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Existene and stability of solutions forsemilinear Dirihlet problemsby Marek Galewski (�ód¹)
Abstrat. We provide existene and stability results for semilinear Dirihlet prob-lems with nonlinearities satisfying some general loal growth onditions. We derive ageneral abstrat result whih we then apply to prove the existene of solutions, their sta-bility and ontinuous dependene on parameters for a sixth order ODE with Dirihlettype boundary data.1. Introdution. The aim of the paper is to investigate semilinearDirihlet problems with nonlinearities satisfying some general growth on-ditions. We prove both the existene of solutions and their stability, whihwe then apply to show that the solution depends ontinuously on a fun-tional parameter. Our results may be used in investigating ertain higherorder Dirihlet problems governed by semilinear ODE with nonlinearitiessatisfying some loal growth onditions.Higher order Dirihlet problems have reently been thoroughly investi-gated (see for example [6℄, [13℄). The methods applied vary from topologialto variational ones�the approah via monotone operator theory as well asritial point theory may be used. Although our method is variational inspirit, i.e. it relies on minimizing a suitable ation funtional, it also usessome topologial argument: we prove that a ertain set is invariant with re-spet to the inverse of a suitable di�erential operator. Therefore we thinkthat our researh may bring about some new ideas to the study of semilinearDirihlet problems. We also obtain some qualitative properties of the solu-tion in the example whih we provide. Suh properties depend on the growthondition assumed and of ourse on the onstrution of the set on whih theation funtional is minimized. It is worth stressing that we prove the ontin-uous dependene on parameters for problems whih do not neessarily have2000 Mathematis Subjet Classi�ation: 35A15, 34B99, 34D99.Key words and phrases: abstrat Dirihlet problem, dual variational method, existeneof solutions, stability, ontinuous dependene on parameters.[127℄



128 M. Galewskiunique solutions. A model problem, as far as the stability and existeneresults are onerned, whih is overed by our methods is the following:We onsider the following Dirihlet problems for k = 0, 1, 2, . . .

(1.1) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, x),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where we assume:(F1) There exist numbers d > d0 > 0 and 0 ≤ dk ≤ d0 for all k = 1, 2, . . .suh that ∇Fk(t, dk),∇Fk(t,−dk),∇Fk(t, d),∇Fk(t,−d) ∈ L∞(0, T )for all k = 0, 1, . . . .(F2) For all k = 0, 1, . . . , Fk,∇Fk : [0, T ] × [−d, d] are Carathéodoryfuntions, Fk is ontinuously di�erentiable and onvex with respetto the seond variable in [−d, d] for a.e. t ∈ [0, T ] and equals +∞outside [0, T ] × [−d, d] and
ess sup
t∈[0,T ]

|∇Fk(t, d)| ≤

√
12

π
d, ess sup

t∈[0,T ]
|∇Fk(t,−d)| ≤

√
12

π
d.(F3) For all k = 0, 1, . . . , ∇Fk(t, 0) 6= 0 for a.e. t ∈ [0, T ], and t 7→ Fk(t, 0)and t 7→ F ∗

k (t, 0) are integrable.Here F ∗

k denotes the Fenhel�Young onjugate of a onvex l.s.. funtion
Fk. With the above assumptions we may prove for exampleTheorem 1.1. Assume that (F1)�(F3) hold and that ∇Fk(·, x(·)) ⇀

∇Fk(·, x(·)) in L2(0, π) for all x ∈ H2
0 (0, π) ∩ H3(0, π) suh that

x(t) ∈ [−d0, d0] a.e. on [0, π],
∥∥∥∥

d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d,

−
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x ∈ L∞(0, T ).Then for eah k = 1, 2, . . . there exists a solution xk to the problem (1.1)and there exists a subsequene {xki

