On the complexification of real-analytic polynomial mappings of \mathbb{R}^{2}

by Ewa Ligocka (Warszawa)

Abstract

We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from \mathbb{R}^{2} into \mathbb{R}^{2} which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of $\mathbb{C P}^{2}$. We also prove that this extension acts on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$ as a quotient of finite Blaschke products.

1. Introduction and preliminaries. The two-dimensional space \mathbb{R}^{2} can be identified with the complex plane \mathbb{C}. Each real-analytic polynomial mapping on \mathbb{R}^{2} can be written in complex coordinates as

$$
Q(z)=\sum_{k=0}^{n} Q_{k}(z)=\sum_{k=0}^{n} \sum_{i=0}^{k} a_{k i} z^{i} \bar{z}^{k-i}
$$

We can now complexify the mapping $Q(z)$, in the same manner as in [Li2], [Li3], putting

$$
f(z, w)=\left(\sum_{k=0}^{n} \sum_{i=0}^{k} a_{k i} z^{i} w^{k-i}, \sum_{k=0}^{n} \sum_{i=0}^{k} \bar{a}_{k i} w^{i} z^{k-i}\right)
$$

The mapping f is a polynomial endomorphism of \mathbb{C}^{2} preserving the completely real subset $\{(z, \bar{z})\}_{z \in \mathbb{C}}$. In $[\mathrm{Li} 3]$ we proved that if Q is a quasiregular polynomial which has algebraic degree two, then f extends to a polynomial endomorphism of the complex projective space $\mathbb{C P}^{2}$.

A simple example of $Q(z)=z|z|^{2}=z^{2} \bar{z}$ shows that this is not true in general. The aim of the present paper is to give conditions on $Q(z)$ which are equivalent to the existence of the extension of $f(z, w)$ to $\mathbb{C P}^{2}$ and to study the behavior of the extended map on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$.

[^0]The mapping f is extendable to $\mathbb{C P}^{2}$ iff the mapping $\tilde{f}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ defined by

$$
\widetilde{f}(z, w, t)=\left(\sum_{k=0}^{n}\left(\sum_{i=0}^{k} a_{k i} z^{i} w^{k-i}\right) t^{n-k}, \sum_{k=0}^{n}\left(\sum_{i=0}^{k} \bar{a}_{k i} w^{i} z^{k-i}\right) t^{n-k}, t^{n}\right)
$$

vanishes only at $w=z=t=0$. This is equivalent to the fact that

$$
f_{n}(z, w)=\left(\sum_{i=0}^{n} a_{n i} z^{i} w^{n-i}, \sum_{i=0}^{n} \bar{a}_{n i} w^{i} z^{n-i}\right)
$$

vanishes only at $w=z=0$.
The mapping

$$
Q_{n}(z)=\sum_{i=0}^{n} a_{n i} z^{i} \bar{z}^{n-i}
$$

can be written (for $z \neq 0$) as

$$
Q_{n}(z)=\bar{z}^{n} \cdot \sum_{i=0}^{n} a_{n i}\left(\frac{z}{\bar{z}}\right)^{i}=\bar{z}^{n} \sum_{i=0}^{n} a_{n i} \xi^{n}, \quad \xi=\frac{z}{\bar{z}}
$$

Let i_{0} be the greatest number for which $a_{n i} \neq 0$. The polynomial

$$
P(\xi)=\sum_{i=0}^{n} a_{n i} \xi^{i}
$$

can be written as

$$
P(\xi)=a_{n i_{0}} \prod_{j=1}^{i_{0}}\left(\xi-p_{j}\right)
$$

where the p_{j} are roots of $P(\xi)$. We have

$$
Q_{n}(z)=a_{n i_{0}} \bar{z}^{n-i_{0}} \prod_{j=1}^{i_{0}}\left(z-p_{j} \bar{z}\right)
$$

2. Results

THEOREM 2.1. The complexified mapping f extends to a polynomial endomorphism of $\mathbb{C P}^{2}$ iff one of the following conditions holds:
(1) $i_{0}=n$ and $p_{i} \bar{p}_{j} \neq 1$ for each $i, j=1, \ldots, n$;
(2) $i_{0}<n, p_{i} \neq 0$ for $i=1, \ldots, i_{0}$ and $p_{i} \bar{p}_{j} \neq 1$ for each i, j.

