Graphs with multiple sheeted pluripolar hulls

by EVGENY POLETSKY (Syracuse, NY) and JAN WIEGERINCK (Amsterdam)

Abstract. We study the pluripolar hulls of analytic sets. In particular, we show that hulls of graphs of analytic functions can be multiple sheeted and sheets can be separated by a set of zero dimension.

1. Introduction. One of the oldest interesting topics in complex analysis is the problem of analytic extensions: find the maximal analytic object containing a given one. For example, if f is an analytic function we are looking for its analytic continuation and if A is an irreducible analytic set we try to find another one of the same dimension containing A.

The counterpart of an analytic extension in pluripotential theory is the so-called *pluripolar hull*. There are two types of pluripolar hulls of a set A in a domain $D \subset \mathbb{C}^n$. Let PSH(D) be the set of all plurisubharmonic functions on D and $\text{PSH}_0(D)$ the set of all negative functions from PSH(D). Define

$$A_D^* = \{ z \in D : \forall h \in \text{PSH}(D) \ h|_A = -\infty \Rightarrow h(z) = -\infty \},\$$

$$A_D^- = \{ z \in D : \forall h \in \text{PSH}_0(D) \ h|_A = -\infty \Rightarrow h(z) = -\infty \}.$$

For example, if A is an analytic set in a pseudoconvex domain D, then every point of A has a neighborhood V where $A \cap V = \{h_1 = \cdots = h_k = 0\}$ and the functions h_k are holomorphic on this neighborhood. Hence $A \cap V =$ $\{\log \max\{|h_1|, \ldots, |h_k|\} = -\infty\}$. In fact, $A_D^* = A$, because by [2, Cor. 1] there even exists $v \in PSH(D)$ such that $A = \{v = -\infty\}$.

If such a $v \in PSH(D)$ exists for A, we call A pluricomplete in D. In general, an analytic extension of A is contained in A_D^* .

In the case when $A = \Gamma_f$ is the graph of an analytic function f it was conjectured in [9] that the closure of the analytic extension of A coincides

²⁰⁰⁰ Mathematics Subject Classification: Primary 32U15; Secondary 32D15.

Key words and phrases: pluripotential theory, pluripolar hulls.

The first author was partially supported by an NSF grant.

with A_D^* . However, A. Edigarian and the second author found in [3] an analytic function f on the unit disk \mathbb{D} that does not extend analytically while the pluripolar hull of its graph is the graph of an analytic function defined on almost the whole plane (cf. [11]). Thus pluripolar hulls and analytic extensions may differ by large sets.

The pluripolar hull of the graph Γ_f of a holomorphic function f(z) on a domain D may well be multi-sheeted over D. The principal value of \sqrt{z} on $\{\Re z > 0\}$ provides the easiest example. Only recently did Zwonek [12], and, independently, Edlund and Jöricke [6], give examples of holomorphic functions f on their *domain of existence* D with the property that the pluripolar hull $(\Gamma_f)^*_{\mathbb{C}^2}$ is multi-sheeted over (parts of) D. In all these examples the topological codimension of ∂D is 1.

As we show in Section 2, this is an intrinsic property of analytic extensions: Let E be a closed subset of \mathbb{C}^{n+1} and A be an analytic set of pure dimension n in $\mathbb{C}^{n+1} \setminus E$. If the set $A^*_{\mathbb{C}^{n+1}}$ is analytic, then dim $E \geq 2n-1$. However, as we also show, there is a Cantor type set K and a holomorphic function f(z) on $D = \mathbb{C} \setminus K$ such that $(\Gamma_f)^*_{\mathbb{C}^2}$ is 2-sheeted over D. So for pluripolar extensions sheets can be separated by a 0-dimensional cut and this demonstrates another principal difference between analytic extensions and pluripolar hulls.

As a by-product we obtain an example of a uniformly convergent sequence of holomorphic functions such that their pluripolar hulls do *not* converge to the pluripolar hull of the limit.

The set K should be sufficiently fat. Edigarian and the second author showed that if $D = \mathbb{C} \setminus K$, with K a polar compact set in \mathbb{C} , and if f is not extendible over K, then $(\Gamma_f)_{\mathbb{C}^2}^* \cap D \times \mathbb{C} = \Gamma_f$; see [4], and [5] for the fact that also over K the hull is at most single sheeted.