}∞i=1 of {xk}
∞

k=1 suh that limi→∞ xki
= xstrongly in L2(0, π) and

−
d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t) = ∇F0(t, x(t)).We will also show some qualitative properties of x and xk.In order to takle the above problem and similar ones we shall investigatethe existene and stability of solutions to the family of abstrat Dirihletproblems(1.2) Lx = ∇Fk(x),



Semilinear Dirihlet problems 129where k = 0, 1, 2, . . . , and L is de�ned on a separable real Hilbert spae
D(L) with values in a separable real Hilbert spae Y with salar produt
〈·, ·〉. We assume(A1) D(L) is dense in Y ; L is a selfadjoint and positive de�nite linearoperator, i.e. there exists a onstant α > 0 suh that for all x ∈ D(L),(1.3) 〈Lx, x〉 ≥ α‖x‖2.From (1.3) it follows that R(L) = Y and the inverse operator L−1 :
Y → D(L) is ontinuous and selfadjoint. By the properties of L it follows(see [5℄) that there exists (exatly one) operator S, alled the square rootoperator, whih is selfadjoint and suh that S2 = L. The domain of S,denoted by D(S), is dense in Y and D(L) is dense in D(S) (see [5℄). Moreover
Sx ∈ D(S) for any x ∈ D(L). Usually D(S) is endowed with the graph normwhih makes it into a omplete spae, but we shall rather use an equivalentnorm

‖x‖D(S) = ‖Sx‖Y .Now we state the assumption on the right hand side of the equation on-sidered and an additional assumption whih is usually satis�ed in onreteappliations.(A2) ∇Fk : Y → Y is a gradient mapping, Fk(0) < ∞, ∇Fk(0) 6= 0.(A3) D(S) is ompatly imbedded in Y.We do not assume yet any growth onditions and onvexity onditionson Fk. These onditions are atually hidden in the de�nition of the set Xkbelow (see Setion 2).Due to the method whih we will apply, we will investigate for eah
k = 0, 1, 2, . . . the following system:(1.4) Sx = p, Sp = ∇Fk(x),where x ∈ D(L) and p ∈ D(S). Suh a pair, if it exists, will be alleda solution to (1.2). Neessary onditions for the existene of a solution to(1.4) are obtained by duality results. The existene is a onsequene of amodi�ation of the well known Weierstrass theorem.The abstrat variational priniple whih we derive is based on a methodfrom [9℄ and enables one to onsider linear di�erential equations of even or-der, espeially higher order equations. The main di�erene with some knownabstrat variational priniples (see for example [7℄, [8℄) is that the growthassumptions are superlinear. We do not require the gradient mapping ∇Fkto be ontinuous and onvex on the whole spae, while suh assumptionsmust be made in [2℄ where a method that applies for superlinear problemsand uses some similar ideas has been derived. Thus the theory developedapplies to a wider lass of problems and also allows one to obtain stability



130 M. Galewskiresults (see Setion 4) without using spetral theory as in [3℄. This is pos-sible sine instead of perturbing the primal ation funtional as in [2℄, weperturb the dual one. In onsequene, the stability of solutions follows undersome mild additional assumption. As appliations we exhibit growth typeonditions for whih we get both stability and existene of solution withoutassuming any additional onvergene of the family of nonlinear terms, whihwas neessary in [3℄, [4℄, [9℄, [11℄, [12℄.For sublinear Dirihlet problems the question of stability of solutionsin ase the solution is not unique was onsidered for the �rst time in [11℄,[12℄. Later in [10℄ a dual variational method from [9℄ was used and someontinuous dependene on parameters results were given for a spei� typeof nonlinearity. In ase Fk satis�es quadrati growth onditions a problemsimilar to ours has been onsidered in [4℄, but unlike the ase we investigate,
L need not be positive de�nite there. For a superlinear problem the methodfrom [4℄ does not work sine in this ase both the ation and dual ationfuntionals are unbounded. Thus we believe that our variational method mayontribute to this researh. Some results onerning stability for superlinearnonlinearities were obtained in [3℄ by using a variational method from [2℄.But the assumptions were muh more restritive and the growth onditionswere assumed to hold globally (f. Setion 5). The variational method from[2℄ required the gradient mappings to be ontinuous, and the onstrutionsof the sets Xk were less general.2. Duality results and neessary onditions. For eah k = 1, 2, . . .we assume that(A4) There exists a nonempty set Xk ⊂ S(L) suh that for eah x ∈ Xkthe relation(2.1) Lx̃ = ∇Fk(x)implies that x̃ ∈ Xk and the sets Xk, ∇Fk(Xk) are relatively weaklyompat in D(S) and Y , respetively.It follows easily that Xk ⊂ L−1∇Fk(Xk).We now an make a onvexity assumption:(A5) Fk is onvex and lower semiontinuous on conv(Xk) (the onvex hullof Xk) for all k = 0, 1, 2, . . . .Hene we may de�ne a onvex and l.s.. funtional on the whole spae:

Gk(x) =

{
Fk(x) for x ∈ conv(Xk),

+∞ otherwise.We put
Xd

k = S(Xk).



Semilinear Dirihlet problems 131Of ourse, Xd
k ⊂ S(D(L)) and Xd

k is nonempty and relatively weakly om-pat in Y . Sine Fk = Gk for all x ∈ Xk, we may onsider the equation
Lx = ∇Gk(x)instead of (1.2) on Xk.We assume throughout this setion that (A1)�(A5) are satis�ed.Due to the above remarks, the ation funtional Jk : D(S) → R for whih(1.2) is the Euler�Lagrange equation reads

Jk(x) = 1
2〈Sx, Sx〉 − Gk(x).and the dual funtional JDk

: D(S) → R is given by the formula
JDk

(p) = G∗

k(Sp) − 1
2〈p, p〉,where G∗

k : Y → R denotes the Fenhel�Young onjugate of Gk : Y → R(see [1℄). Jk will be onsidered on Xk, and JDk
on Xd

k . It is obvious that JDkis di�erent from the funtional Jk
D(p) = F ∗

k (Sp) − 1
2〈p, p〉, but they oinideon Xd

k .Now we relate the ritial values on Xk and Xd
k to Jk and JDk

respe-tively.Theorem 2.1.
inf

x∈Xk

Jk(x) = inf
p∈Xd

k

JDk
(p).Proof. De�ne the perturbation JDk,p

: Xd
k × Y → R of JDk

by
JDk,p

(p, c) = 1
2〈p + c, p + c〉 − G∗

k(Sp).Now we de�ne a type of onjugate of JDk,p
with respet to c:

J
#
Dk,p

(p, x) = sup
c∈Y

{
〈c, Sx〉 − 1

2〈p + c, p + c〉
}

+ G∗

k(Sp).By the properties of Fenhel�Young duality [1℄, we have
J

#
Dk,p

(p, x) = G∗

k(Sp) + 1
2〈Sx, Sx〉 − 〈Sp, x〉.We observe that for any p ∈ Xd

k ,(2.2) inf
x∈Xk

J
#
Dk,p

(p, x) = JDk
(p).Indeed, �x p∈Xd

k . For a given p∈Xd
k there exists xp ∈ Xk satisfying Sxp = p.We then have 〈xp, Sp〉 − 1

2〈Sxp, Sxp〉 = 1
2〈p, p〉 and sine Xk ⊂ D(L) ⊂ Y ,

1
2〈p, p〉 = 〈xp, Sp〉 − 1

2〈Sxp, Sxp〉 ≤ sup
x∈Xk

{
〈x, Sp〉 − 1

2〈Sx, Sx〉
}

≤ sup
v∈Y

{
〈v, p〉 − 1

2〈v, v〉
}
≤ 1

2〈p, p〉Therefore we have (2.2).



