. Suppose that
A0 = B0, . . . , Ak = Bk.Then

Ak+1 = lim
t→0+

H(t) − ∑k
i=0

tiAi

tk+1
= lim

t→0+

H(t) − ∑k
i=0

tiBi

tk+1
= Bk+1.

Theorem 2.A set-valued funtion H : [0, b) → cc(Y ) is absolutely mono-tone if and only if there exist sets Ai ∈ cc(Y ), i = 0, 1, . . . , ontaining zerosuh that
H(t) =

∞∑

n=0

tnAn for t ∈ [0, b).(4) Proof. 1. Suppose that H : [0, b) → cc(Y ) is of the form (4) and that
0 ∈ An ∈ cc(Y ). We see that

H(t + s) =
∞∑

n=0

(t + s)nAn = H(t) +
∞∑

n=0

((t + s)n − tn)An,therefore
∆1

sH(t) =
∞∑

n=0

∆1
st

nAn.By indution it may be shown that
∆p

sH(t) =
∞∑

n=0

∆p
st

nAn.Thus all di�erenes ∆p
sH(t) exist. As they ontain zero, H is an absolutelymonotone multifuntion.



Absolutely monotone set-valued funtions 1172. Now, suppose that H : [0, b) → cc(Y ) is an absolutely monotonemultifuntion. The di�erenes ∆1
sH(t) and ∆2

sH(t) exist and ontain zero,therefore
H(t) ⊂ H(t) + ∆1

sH(t) = H(t + s)and
2H(t + s) ⊂ 2H(t + s) + ∆2

sH(t) = H(t + s) + H(t) + ∆1
sH(t) + ∆2

sH(t)

= H(t + s) + H(t) + ∆1
sH(t + s) = H(t) + H(t + 2s).Thus H is inreasing and midonave in [0, b).Fix a number c ∈ (0, b). The funtion H, being midonave and boundedon [0, c], is ontinuous, aording to Theorem 4.4 in [4℄. De�ne G(t) = H(ct)for t ∈ [0, 1]. Then G is ontinuous and by Theorem 1 it is the uniform limitof the sequene of its Bernstein polynomials Bn(t). By Lemma 2 we have

Bn(t) =
n∑

i=0

(
n

i

)
ti∆i

1/nG(0) =
n∑

i=0

tiAn
i ,where An

i =
(
n
i

)
∆i

1/nG(0). We note that 0 ∈ An
0 and

An
0 ⊂ Bn(1) = G(1).(5)Sine G(1) is ompat, the family of all losed subsets of G(1) is ompat(see [1, p. 41℄). By (5) there exists a stritly inreasing sequene (n0

k) and
A0(c) ∈ cc(Y ) suh that

A
n0

k

0
→ A0(c).Similarly, sine

A
n0

k

1
⊂ Bn0

k

(1) = G(1),there exists a stritly inreasing subsequene (n1
k) of (n0

k) and A1 ∈ cc(Y )suh that
A

n1

k

0
→ A1(c)and so on. Applying the diagonalization proedure to the sequenes (A

n0

k

0
),

(A
n1

k

0
), . . . we obtain a stritly inreasing sequene (nk) suh that

Ank

0
→ A0(c), Ank

1
→ A1(c), . . .Fix t ∈ [0, 1), ε > 0 and de�ne

Sn(t) =
n∑

i=0

tiAi(c) for n = 0, 1, . . . .Choose a positive integer k so large that 2‖G(1)‖tk(1 − t)−1 < ε/3, where
‖G(1)‖ = sup{‖y‖ : y ∈ G(1)}, and then hoose L large enough to get
d(Bnl

(t), G(t)) < ε/3 and ∑k−1

j=0
d(Anl

j , Aj) < ε/3 for l ≥ L. Then
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d(Snl

(t), G(t)) ≤ d(Snl
(t), Bnl

(t)) + d(Bnl
(t), G(t))

≤ 2ε/3 +

nl∑

i=k+1

tid(Anl

i , Ai) ≤ (2/3)ε + 2‖G(1)‖ tk+1

1 − t
< ε.Thus

lim
l→∞

Snl
(t) = G(t)(6)and aording to Theorem II-2 in [1℄,

G(t) =

∞⋃

l=1

Snl
(t).Using the monotoniity of the sequene (Sn(t)) we get

Sl(t) ⊂ Snl
(t) ⊂ G(t) for l = 0, 1, . . . .Therefore the sequene d(G(t), Sl(t)) is dereasing. By (6),

lim
l→∞

d(G(t), Sl(t)) = lim
l→∞

d(G(t), Snl
(t)) = 0.Consequently,

G(t) = lim
n→∞

Sn(t) =

∞∑

i=0

tiAi for t ∈ [0, 1).The de�nition of G leads to
H(t) = G(t/c) =

∞∑

i=0

tic−iAi for t ∈ [0, c).Now (4) follows from Lemma 3.
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