2. Pluripolar extensions. Let E be a closed set in a pseudoconvex domain $D \subset \mathbb{C}^n$. If $A \subset D \setminus E$ then, in general, $A^*_{D \setminus E}$ is a proper subset of $A^*_D \setminus E$. However, as the following statement shows, these sets coincide when E is pluripolar.

PROPOSITION 2.1. If E is a closed pluripolar set in a pseudoconvex domain $D \subset \mathbb{C}^n$ and $A \subset D \setminus E$, then $A_D^* \setminus E = A_{D \setminus E}^*$.

Proof. Let $\{D_j\}$ be an increasing sequence of relatively compact subdomains with $\bigcup_j D_j = D$. By [10, Thm. 2.4], $A_D^* = \bigcup_j (A \cap D_j)_{D_j}^-$. If $u \in \text{PSH}_0(D_j \setminus E)$, then u extends as a negative plurisubharmonic function to D_j (see [8, Thm. 2.9.22]). Therefore, $(A \cap D_j)_{D_j}^- \setminus E = (A \cap D_j)_{D_j \setminus E}^-$. Since $(A \cap D_j)_{D_j \setminus E}^- \subset A_{D \setminus E}^*$, we see that $A_D^* \setminus E \subset A_{D \setminus E}^*$ and, consequently, $A_D^* \setminus E = A_{D \setminus E}^*$. The proposition below describes the situation when E is a closed set in a pseudoconvex domain $D \subset \mathbb{C}^n$, $A \subset D \setminus E$ is an analytic set and A_D^* is also analytic.

PROPOSITION 2.2. Suppose that E is a closed set in a pseudoconvex domain $D \subset \mathbb{C}^n$ and $A \subset D \setminus E$ is an analytic set. If the set A_D^* is analytic then every irreducible component of A_D^* contains a component of A of the same dimension.

Proof. Let X be an irreducible component of A_D^* . We represent A_D^* as $X \cup Y$, where Y is another analytic set in D and dim $X \cap Y < \dim X$. As indicated in Section 1, the set Y is pluricomplete and $Y_D^* = Y$. It is easy to check that if $F, G \subset D$, then $(F \cup G)_D^* = F_D^* \cup G_D^*$. So if $B = A \cap (X \setminus Y)$ then $X \setminus Y \subset B_D^*$.

Suppose that dim $X > \dim B$ and let R be the set of regular points of X. The set of singular points of X is analytic and, consequently, pluricomplete. By the argument above $X \setminus Y$ belongs to the pluripolar hull of the set $B' = B \cap R$.

We may assume that $0 \in R$ and let T be the tangent plane to R at 0. If p is a projection of \mathbb{C}^n on T, then the set p(B') is pluripolar in T and, consequently, there is a plurisubharmonic function u on T equal to $-\infty$ on p(B'). The set p(R) has a non-empty interior in T and, therefore, there is a point $z_0 \in R$ such that $u(p(z_0)) \neq -\infty$. Then the function $v = u \circ p$ is plurisubharmonic on \mathbb{C}^n , equal to $-\infty$ on B' and $v(z_0) > -\infty$. Thus R does not belong to the pluripolar hull of the set B'. This contradiction proves the proposition.

Suppose that A is a pluricomplete analytic set of pure dimension m in $D \setminus E$. If A_D^* is an analytic set in D and A is a proper subset of $A_D^* \setminus E$, then the set $E \cap A_D^*$ cuts A_D^* into several pieces and, therefore, its topological dimension must be at least 2m - 1.

For example, let $D = \{(z, w) \in \mathbb{C}^2\}$ and $E = \{\Im z = 0, \ \Re z \ge 0\}$. Take a branch w = f(z) of the function $w = \sqrt{z}$ over $\mathbb{C} \setminus E$ and let $A = \{(z, f(z)) : z \in \mathbb{C}\}$. The pluripolar hull of A in $\mathbb{C}^2 \setminus E$ is A because the function $\log |f(z) - z|$ is equal to $-\infty$ exactly on A. But $A_D^* = \{(z, w) : z = w^2\}$. In this example A_D^* is an analytic set and the set $A_D^* \cap E$ is the real curve $\{(x^2, x) : x \in \mathbb{R}\}$ which projects 2 to 1 except at 0 and its projection has dimension 1.