132 M. GalewskiNow we observe that for any x ∈ Xk,(2.3) inf
p∈Xd

k

J
#
Dk,p

(p, x) = Jk(x).Indeed, again �x x ∈ Xk. By de�nition of Xd
k there exists px ∈ Xd

k suhthat Sx̃ = px, where x̃ ∈ Xk is suh that Lx̃ = ∇Gk(x). It follows that
Spx = ∇Gk(x) and by the properties of the Fenhel�Young onjugate weget Gk(x) + G∗

k(px) = 〈x, px〉. In onsequene
〈x, Spx〉 − G∗

k(Spx) − 1
2〈Sx, Sx〉 = Gk(x) − 1

2〈Sx, Sx〉 = −Jk(x).and (2.3) follows.Now by (2.2) and (2.3) we get
inf

p∈Xd
k

JDk
(p) = inf

p∈Xd
k

inf
x∈Xk

J
#
Dk,p

(p, x) = inf
x∈Xk

inf
p∈Xd

k

J
#
Dk,p

(p, x) = inf
x∈Xk

Jk(x).We use the results of duality theory to derive the variational prinipleproviding neessary onditions for the existene of a solution to equation(1.2).Theorem 2.2.Assume that pk∈Xd
k is suh that JDk

(pk)=infp∈Xd
k
JDk

(p).Then there exists xk ∈ Xk suh that
Sxk = pk,(2.4)
Spk = ∇Gk(xk).(2.5)Moreover ,(2.6) inf

p∈Xd
k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).Proof. For pk ∈ Xd
k there exists xk ∈ Xd

k suh that Sxk = pk. So (2.4)holds. Hene and by the Fenhel�Young inequality we obtain
−JDk

(pk) = 1
2〈pk, pk〉 − G∗

k(Spk) = 〈pk, Sxk〉 −
1
2〈Sxk, Sxk〉 − G∗

k(Spk)

≤ −1
2〈Sxk, Sxk〉 + Gk(xk) = −Jk(xk).So JDk

(pk) ≥ Jk(xk). By Theorem 2.1 it follows that JDk
(pk) ≤ Jk(xk).In onsequene, Gk(xk) + G∗

k(Spk) − 〈Spk, xk〉 = 0. By standard onvexityarguments we now get (2.5).Relation (2.6) follows by Theorem 2.1, sine JDk
(pk) = Jk(xk).We shall show that the above results with suitable modi�ations are validfor minimizing sequenes. These will be used in the proof of the existenetheorem.Theorem 2.3. Let {pj

k}
∞

j=1 ⊂ Xd
k be a minimizing sequene for JDk

.There exists a sequene {xj
k}

∞

j=1 ⊂ Xk minimizing for J and suh that(2.7) x
j
k = S−1p

j
k



Semilinear Dirihlet problems 133for j ∈ N. Furthermore
inf

p∈Xd
k

JDk
(p) = inf

j∈N

JDk
(pj

k) = inf
x∈Xk

J(x) = inf
j∈N

J(xj
k).Moreover for any ε > 0 there exists j0 suh that for all j ≥ j0,(2.8) 0 ≤ Gk(x

j
k) + G∗

k(Sp
j
k) − 〈xj

k, Sp
j
k〉 ≤ ε.Proof. Sine p

j
k ∈ Xd

k for j ∈ N, there exists x
j
k ∈ Xk suh that (2.7)holds. We will show that {xj

k}
∞

j=1 is a minimizing sequene for JDk
. Reason-ing as in the proof of Theorem 2.2 we get by (2.7) and the Fenhel�Younginequality, for any j ∈ N,(2.9) JDk

(pj
k) ≥ Jk(x

j
k).Take arbitrary ε > 0. Sine −∞ < infj∈N JDk

(pj
k) = a < ∞, there exists j0suh that JDk

(pj
k) < a+ε for all j ≥ j0. By (2.9) it follows that Jk(x

j
k) < a+εfor j ≥ j0. Now Theorem 2.1 yields infj∈N Jk(x

j
k) = a. In onsequene,

{xj
k}

∞

j=1 is a minimizing sequene for Jk.Relation (2.8) follows from Theorem 2.1. Indeed, for eah ε > 0 thereexists j0 suh that for all j ≥ j0,
JDk