Proof. We have

$$
f_{n}(z, w)=\left(a_{n i_{0}} w^{n-i_{0}} \prod_{j=1}^{i_{0}}\left(z-p_{j} w\right), \bar{a}_{n i_{0}} z^{n-i_{0}} \prod_{j=1}^{i_{0}}\left(w-\bar{p}_{j} z\right)\right)
$$

Assume that (2) holds.
$f_{n}(z, w)$ can vanish in the following three cases:
(a) $w=0$ and $w-\bar{p}_{j} z=0$ for some j,
(b) $z=0$ and $z-p_{j} w=0$ for some j,
(c) $z-p_{i} w=0$ and $w-\bar{p}_{j} z=0$ for some i and j.

Since $p_{j} \neq 0$ conditions (a) and (b) imply that $z=w=0$. In case (c) we have

$$
\operatorname{det}\left[\begin{array}{cc}
1 & -p_{i} \\
-\bar{p}_{j} & 1
\end{array}\right]=1-p_{i} \bar{p}_{j} \neq 0
$$

and again $w=z=0$.
If condition (1) holds, we only have case (c) and thus the conditions $p_{i} \neq 0$ are not needed.

In the opposite direction if neither (1) nor (2) is fulfilled then $f(z, w)=0$ on some one-dimensional linear subspace of \mathbb{C}^{2}.

Suppose now that one of the conditions of Theorem 2.1 is valid. We have
THEOREM 2.2. The restriction of the extended map f to $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$ is a rational function which is equal to a quotient of two finite Blaschke products.

Proof. We can write

$$
f_{n}(z, w)=\left(f_{1}(z, w), f_{2}(z, w)\right)
$$

The mapping f acts on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$ as

$$
\phi\left(\frac{z}{w}\right)=\frac{f_{1}(z, w)}{f_{2}(z, w)}:=\phi(\xi), \quad \xi=\frac{z}{w} .
$$

If condition (1) of Theorem 2.1 is fulfilled then

$$
\frac{f_{1}(z, w)}{f_{2}(z, w)}=\frac{a}{\bar{a}} \prod_{j=1}^{n} \frac{z-p_{j} w}{w-\bar{p}_{j} z}=\frac{a}{\bar{a}} \prod_{j=1}^{n} \frac{\frac{z}{w}-p_{j}}{1-\bar{p}_{j} \frac{z}{w}}=\frac{a}{\bar{a}} \prod_{j=1}^{n} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}=\phi(\xi)
$$

where $a=a_{n n}$. Since $p_{i} \bar{p}_{j} \neq 1$ for all $i, j=1, \ldots, n$, none of p_{j} can have modulus one.

Let p_{1}, \ldots, p_{s} have modulus less than one and p_{s+1}, \ldots, p_{n} have modulus greater than one. We now have

$$
\phi(\xi)=\frac{a}{\bar{a}} \prod_{j=1}^{n} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}=\frac{B_{1}(\xi)}{B_{2}(\xi)}
$$

where

$$
B_{1}(\xi)=\frac{a}{\bar{a}} \prod_{j=1}^{s} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}
$$

and

$$
B_{2}(\xi)=\prod_{j=s+1}^{n} \frac{1-\bar{p}_{j} \xi}{\xi-p_{j}}=\prod_{j=s+1}^{n} \frac{\bar{p}_{j}}{p_{j}} \frac{\xi-\frac{1}{\bar{p}_{j}}}{1-\frac{\xi}{p_{j}}}
$$

are finite Blaschke products.
If condition (2) is fulfilled then

$$
\phi(\xi)=\frac{a}{\bar{a}} \frac{1}{\xi^{n-i_{0}}} \prod_{j=1}^{i_{0}} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}, \quad a=a_{n i_{0}}
$$

We can again assume that p_{1}, \ldots, p_{s} have modulus less than one and p_{s+1}, $\ldots, p_{i_{0}}$ have modulus greater than one. We have

$$
\phi(\xi)=\frac{B_{1}(\xi)}{B_{2}(\xi)}
$$

where

$$
B_{1}(\xi)=\frac{a}{\bar{a}} \prod_{j=1}^{s} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}
$$

and

$$
B_{2}(\xi)=\xi^{n-i_{0}} \prod_{j=s+1}^{i_{0}} \frac{\bar{p}_{j}}{p_{j}} \frac{\xi-\frac{1}{\bar{p}_{j}}}{1-\frac{\xi}{p_{j}}}
$$

are finite Blaschke products.
Example 2.3. Let $Q(z)=|z|^{2}-p \bar{z}^{2},|p| \neq 0,1$. Then $Q(z)=\bar{z}(z-p \bar{z})$ and condition (2) of Theorem 2.1 is fulfilled. We have

$$
f(z, w)=\left(z w-p w^{2}, z w-\bar{p} z^{2}\right)
$$

and

$$
\phi(\xi)=\frac{1}{\xi} \frac{\xi-p}{1-\bar{p} \xi}=\frac{B_{1}(\xi)}{B_{2}(\xi)}
$$

where

$$
\begin{array}{lll}
B_{1}(\xi)=\frac{\xi-p}{1-\bar{p} \xi}, & B_{2}(\xi)=\xi, & \text { if }|p|<1 \\
B_{1}(\xi)=1, & B_{2}(\xi)=\frac{\bar{p}}{p} \xi\left(\frac{\xi-\frac{1}{\bar{p}}}{1-\frac{\xi}{p}}\right) & \text { if }|p|>1
\end{array}
$$