As the following statement shows, this is the minimal possible dimension.

PROPOSITION 2.3. Let E be a closed set in a pseudoconvex domain $D \subset \mathbb{C}^n$ and let A be an irreducible analytic set of dimension m in $D \setminus E$ such that A_D^* is also analytic. If p is a projection of \mathbb{C}^n onto $\mathbb{C}^m \subset \mathbb{C}^n$ such that

p(A) has a non-empty interior in \mathbb{C}^m and the topological dimension of p(E) is less than 2m - 1, then $A_D^* \setminus E = A$.

Proof. By Proposition 2.2 every irreducible component of A_D^* contains a component of A of the same dimension. Thus A_D^* is also irreducible and has dimension m. We denote by X the set of singular points of A_D^* . This set is analytic and its dimension is at most m - 1. Hence the set $Y = A_D^* \setminus X$ is an irreducible complex submanifold of $D \setminus X$. Let $X' \subset Y$ be the set where the restriction of the projection p to Y has rank less than m. Since p(A) has non-empty interior in \mathbb{C}^m , the set $Y' = Y \setminus X'$ is non-empty and relatively open in Y. The set X' is analytic and, therefore, its dimension is at most m - 1. Hence the set $Y' = A \cap Y'$ is a non-empty submanifold of $D \setminus (X \cup X')$ and the set $A' = A \cap Y'$ is a non-empty submanifold of $Y' \setminus E$ of dimension m.

Suppose that the topological dimension of p(E) is at most 2m - 2. The projection p is locally homeomorphic on Y' and, therefore, the set $E \cap Y'$ also has dimension at most 2m - 2. Since E is closed the set A' is relatively open in Y'. The set $Y'' = Y' \setminus (A' \cup E)$ is also relatively open in Y'. Thus Y' is a topological manifold of dimension 2m and equals the union of two open sets A' and Y'' and a closed set E of dimension at most 2m - 2. By the Urysohn–Menger Theorem a set of dimension 2m - 2 cannot disconnect a 2m-dimensional manifold (see [7, Ch. IV.5, Cor. 1]). Hence either A' or Y'' is empty. Since A' is not empty, $Y' \setminus E = A'$.

Since A is closed in $A_D^* \setminus E$, it contains $X \setminus E$ and $X' \setminus E$. So $A_D^* \setminus E = A$.

When A is an analytic set in $D \setminus E$ we denote by A_E the intersection of E and the closure of A in D. If $A_D^* \setminus E \neq A$, we will say that A has a non-trivial pluripolar extension through E in D.

The following theorem lists some limitations on the set A_E when a nontrivial pluripolar extension takes place. Following [1] we call a set G in a domain $Y \subset \mathbb{C}^p$ locally removable if G is closed and for every open set V in Yevery bounded holomorphic function f on $V \setminus G$ extends holomorphically to V.

THEOREM 2.4. Suppose that D is a pseudoconvex domain in \mathbb{C}^n , E is a closed set in D and A is an analytic set of pure dimension m in $D \setminus E$ with a non-trivial pluripolar extension through E in D. Then the (2m-1)-Hausdorff measure of the set A_E is not equal to zero and if, additionally, $p : \mathbb{C}^n \to \mathbb{C}^m$ is a projection such that the restriction $p|_{A_E}$ is proper and $A \cap p^{-1}(z)$ is empty for all $z \in p(A_E)$, then $p(A_E)$ is not locally removable in \mathbb{C}^m .

Proof. The set A is analytic in $D \setminus A_E$. If the (2m-1)-Hausdorff measure of E is zero, then by Shiffman's theorem (see [1, 4.4]) the closure \overline{A} of A in D is an analytic set in D. Since the domain D is pseudoconvex there is

a holomorphic function f on D such that $\overline{A} = \{f = 0\}$. Thus $A_D^* = \overline{A}$ and this contradicts the assumption that the extension is non-trivial.

In the second case, if $p(A_E)$ is locally removable in \mathbb{C}^m , then by the Proposition in [1, 18.1] the closure \overline{A} of A is an analytic set in D as before and the same argument leads to a contradiction.