(pj
k) < a + ε = inf

l∈N

JDk
(pl) + ε = inf

l∈N

Jk(xl) + ε ≤ Jk(x
j
k) + ε.Using (2.9) we get (2.8).3. Existene of solutionsTheorem 3.1. There exists a pair (xk, pk) ∈ D(L)×S(D(L)) suh that(3.1) Sxk = pk,(3.2) Spk = ∇Gk(xk),(3.3) inf

p∈Xd
k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).Moreover , xk is the limit (weak in D(S)) of a minimizing sequene {xj
k}

∞

j=1for the restrition of Jk to Xk, and pk is the limit (weak in D(S)) of aminimizing sequene {pj
k}

∞

j=1 for the restrition of JDk
to Xd

k .Proof. By the Fenhel�Young inequality and by de�nition of Xd
k it followsthat JDk

is bounded from below on Xd
k and thus we an hoose a minimizingsequene p

j
k whih may be assumed (by (A4) and the de�nition of Xk) to beweakly onvergent in D(S) to a ertain pk, and therefore by (A3) stronglyonvergent in Y . By Theorem 2.3 we an hoose a minimizing sequene

{xj
k}

∞

j=1 satisfying(3.4) Sx
j
k = p

j
k



134 M. Galewskiand, up to a subsequene, weakly onvergent in D(S) and strongly onver-gent in Y . We denote its limit by xk ∈ D(S). Sine S−1 is ontinuous, by(3.4) we get limj→∞ S−1p
j
k =S−1pk =xk strongly in Y . Hene we have (3.1).We observe that(3.5) Jk(pk) = inf

p∈Xd
k

JDk
(p).

Indeed, G∗

k being onvex is lower semiontinuous, so lim infj→∞ G∗

k(Sp
j
k) ≥

G∗

k(Spk). Sine p
j
k is strongly onvergent in Y , we get limj→∞

1
2〈p

j
k, p

j
k〉 =

1
2〈pk, pk〉. Hene JDk

is weakly lower semiontinuous on D(S) and (3.5) fol-lows.We now show that (pk, xk) also satis�es (3.2). By Theorem 2.3 (relation(2.8)), there exists a numerial sequene {εn}
∞

n=1, εn > 0, εn → 0, havingthe property: for eah εn there exists jn suh that 0 ≤ Gk(x
j
k) + G∗

k(Sp
j
k) −

〈xj
k, Sp

j
k〉 ≤ ε for all j ≥ jn. We may assume that jn → ∞ as n → ∞.Therefore we obtain

0 ≥ lim inf
j→∞

(Gk(x
j
k) + G∗

k(Sp
j
k) − 〈xj

k, Sp
j
k〉)

≥ lim inf
j→∞

Gk(x
j
k) + lim inf

j→∞

G∗

k(Sp
j
k) − lim

j→∞

〈xj
k, Sp

j
k〉

≥ Gk(xk) + G∗

k(Spk) − 〈xk, Spk〉.From the above and the Fenhel�Young inequality we obtain Gk(xk) +
G∗

k(Spk) − 〈xk, Spk〉 = 0. Hene (3.2) follows by onvexity arguments. By(3.5) and by Theorem 2.1, relation (3.3) follows.Now we get the followingCorollary 3.2. Let Xk be weakly ompat. There exists a pair (xk, pk)
∈ Xk × Xd

k suh that
Sxk = pk, Spk = ∇Gk(xk),

inf
p∈Xd

k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).

