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On the complexification of real-analytic
polynomial mappings of R?

by Ewa LicockA (Warszawa)

Abstract. We give a simple algebraic condition on the leading homogeneous term
of a polynomial mapping from R? into R? which is equivalent to the fact that the com-
plexification of this mapping can be extended to a polynomial endomorphism of CP%. We
also prove that this extension acts on CP? \ C? as a quotient of finite Blaschke prod-
ucts.

1. Introduction and preliminaries. The two-dimensional space R?
can be identified with the complex plane C. Each real-analytic polynomial
mapping on R? can be written in complex coordinates as
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We can now complexify the mapping Q(z), in the same manner as in [Li2],
|Li3|, putting

n k n k
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The mapping f is a polynomial endomorphism of C? preserving the com-
pletely real subset {(z,%)}.ec. In [Li3] we proved that if ) is a quasiregular
polynomial which has algebraic degree two, then f extends to a polynomial
endomorphism of the complex projective space CP2.

A simple example of Q(z) = z|z|?> = 227 shows that this is not true in
general. The aim of the present paper is to give conditions on Q(z) which are

equivalent to the existence of the extension of f(z,w) to CP? and to study
the behavior of the extended map on CP? \ C2.
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The mapping f is extendable to CP? iff the mapping f: C3 — C? defined
by

Fow.t) (Z (Z%zw )w 33 (Z% )Mt>
k=0 k=0
vanishes only at w = z =t = (. This is equivalent to the fact that

n n
w) = ( E i 2w, E Em-wzzn_z)
=0 =0

vanishes only at w =z = 0.
The mapping

n
z) = E ani2'z" "
i=0

can be written (for z # 0) as

=n =n n
S N
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Let ip be the greatest number for which a,; # 0. The polynomial

n
= Z am'gz
=0
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can be written as '
io
P(&) = angg H(E —pj)
j=1
where the p; are roots of P(£). We have
io
Qn(2) = apiyz" 0 H(z — pjZ).

J=1

2. Results

THEOREM 2.1. The complexified mapping f extends to a polynomial en-
domorphism of CP? iff one of the following conditions holds:
(1) io =n and pip; # 1 for eachi,j =1,...,n;
(2) io <mn, pi #0 fori=1,...,ip and p;p; # 1 for each i, j.
Proof. We have
. iO . iO
fn(z,w) = (amown_ZO H(z — PjW), g 2"~ "0 H(w — ﬁjz)).
j=1 j=1
Assume that (2) holds.
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fn(z,w) can vanish in the following three cases:

(a) w=0and w—p,;z = 0 for some j,
(b) z=0and z — pjw = 0 for some j,
(¢) z—piw=0and w—p;z = 0 for some 7 and j.

Since p; # 0 conditions (a) and (b) imply that z = w = 0. In case (c) we
have

det [ 1_ _pi] =1-pip; #0
-p; 1
and again w = z = 0.

If condition (1) holds, we only have case (c) and thus the conditions
p; # 0 are not needed.

In the opposite direction if neither (1) nor (2) is fulfilled then f(z,w) =0
on some one-dimensional linear subspace of C2. =

Suppose now that one of the conditions of Theorem 2.1 is valid. We have

THEOREM 2.2. The restriction of the extended map f to CP?\ C? is a
rational function which is equal to a quotient of two finite Blaschke products.

Proof. We can write
fa(z,w) = (fi(z,w), faz, w)).
The mapping f acts on CP? \ C? as
2\ filz,w) _Z
If condition (1) of Theorem 2.1 is fulfilled then
Nilz,w) _a - Fopjw_a - w =P _ §-pj _
fg(z,w)_dH -p _aj[[l Hl—p] = (&)

j:1w pjz p]w

where a = apy,. Since p;p; # 1 for all 4,5 = 1,...,n, none of p; can have
modulus one.

Let p1, ..., ps have modulus less than one and ps41, . .., pn have modulus
greater than one. We now have

é‘ bj . 1(5)
L 1-7;6 Ba()

where
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and

- 11 -

Jj=s+1

are finite Blaschke products.
If condition (2) is fulfilled then

13 Dj
23 :agn 10H1—pj’ @ = Qnig-

We can again assume that pq, ..., ps have modulus less than one and ps1,
.., Di, have modulus greater than one. We have

¢<s>=§:§2

§— p
-1

§— p]

where

and
o - 1

. E— 5
Bafg) = ¢ [ 2 —%

; £
jesr1 P 1=

are finite Blaschke products. =

EXAMPLE 2.3. Let Q(2) = |2]? — pz?, |p| # 0,1. Then Q(z) = Z(z — pZ)
and condition (2) of Theorem 2.1 is fulfilled. We have

F(zw) = (20 — pu?, 2w — p2?)
and

_1&-p _Bi(§
S By(€)
where ‘6
Bie) =75 Bl =¢ if [p| < 1
_1
Bi() = 1. 5’2(5)—55(?_%) i |p] > 1

Note that for every p, [p| # 0,1, Q(z) is not quasiregular. Hence our
Theorems 2.1 and 2.2 are more general than Theorem 3.1 (and remarks
after it) in [Li3| even in the case of n = 2.