In our main example, n = 2, m = 1. In this case Theorem 2.4 can be reformulated as follows:

COROLLARY 2.5. If in the assumptions of Theorem 2.4, n = 2 and m = 1, then the first Hausdorff measure of A_E is not zero and, under additional assumptions, the first Hausdorff measure of $p(A_E)$ is not zero.

3. A holomorphic function on the complement of a Cantor type set with 2-sheeted hull

DEFINITION 3.1. A Cantor type set K is a compact perfect subset of \mathbb{R} with empty interior.

It is a well known fact from elementary point set topology that such a K is homeomorphic to Cantor's middle thirds set. It is of the form $[a_0, b_0] \setminus \bigcup_{j=1}^{\infty} I_j$ where I_j are open intervals in $[a_0, b_0]$, $\overline{I}_j \cap \overline{I}_k = \emptyset$ if $j \neq k$ and $\bigcup_{j=1}^{\infty} I_j$ is dense in [a, b]. We can assume that the length of $I_j = (a_j, b_j)$ decreases with j.

It is useful to enumerate the set $\{a_j, b_j : j = 0, ..., n\}$ as $\{\alpha_{jn}, \beta_{jn}\}$ so that $\alpha_{0n} = a_0, \ \alpha_{jn} < \beta_{jn} < \alpha_{j+1,n}$ and $\beta_{nn} = b_0$. Note that $[a_0, b_0] \setminus \bigcup_{j=1}^n I_j = \bigcup_{j=0}^n [\alpha_{jn}, \beta_{jn}]$ and that $I_m \cap [\alpha_{jn}, \beta_{jn}] \neq \emptyset$ implies $I_m \subset [\alpha_{jn}, \beta_{jn}] \neq \emptyset$.

Let

$$g_n(z) = \frac{z - a_0}{z - b_0} \frac{z - b_1}{z - a_1} \cdots \frac{z - b_n}{z - a_n}.$$

Then

$$g_n(z) = \frac{z - \alpha_{0n}}{z - \beta_{0n}} \frac{z - \alpha_{1n}}{z - \beta_{1n}} \cdots \frac{z - \alpha_{nn}}{z - \beta_{nn}}$$

Each fraction $\frac{z-\alpha_{jn}}{z-\beta_{jn}}$, j = 0, 1, ..., n, has a holomorphic branch $\sqrt{\frac{z-\alpha_{jn}}{z-\beta_{jn}}}$ of its square root outside $[\alpha_{jn}, \beta_{jn}]$ that equals 1 at infinity. Let

(3.1)
$$f_n(z) = \sqrt{\frac{z - \alpha_{0n}}{z - \beta_{0n}}} \sqrt{\frac{z - \alpha_{1n}}{z - \beta_{1n}}} \cdots \sqrt{\frac{z - \alpha_{nn}}{z - \beta_{nn}}} = \sqrt{g_n(z)}.$$

Then $f_n(\infty) = 1$, $f_n^2 = g_n$ and f_n is holomorphic on $G_n = (\mathbb{C} \setminus [a_0, b_0]) \cup \bigcup_{j=1}^n I_j$.

The maximal analytic extension of f_n is a branched 2-sheeted cover $X_n = \{(z, w) : w^2 = g_n(z)\}$ of \mathbb{C} that branches over $\{a_j, b_j : j = 0, 1, \ldots, n\}$. The pluripolar hull $(\Gamma_{f_n})_{\mathbb{C}^2}^*$ equals X_n .

LEMMA 3.2. Keeping the above notation, the sequence $\{g_n\}$ converges normally to an analytic function g on $\mathbb{C} \setminus K$. Moreover, the function gextends analytically over a point $x \in K$ if and only if for some $\alpha < x < \beta$ the length of the set $K \cap (\alpha, \beta)$ is zero.