Note that for every $p,|p| \neq 0,1, Q(z)$ is not quasiregular. Hence our Theorems 2.1 and 2.2 are more general than Theorem 3.1 (and remarks after it) in [Li3] even in the case of $n=2$.

In order to show the possible use of Theorems 2.1 and 2.2 we shall give the following two propositions.

Proposition 2.4. Assume that $n=i_{0}$ and $\left|p_{j}\right|<1$ for each $j=$ $1, \ldots, n$. Then:
(1) $Q_{n}(z)=a \prod_{j=1}^{n}\left(z-p_{j} \bar{z}\right), a \neq 0$, is quasiregular.
(2) If $Q(z)=Q_{n}(z)+$ lower degree homogeneous terms then $Q(z)$ can be complexified and extended to a polynomial endomorphism of $\mathbb{C P}^{2}$. This extension acts on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$ as a Blaschke product of degree n.

Proof. Part (2) follows immediately from Theorems 2.1 and 2.2 since condition (1) of Theorem 2.1 holds. By Theorem 2.2 we have

$$
\phi(\xi)=\frac{a}{\bar{a}} \prod_{j=1}^{n} \frac{\xi-p_{j}}{1-\bar{p}_{j} \xi}
$$

on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$. Part (1) follows from
Lemma 2.5. Let $Q_{n}(z)=a \prod_{j=1}^{n}\left(z-p_{j} \bar{z}\right)$ where $a \neq 0$ and p_{1}, \ldots, p_{n} $\in \mathbb{C}$. The polynomial Q_{n} is quasiregular iff for all ξ with $|\xi|=1$,

$$
\sum_{j=1}^{n} \frac{1-\left|p_{j}\right|^{2}}{\left|\xi-p_{j}\right|^{2}}>0
$$

Proof. We have

$$
Q_{n}(z)=a \bar{z}^{n} \prod_{i=1}^{n}\left(\frac{z}{\bar{z}}-p_{i}\right)=a \bar{z}^{n} w(\xi)
$$

where $\xi=z / \bar{z}$. Hence

$$
\frac{\frac{\partial Q_{n}}{\partial \bar{z}}}{\frac{\partial Q_{n}}{\partial z}}(z)=\frac{n \bar{z}^{n-1} w(\xi)-\bar{z}^{n} \cdot \frac{z}{\bar{z}^{2}} w^{\prime}(\xi)}{\bar{z}^{n} \cdot \frac{1}{\bar{z}} w^{\prime}(\xi)}=n \frac{w(\xi)}{w^{\prime}(\xi)}-\xi .
$$

$Q_{n}(z)$ is quasiregular iff

$$
\left|n \frac{w(\xi)}{w^{\prime}(\xi)}-\xi\right|<1
$$

for $|\xi|=1$. This is equivalent to

$$
\left|\frac{1}{\frac{1}{n} \frac{w^{\prime}(\xi)}{w(\xi)}}-\xi\right|<1 \Leftrightarrow\left|\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\xi-p_{i}}}-\xi\right|<1 \Leftrightarrow\left|\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{\xi}{\xi-p_{i}}}-1\right|<1
$$

since $|\xi|=1$. We have

$$
\left|\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{\xi}{\xi-p_{i}}}-1\right|=\left|\frac{1}{1+\frac{1}{n} \sum \frac{p_{i}}{\xi-p_{i}}}-1\right|=\left|\frac{\frac{1}{n} \sum_{i=1}^{n} \frac{p_{i}}{\xi-p_{i}}}{1+\sum_{i=1}^{n} \frac{p_{i}}{\xi-p_{i}}}\right|
$$

The inequality

$$
\left|\frac{\frac{1}{n} \sum_{i=1}^{n} \frac{p_{i}}{\xi-p_{i}}}{1+\frac{1}{n} \sum_{i=1}^{n} \frac{p_{i}}{\xi-p_{i}}}\right|<1
$$

is equivalent to the inequality

$$
\Re \frac{1}{n} \sum_{i=1}^{n} \frac{p_{i}}{\xi-p_{i}}>-\frac{1}{2}
$$

which is equivalent to

$$
\sum_{i=1}^{n} \Re \frac{\xi+p_{i}}{\xi-p_{i}}>0 \Leftrightarrow \sum_{i=1}^{n} \frac{1-\left|p_{i}\right|^{2}}{\left|\xi-p_{i}\right|^{2}}>0
$$

For more information on quasiregular polynomials see [Li1].
REMARK 2.6. For $n=1$ or $n=2$, if Q_{n} is quasiregular then all p_{j} must have modulus less than one. This is not true for $n>2$.