In order to show the possible use of Theorems 2.1 and 2.2 we shall give
the following two propositions.

PROPOSITION 2.4. Assume that n = ig and |p;| < 1 for each j =
1,...,n. Then:
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(1) Qn(2) = allj=(z — pjZ), a # 0, is quasiregular.

(2) If Q(2) = Qn(z) + lower degree homogeneous terms then Q(z) can
be complezified and extended to a polynomial endomorphism of CP2.
This extension acts on CP? \ C? as a Blaschke product of degree n.

Proof. Part (2) follows immediately from Theorems 2.1 and 2.2 since
condition (1) of Theorem 2.1 holds. By Theorem 2.2 we have

on CP?\ C?. Part (1) follows from

LEMMA 2.5. Let Q,(z) = al_[?zl(z — pjZ) where a # 0 and p1,...,py
€ C. The polynomial Q,, is quasiregular iff for all & with || =1,

Proof. We have

Q@n(z) = az" <§ —pi> = az"w(§)
=1

where { = z/Z. Hence

% (o= T ZF ) w©)
% ER o
Qn(2) is quasiregular iff
e <
for |£] = 1. This is equivalent to
1 71 1 —1 1 1
%—§’< & %Z?:1ﬁ_§'< & %Z?ﬂ&_ ‘<

since || = 1. We have

1
ZZ 1 5 pl
1 + ZZ_I §— pl

el bl e e
T~n & T |iiis
522;1% 1+EZ$

The inequality

<1

1
’ ZZ 1§p1
145 EZ 1£p1
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is equivalent to the inequality

1 p 1
R— > =
n;ﬁ—pi 2

which is equivalent to

= §+pi 1_’171
;5}% - >0<:>§:’,S op 0

§—Dpi
For more information on quasiregular polynomials see [Lil].

REMARK 2.6. For n =1 or n = 2, if (),, is quasiregular then all p; must
have modulus less than one. This is not true for n > 2.

If ) is a polynomial mapping such that Q! exists and is also a polyno-
mial map then we say that Q is a polynomial automorphism.
We have the following

PROPOSITION 2.7. The complexification of a polynomial automorphism
can be extended to a polynomial endomorphism of CP? iff it is an affine
mapping.

Proof. The Jung—van der Kulk theorem ([J, K]) shows that each polyno-

mial automorphism of R? is a finite superposition of a nondegenerate affine
map and so-called shears, i.e., mappings

(@,y) = (z,y + h(z))
where h(z) is a polynomial of one variable. The complexification of a non-
degenerate affine map extends to an automorphism of CP?2. Hence it suffices
to prove our proposition for maps of the type

gn © fn—10---0 faogao firog
where the g; are shears and the f; are affine. If some of the g; are not affine
then the leading homogeneous term of

Q=9gnofn10--0froq
has the form ax™, m > 1. In complex coordinates it has the form

Qu(z) = a(zjg)m

Hence neither condition (1) nor condition (2) of Theorem 2.1 can be fulfilled
and @ is not extendable to CP2.

Of course, we can give another proof of Proposition 2.7 by complexifying
Q and Q'. Since {(2,%).cc} is a uniqueness set for holomorphic functions,
we conclude that the complexified map f is a polynomial automorphism
of C?. Thus one can use the Jung-van der Kulk theorem to show that it is
not extendable to CP? unless it is affine. m
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3. Further remarks

REMARK 3.1. If the assumptions of Proposition 2.4 are fulfilled then,
similarly to [Li3], we can use the vast knowledge of the dynamics of finite
Blaschke products (see [C-G, H, Sh-Su]) to study the dynamics of @, and
try to generalize Theorem 4.2 and Proposition 4.1 of [Li3].

REMARK 3.2. If condition (2) of Theorem 2.1 holds or some p; have
modulus less than one and some greater than one then, in general, nothing
is known about the dynamics of ¢ on CP?\ C2. However, one can still try to
use the results of Hubbard—Papadopol [H-P] in the homogeneous case.

Nothing is known when () is nonhomogeneous except the last theorem of
[Li3].
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