Proof. Let L be a compact set in $\mathbb{C} \setminus K$. Let us show that

(3.2)
$$\frac{z - a_0}{z - b_0} \prod_{j=1}^{\infty} \frac{z - b_j}{z - a_j} = \lim_{n \to \infty} g_n(z)$$

is uniformly convergent on L. There exists n_0 such that $L \subset G_n$ for $n > n_0$ and moreover, for some $\delta > 0$,

$$L \subset \{z : |z - a_j| > \delta, j = 0, 1, \dots\}.$$

Hence, for $z \in L$,

$$\left|\frac{z-b_j}{z-a_j}-1\right| = \left|\frac{b_j-a_j}{z-a_j}\right| \le \frac{b_j-a_j}{\delta}$$

Since $\sum (b_j - a_j)$ is finite, the product in (3.2) converges uniformly on L to a function g that is holomorphic on $\mathbb{C} \setminus K$.

Suppose that g extends analytically over a point $x \in K$ so that g is analytic on $(\mathbb{C} \setminus K) \cup (\alpha, \beta)$. We may assume that $\alpha \in I_k, b_k \leq x$, and $\beta \in I_m, a_m \geq x$, and

$$g_{1n}(z) = \prod \frac{z - \alpha_{jn}}{z - \beta_{jn}},$$

where the product runs over all j such that either $\beta_{jn} < \alpha$ or $\alpha_{jn} > \beta$. Let

$$g_{2n}(z) = \prod \frac{z - \alpha_{jn}}{z - \beta_{jn}}$$

where the product runs over all j such that $\alpha < \alpha_{jn}$ and $\beta_{jn} < \beta$. Then $g_n = g_{1n}g_{2n}$ and by the argument above the sequences $\{g_{1n}\}$ and $\{g_{2n}\}$ converge uniformly on compact in $\mathbb{C} \setminus (K \setminus (\alpha, \beta))$ and $\mathbb{C} \setminus (K \cap (\alpha, \beta))$ respectively. We denote their respective limits by g_1 and g_2 .

For the derivative of g_{2n} we find $g'_{2n}(\infty) = \sum (\beta_{jn} - \alpha_{jn}) = l_n$, where the sum runs over all j such that $\alpha < \alpha_{jn}$ and $\beta_{jn} < \beta$. Thus $g_{2n}(\infty)$ is equal to the length l_n of the intervals $(\alpha_{jn}, \beta_{jn})$ lying in (α, β) and $g'_2(\infty)$ is the length of the set $K \cap (\alpha, \beta)$. If this length is positive, then the function g_2 is not constant and, therefore, does not extend to $K \cap (\alpha, \beta)$.

If this length is 0 then for $z \in \mathbb{C}$ such that $|z - y| \ge 1$ for all $y \in (\alpha, \beta)$ we have

$$|1 - g_{2n}(z)| = \left|1 - \prod \left(1 + \frac{\beta_{jn} - \alpha_{jn}}{z - \beta_{jn}}\right)\right| \le e^{l_n} - 1.$$

Hence the sequence $\{g_{2n}\}$ converges to 1 near ∞ , $g_2 \equiv 1$ and g extends analytically over (α, β) .

LEMMA 3.3. If $f = f_K$ and the length of K is positive, then the union $\overline{\Gamma}_f \cup \overline{\Gamma}_{-f}$ of the closures of the graphs of f and -f is not an analytic set.

Proof. If $A = \overline{\Gamma}_f \cup \overline{\Gamma}_{-f}$ is an analytic set, then there is a holomorphic function h = h(z, w) on \mathbb{C}^2 such that $h \equiv 0$ on A. We have $A = \Gamma_f \cup \Gamma_{-f} \cup E$, where $E \subset K \times \mathbb{C}$.

Let us show that for every $z_0 \in K$ the analytic set $E_{z_0} = \{w : (z_0, w) \in E\}$ = $A \cap \{z_0\} \times \mathbb{C}$ consists of at most two points. If it contains three points, then at least two of them belong to, say, $\overline{\Gamma}_f$. Thus there are sequences $\{z_j\}$ and $\{z'_j\}$ converging to z_0 such that the sequences $\{f(z_j)\}$ and $\{f(z'_j)\}$ have distinct limits. Connecting each z_j and z'_j by small curves in $\mathbb{C} \setminus K$ and looking at their limits we see that the cluster set of f at z_0 contains a continuum. Hence, $E_{z_0} = \mathbb{C}$ and $h(z_0, w) \equiv 0$.