If Q is a polynomial mapping such that Q^{-1} exists and is also a polynomial map then we say that Q is a polynomial automorphism.

We have the following
Proposition 2.7. The complexification of a polynomial automorphism can be extended to a polynomial endomorphism of $\mathbb{C P}^{2}$ iff it is an affine mapping.

Proof. The Jung-van der Kulk theorem ([J, K]) shows that each polynomial automorphism of \mathbb{R}^{2} is a finite superposition of a nondegenerate affine map and so-called shears, i.e., mappings

$$
(x, y) \mapsto(x, y+h(x))
$$

where $h(x)$ is a polynomial of one variable. The complexification of a nondegenerate affine map extends to an automorphism of $\mathbb{C P}^{2}$. Hence it suffices to prove our proposition for maps of the type

$$
g_{n} \circ f_{n-1} \circ \cdots \circ f_{2} \circ g_{2} \circ f_{1} \circ g_{1}
$$

where the g_{i} are shears and the f_{j} are affine. If some of the g_{i} are not affine then the leading homogeneous term of

$$
Q=g_{n} \circ f_{n-1} \circ \cdots \circ f_{1} \circ g_{1}
$$

has the form $a x^{m}, m>1$. In complex coordinates it has the form

$$
Q_{n}(z)=a\left(\frac{z+\bar{z}}{z}\right)^{m}
$$

Hence neither condition (1) nor condition (2) of Theorem 2.1 can be fulfilled and Q is not extendable to $\mathbb{C P}^{2}$.

Of course, we can give another proof of Proposition 2.7 by complexifying Q and Q^{-1}. Since $\left\{(z, \bar{z})_{z \in \mathbb{C}}\right\}$ is a uniqueness set for holomorphic functions, we conclude that the complexified map f is a polynomial automorphism of \mathbb{C}^{2}. Thus one can use the Jung-van der Kulk theorem to show that it is not extendable to $\mathbb{C P}^{2}$ unless it is affine.

3. Further remarks

Remark 3.1. If the assumptions of Proposition 2.4 are fulfilled then, similarly to [Li3], we can use the vast knowledge of the dynamics of finite Blaschke products (see [C-G, H, Sh-Su]) to study the dynamics of Q_{n} and try to generalize Theorem 4.2 and Proposition 4.1 of [Li3].

Remark 3.2. If condition (2) of Theorem 2.1 holds or some p_{j} have modulus less than one and some greater than one then, in general, nothing is known about the dynamics of ϕ on $\mathbb{C P}^{2} \backslash \mathbb{C}^{2}$. However, one can still try to use the results of Hubbard-Papadopol [H-P] in the homogeneous case.

Nothing is known when Q is nonhomogeneous except the last theorem of [Li3].

References

[C-G] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, New York, 1993.
[H] D. H. Hamilton, Absolutely continuous conjugation of Blaschke products, (I), Adv. Math. 121 (1996), 1-20; (II), J. London Math. Soc. (2) 51 (1995), 279-285; (III), J. Anal. Math. 63 (1994), 333-343.
[H-P] J. Hubbard and J. Papadopol, Superattractive fixed points in \mathbb{C}^{n}, Indiana Univ. Math. J. 43 (1994), 321-365.
[J] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
[K] W. van der Kulk, On polynomial rings in two variables, Nieuw. Arch. Wisk. 1 (1953), 33-41.
[Li1] E. Ligocka, On quasiregular polynomial mappings, Colloq. Math. 75 (1998), 7989.
[Li2] -, On fixed points of holomorphic type, ibid. 94 (2002), 61-66.
[Li3] -, On complexification and iteration of quasiregular polynomials which have algebraic degree two, Fund. Math. 186 (2005), 269-285.
[Sh-Su] M. Shub and D. P. Sullivan, Expanding isomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), 285-289.

Institute of Mathematics
Department of Mathematics, Computer Science and Mechanics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: elig@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 30C99, 30D50, 30C10, 32H02; Secondary 32H50, 32D15, 30C62.

 Key words and phrases: polynomial mapping, quasiregular mapping, complexification.