Moreover , xk is the limit (weak in D(S)) of a minimizing sequene {xj
k}

∞

j=1for the restrition of Jk to Xk, and pk is the limit (weak in D(S)) of aminimizing sequene {pj
k}

∞

j=1 for the restrition of JDk
to Xd

k .4. Stability result. We assume (A1)�(A4) and(A6) There exists a weakly ompat onvex set B ⊂ Y suh that Xk ⊂ Band ∇Gk is uniformly bounded on B.(A7) Fk is onvex and lower semiontinuous on B for eah k = 0, 1, 2, . . . .d



Semilinear Dirihlet problems 135Sine all sets Xk are now relatively weakly ompat, this assumption isnot very restritive. We e�ne as before a onvex and l.s.. funtional on thewhole spae for k = 0, 1, 2, . . . by
Gk(x) =

{
Fk(x) for x ∈ B,

+∞ otherwise.By stability we mean onditions under whih from a sequene {xk}
∞

k=1,where xk for k = 1, 2, . . . is a solution to (1.2), one may hoose a subse-quene onverging weakly to a ertain x whih is a solution to the problem
Lx = ∇G0(x). Here we mean that limk→∞ xk = x weakly in D(S) and
limk→∞∇Gk(x) = ∇G0(x) weakly in Y for any x ∈ B, up to subsequenes.Theorem 4.1. Assume (A1)�(A4), (A6), (A7) and that for any x ∈ Bthere is a subsequene kj suh that

lim
j→∞

∇Gkj
(x) = ∇G0(x)weakly in Y . Then for eah k = 0, 1, 2, . . . there exists a solution xk to (1.2),and there exists a subsequene {xki
}∞i=1 of {xk}

∞

k=1 and x ∈ D(L) suh that
lim
i→∞

xki
= x weakly in D(S), strongly in Y.Moreover

Lx = ∇G0(x).Proof. From Theorem 3.1 it follows that for eah k = 1, 2, . . . there existsa pair (xk, pk) ∈ D(L) × S(D(L)) suh that(4.1) Sxk = pk, Spk = ∇Gk(xk).Due to assumption (A6) we may hoose from {xk}
∞

k=1 a subsequene weaklyonverging in Y whih we still denote by {xk}
∞

k=1. Now by (4.1) and by theboundedness of∇Gk (see (A7)) it follows that {xk}
∞

k=1 is, up to subsequene,strongly onvergent in D(S) to a ertain x by (A3). The sequene {pk}
∞

k=1is, up to a subsequene, weakly onvergent in D(S) and strongly onvergentin Y . We denote its limit by p. In the following we denote all the resultingsubsequenes by the subsript ki for simpliity. Take a subsequene {ki}
∞

i=1suh that limi→∞∇Gki
(x) = ∇G0(x) weakly.We will now prove that

Sx = ∇G0(x).By onvexity of Gki
we get, for any x ∈ Y ,
〈∇Gki

(xki
) −∇Gki

(x), xki
− x〉 ≥ 0.Hene by Theorem 3.1,

〈Lxki
+ (∇G0(x) −∇Gki

(x)) −∇G0(x), xki
− x〉 ≥ 0.



136 M. GalewskiSine xki
→ x strongly in Y and ∇Gki

(x) ⇀ ∇G0(x) weakly in Y we easilyobtain
〈(∇G0(x) −∇Gki

(x)) −∇G0(x), xki
− x〉 → 〈−∇G0(x), x − x〉.Moreover 〈Lxki

,−x〉 → 〈Lx,−x〉 sine L is selfadjoint. It remains to observethat 〈Lxki
, xki

〉 = 〈Spki
, xki

〉 → 〈Sp, x〉. Hene(4.2) 〈Sp −∇G0(x), x − x〉 ≥ 0for any x ∈ D(L).Now we apply the �Minty trik�, i.e. we onsider the points x+ tx, where
x ∈ D(L) and t > 0. By the above inequality we obtain

〈Sp −∇G0(x + tx), x〉 ≤ 0.Sine the funtion [−1, 1] ∋ t 7→ G0(x + tx) ∈ R is onvex, its derivative
[−1, 1] ∋ t 7→ 〈∇G0(x + tx), x〉 ∈ R is ontinuous. Hene