From the Taylor expansion of h we immediately derive that $h(z, w) = (z-z_0)^n h_1(z_0, w)$, where h_1 is holomorphic on \mathbb{C}^2 and $h_1(z_0, w) \neq 0$. But for every point $w \in \mathbb{C}$ there is a sequence of z_j converging to z_0 such that, say, $f(z_j)$ converges to w. Since $h(z_j, f(z_j)) = 0$ we see that $h_1(z_0, w) = 0$. This contradiction shows that E_{z_0} has at most two points and the intersection of $\overline{\Gamma}_f$ or $\overline{\Gamma}_{-f}$ with E consists of at most one point.

It follows that f extends continuously to K. Since K lies on the real line, f extends holomorphically to \mathbb{C} ; but this impossible by Lemma 3.2.

EXAMPLE 3.4. If the set K has Lebesgue measure 0, then

$$\lim_{n \to \infty} g_n(z) = 1$$

uniformly on any compact set L not meeting K. It follows that $f \equiv 1$ and $(\Gamma_f)_{\mathbb{C}^2}^* = \{(z,1)\}$. But the Hausdorff limit of the sets X_n over D equals $\{(z,w): w = 1 \text{ or } -1\}$.

We will need the next lemma, whose proof is similar to the proof of Theorem 2.1 in [4].

LEMMA 3.5. Let f be a holomorphic function on a domain $V \subset \mathbb{C}^N$ containing a closed ball B and let $\{r_n\}_n$ be a sequence of rational functions of degree n with poles outside V and such that the sup-norm $||f - r_n||_B^{1/n}$ tends to 0 as $n \to \infty$. Then there is a plurisubharmonic function v on \mathbb{C}^{N+1} such that $\{v = -\infty\} \cap (V \times \mathbb{C}) = \Gamma_f$. Thus, $(\Gamma_f)^*_{\mathbb{C}^{N+1}} \cap (V \times \mathbb{C}) = \Gamma_f$.

Proof. The functions r_n are ratios of polynomials p_n and q_n of degree n. We may assume that B is the closed unit ball centered at the origin and $||q_n||_B = 1$. Then $|q_n(z)| \le \max\{1, |z|^n\}, ||p_n||_B$ does not exceed some constant C and $|p_n(z)| \le C \max\{1, |z|^n\}$.

Consider the plurisubharmonic functions

$$u_n(z,w) = \frac{1}{n} \log |q_n(z)w - p_n(z)|$$

on \mathbb{C}^{N+1} . From the estimates on p_n and q_n there is a constant C_1 such that $u_n(z, w) \leq 2 \log |z| + \log |w| + C_1$ when $|z| \geq 1$ and $u_n(z, w) \leq \log |w| + C_1$ when $|z| \leq 1$.

We take $z_n \in B$ such that $q_n(z_n) = a_n$, $|a_n| = 1$. Let $w_n = (p_n(z_n)+1)/a_n$. Then $|w_n| \leq C+1$ and $u_n(z_n, w_n) = 0$. If B_n is a ball in \mathbb{C}^{N+1} centered at (z_n, w_n) and of radius $r_n = C+5$, then B_n contains the unit ball B' centered at the origin and

$$\int_{B_n} u_n \, dV \ge c u_n(z_n, w_n) = 0.$$

It is immediate from the upper estimates on u_n that there is a constant C_2 such that

$$\int_{B'} u_n \, dV \ge C_2.$$

By our assumption there is a sequence $\{d_n\}$ converging to ∞ such that

$$u_n(z, f_n(z)) = \frac{1}{n} \log |q_n(z)| + \frac{1}{n} \log \left| f(z) - \frac{p_n(z)}{q_n(z)} \right| \le -d_n$$

when $|z| \leq 1$.

Let us take a sequence $\{c_n\}$ of positive reals such that $\sum c_n = 1$ while $\sum c_n d_n = \infty$. Let

$$v(z,w) = \sum_{n=1}^{\infty} c_n \max\{u_n(z,w), d_n\}.$$

Since

$$\int_{B} v \, dV \ge C_2,$$

we see that $v \not\equiv -\infty$ and, therefore, it is a plurisubharmonic function on \mathbb{C}^{N+1} . Clearly, $v(z, f(z)) = -\infty$ when $|z| \leq 1$. Therefore, $v = -\infty$ on Γ_f .