0 ≥ lim
t→0

〈Sp −∇G0(x + tx), x〉 = 〈Sp −∇G0(x), x〉for any x ∈ D(L). As D(L) is dense in Y , this means that Sp = ∇G0(x).We need to prove that Sx = p. We again apply the Minty trik. Obviously
〈Lxki

−Lx, xki
−x〉 ≥ 0 for any x ∈ D(L). Moreover 〈Spki

−Lx, xki
−x〉 ≥ 0and taking the limit we get

〈Sp − Lx, x − x〉 ≥ 0.Now by onsidering points x+tx for any x ∈ D(L) we obtain −〈Sp−Lx, x〉−
t〈Lx, x〉 ≥ 0. Hene taking the limit as t → 0 we get

〈Sp − Lx, x〉 ≤ 0for any x ∈ D(L). Thus Sp = Lx and the proof is �nished.5. Appliations. In this setion we give some appliations to onreteproblems. We shall hek eah time that (A1)�(A4) and (A6)�(A7) are sat-is�ed.5.1. Existene and stability of solutions for a sixth order Dirihlet prob-lem. We onsider the problem de�ned in the Introdution, i.e. the family ofDirihlet problems for k = 0, 1, 2, . . . ,

(5.1) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, x),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where we de�ne L = − d6

dt6
x + d4

dt4
x − d2

dt2
x + 2x and assume (F1)�(F3).We observe that eah Fk is onvex and l.s..Theorem 5.1. Under assumptions (F1)�(F3), for any k = 0, 1, 2, . . .there exists a solution to the Dirihlet problem (5.1).



Semilinear Dirihlet problems 137Proof. Fix k. We shall show that all assumptions of Theorem 3.1 aresatis�ed. First of all we observe that (A1) and (A3) hold by de�nition of
L2(0, π) and by the Poinaré inequality. (A2) follows by the assumptionson Fk. To show (A4) we need to onstrut a suitable set Xk. We de�ne
Xk =

{
x ∈ H2

0 (0, π) ∩ H3(0, π) : x(t) ∈ [−dk, dk] a.e. on [0, π],

∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d and −

d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x ∈ L∞(0, T )

}
.We take any u ∈ Xk. A solution to

(5.2) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, u),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,obviously exists. Moreover by a diret alulation using the Poinaré inequal-ity and the fat that the derivative of a onvex funtion is nondereasing weget
π\
0

∣∣∣∣
d3

dt3
x

∣∣∣∣
2

dt ≤

π\
0

(
−

d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t)

)
x(t) dt

=

π\
0

∇Fk(t, u(t))x(t) dt ≤ ess sup
t∈[0,T ]

|∇Fk(t, d)|

π\
0

∣∣∣∣
d3

dt3
x

∣∣∣∣
2

dt.

Hene ∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d.So by Sobolev's inequality we get

|x(t)| ≤ max
s∈[0,π]

|x(s)| ≤

√
π

12

∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤ d.Thus x ∈ Xk and we may put Xk = Xk. Of ourse Xk and Fk(Xk) are rel-atively weakly ompat in H3(0, π) and L2(0, π). Hene all the assumptionsof Theorem 3.1 are satis�ed and we infer the existene of solutions to theDirihlet problem (5.1).The set B (see (A6)) may due to (F1) be given by B = X0. Therefore(A6), (A7) are satis�ed. Now by Theorem 4.1 we easily obtain Theorem 1.1.5.2. Dependene on parameters. We now onsider a similar problem butonentrate on the ontinuous dependene on parameters for the Dirihlet
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(5.3) −

d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇F (t, x(t), u(t)),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where u : [0, π] → R
m is a funtional parameter from the set

LM = {u : [0, π] → R
m : u is measurable, u(t) ∈ M a.e.}and M ⊂ R

m is a given ompat set. We also assume:(Fp1) There exist numbers d ≤ d0 suh that
∇F(t, d, u),∇F(t,−d, u),∇F(t, d0, u),∇F(t,−d0, u) ∈ L∞(0, T )for all u ∈ LM .(Fp2) F,∇F : [0, T ] × [−d, d] × M are Carathéodory funtions, F is on-tinuously di�erentiable and onvex with respet to the seond vari-able in [−d0, d0] for a.e. t ∈ [0, T ] and equals +∞ outside [0, T ] ×
[−d0, d0]; for all u ∈ LM ,

ess sup
t∈[0,T ]

|∇F(t, d, u)| ≤

√
12

π
d, ess sup

t∈[0,T ]
|∇F(t,−d, u)| ≤

√
12

π
d.(Fp3) ∇F(t, 0, u) 6= 0 for a.e. t ∈ [0, T ] and all u ∈ LM ; t 7→ F (t, 0, u) and

t 7→ F ∗(t, 0, u) are integrable for all u ∈ LM .We have the following theorem whih is a diret onsequene of Theo-rem 4.1.Theorem 5.2. Assume that (Fp1)�(Fp3) hold and that {uk}
∞

k=1 ⊂ LMwith uk → u in L2(0, π). For eah k = 1, 2, . . . there exists a solution xk toproblem (5.3) and there exists a subsequene {xki
}∞i=1 of {xk}

∞

k=1 and x ∈ X0suh that limi→∞ xki
= x strongly in L2(0, π) and

−
d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t) = ∇F (t, x(t), u(t)).Proof. By the Krasnosel'ski�� theorem we get

∇F (·, x(·), uk(·)) →
k→∞

∇F (·, x(·), u(·))strongly in L2(0, π). Hene Theorem 4.1 applies with
Fk(·, x(·)) = F (·, x(·), uk(·)).

Referenes[1℄ I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.



Semilinear Dirihlet problems 139[2℄ M. Galewski, New variational priniple and duality for an abstrat Dirihlet prob-lem, Ann. Polon. Math. 82 (2003), 51�60.[3℄ �, Stability of solutions for an abstrat Dirihlet problem, ibid. 83 (2004), 273�280.[4℄ D. Idzak, Stability in semilinear problems, J. Di�erential Equations 162 (2000),64�90.[5℄ T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.[6℄ F. Li, Q. Zhang and Z. Liang, Existene and multipliity of solutions of a kind offourth order boundary value problem, Nonlinear Anal. 62 (2005), 803�816.[7℄ J. Mawhin, Problèmes de Dirihlet variationnels non linéaires, Presses Univ. deMontréal, 1987.[8℄ J. Mawhin and M. Willem, Critial Point Theory , Springer, New York, 1989.[9℄ A. Nowakowski and A. Rogowski, On the new variational priniples and duality forperiodi solutions of Lagrange equations with superlinear nonlinearities, J. Math.Anal. Appl. 264 (2001), 168�181.[10℄ �, �, Dependene on parameters for the Dirihlet problem with superlinear non-linearities, Topol. Methods Nonlinear Anal. 16 (2000), 145�160.[11℄ S. Walzak, On the ontinuous dependene on parameters of solutions of the Dirih-let problem. Part I. Coerive ase, Part II. The ase of saddle points, Bull. Cl. Si.Aad. Roy. Belgique 6 (1995), 247�273.[12℄ �, Continuous dependene on parameters and boundary data for nonlinear P.D.E.Coerive ase, Di�erential Integral Equations 11 (1998), 35�46.[13℄ Q. Yao, Existene, multipliity and in�nite solvability of positive solutions to a non-linear fourth-order periodi boundary value problem, Nonlinear Anal. 63 (2005),237�246.Faulty of MathematisUniversity of �ód¹Banaha 2290-238 �ód¹, PolandE-mail: galewski�math.uni.lodz.pl Reeived 23.9.2005and in �nal form 16.11.2005 (1610)