The zeros of the polynomials q_n are in $\mathbb{C}^N \setminus V$. Hence the functions $h_n(z) = n^{-1} \log |q_n(z)|$ are harmonic on V and uniformly bounded above on compacta. So if $z \in V$ and $\liminf h_n(z) = -\infty$, then there is a subsequence $\{n_k\}$ such that $\lim h_{n_k}(z) = -\infty$. Therefore, the functions h_{n_k} converge to $-\infty$ uniformly on compacta in V. But $h_{n_k}(z_{n_k}) = 0$, and this contradiction tells us that $\liminf h_n(z) > -\infty$. So if $w \neq f(z)$, then

$$v(z,w) \ge \sum_{n=1}^{\infty} c_n h_n(z) + \sum_{n=1}^{\infty} \frac{c_n}{n} \log \left| w - \frac{p_n(z)}{q_n(z)} \right| > -\infty.$$

Hence $\{v = -\infty\} \cap (V \times \mathbb{C}) = \Gamma_f$ and $(\Gamma_f)^*_{\mathbb{C}^{N+1}} \cap (V \times \mathbb{C}) = \Gamma_f$.

Now we can present our main example.

THEOREM 3.6. There exists a Cantor type set K, obtained by deleting intervals $I_i = (a_i, b_i)$ from [-1, 1], such that the function $f = f_K$ given by Lemma 3.3 has the following property:

$$(\Gamma_f)^*_{\mathbb{C}^2} \cap (\mathbb{C} \setminus K) \times \mathbb{C} = \Gamma_f \cup \Gamma_{-f}.$$

Proof. We will construct K by deleting a sequence of open intervals (a_i, b_i) from the interval [-1, 1]. For convenience, set $a_0 = 1$, $b_0 = -1$. In order to choose the intervals appropriately, we have to construct certain subdomains D_n in the open unit disk \mathbb{D} in the process. The domains D_n will contain the set $\mathbb{D} \cap \{|\Im z| > 1/2\}$. Thus the closed discs $S = \{|z+3i/4| \le 1/8\}$ and $X = \{|z-3i/4| \le 1/8\}$ will be contained in D_n .

For a compact set F in a domain $D \subset \mathbb{C}$ let

$$\omega(z, F, D) = -\sup\{h(z) : h \in \mathrm{PSH}_0(D), \limsup_{w \to K} h(w) \le -1\}$$

be the harmonic measure of F in D. We set $D_0 = \mathbb{D}$ and observe that $\omega(z, S, D_0) > c_0$ for some positive c_0 .

Let $\{c_n\}$ be a sequence of positive real numbers converging to ∞ . Suppose that the intervals I_1, \ldots, I_n have been chosen. We take as a_{n+1} the midpoint of the largest interval in their complement. Next take $b_{n+1} > a_{n+1}$ so small that the interval $[a_{n+1}, b_{n+1}]$ does not intersect the intervals I_1, \ldots, I_n , $d_{n+1} = b_{n+1} - a_{n+1} < 4^{-(n+1)c_{n+1}}$ and, moreover,

$$\omega(z, S, D_{n+1}) > c_0, \quad z \in X.$$

Here we define $D_{n+1} = D_n \setminus \mathbb{D}(a_{n+1}, (b_{n+1} - a_{n+1})2^{n+1})$, where $\mathbb{D}(a, r)$ is the open disk centered at a and of radius r.

Observe that for $j \leq n$,

$$\left|\frac{z-b_j}{z-a_j}-1\right| = \left|\frac{d_j}{z-a_j}\right| < \frac{1}{2^j}$$

on D_n . It follows that

$$\prod_{j=1}^{n} \frac{z - b_j}{z - a_j}$$

is bounded on D_n independently of n.

Let $z_0 \in X$. We will show that $(z_0, -f(z_0)) \in (\Gamma_f)^*_{\mathbb{C}^2}$. Then Γ_{-f} is also in the hull and we are done. Consider the function \tilde{f}_n defined on $\mathbb{D} \setminus \bigcup_{i=1}^n I_i$ by

$$\widetilde{f}_n(z) = \begin{cases} f_n(z) & \text{if } \Im z < 0, \\ -f_n(z) & \text{if } \Im z > 0, \\ \lim_{y \uparrow 0} f(x+iy) & \text{if } x \in [-1,1] \setminus \bigcup I_j. \end{cases}$$

The function \tilde{f}_n is holomorphic. Let $c_n = \tilde{f}_n(z_0) + f_K(z_0)$. Then $c_n \to 0$ as $n \to \infty$. The functions $h_n = \tilde{f}_n - c_n$ tend to f_K uniformly on compact sets in $\mathbb{D} \cap \{\Im z < 0\}$ and $h_n(z_0) = -f_K(z_0)$.

Now let u be a plurisubharmonic function on \mathbb{C}^2 that equals $-\infty$ on Γ_f . The function $u(z, h_n(z))$ is subharmonic on the domain D_n , and because $h_n(z)$ is bounded on D_n independently of n, $u(z, h_n(z))$ is bounded by a constant M independently of n.

Next we apply the two constants theorem and find

(3.3)
$$u(z_0, -f_K(z_0)) \le M(1 - \omega(z_0, S, D_n) + \max_{z \in S} u(z, h_n(z))\omega(z_0, S, D_n) \to -\infty \quad \text{as } n \to \infty.$$

Hence, $(\Gamma_f)^*_{\mathbb{C}^2} \supset \Gamma_f \cup \Gamma_{-f}$.

To get the equality we will show that the sup-norm satisfies

$$\|g - g_n\|_L^{1/n} \to 0, \quad n \to \infty,$$

on compacta L outside K. For this we write

$$|g - g_n| = |g_n| \bigg| \prod_{k=n+1}^{\infty} \frac{z - a_k}{z - b_k} - 1 \bigg|.$$

The first factor is bounded by a constant C depending on L. To estimate the second factor we let δ be the distance from L to K and write the factor as

$$\left|\prod_{k=n+1}^{\infty} \left(1 + \frac{d_k}{z - b_k}\right) - 1\right| \le \prod_{k=n+1}^{\infty} \left(1 + \frac{d_k}{\delta}\right) - 1 \le \exp\left(\sum_{k=n+1}^{\infty} \frac{d_k}{\delta}\right) - 1.$$

Since $d_k < 4^{-kc_k}$ we see that

$$\left|\prod_{k=n+1}^{\infty} \frac{z-a_k}{z-b_k} - 1\right| \le \exp\left(\frac{4^{-nc_n}}{(1-4^{-c_n})\delta}\right) - 1.$$

Hence

$$\|g - g_n\|_L^{1/n} \le 2\left(\frac{C_L}{\delta}\right)^{1/n} 4^{-c_n}$$

when n is sufficiently large and

$$\|g - g_n\|_L^{1/n} \to 0, \quad n \to \infty.$$

By Lemma 3.5, $\Gamma_g^* = \Gamma_g$ in $\mathbb{C}^2 \setminus (K \times \mathbb{C})$. Thus for any (z_0, w_0) with $z_0 \in \mathbb{C} \setminus K$ and $w_0 \neq g(z_0)$, there is a function $u \in \text{PSH}(\mathbb{C}^2)$ such that $u|_{\Gamma_g} = -\infty$ and $u(z_0, w_0) \neq -\infty$. Then the function $v(z, w) = u(z, w^2)$ is equal to $-\infty$ on $\Gamma_f \cup \Gamma_{-f}$ and $v(z_0, \pm \sqrt{w_0}) \neq -\infty$. Hence $(\Gamma_f)^*_{\mathbb{C}^2} \cap (\mathbb{C} \setminus K) \times \mathbb{C} = \Gamma_f \cup \Gamma_{-f}$.

References

- E. M. Chirka, Complex Analytic Sets, Math. Appl. (Soviet Ser.) 46, Kluwer, Dordrecht, 1989.
- [2] M. Colţoiu, Complete locally pluripolar sets, J. Reine Angew. Math. 412 (1990), 108–112.

170

- [3] A. Edigarian and J. Wiegerinck, Graphs that are not complete pluripolar, Proc. Amer. Math. Soc. 131 (2003), 2459–2465.
- [4] —, —, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J. 52 (2003), 1663–1680.
- [5] —, —, Determination of the pluripolar hull of graphs of certain holomorphic functions, Ann. Inst. Fourier (Grenoble) 54 (2004), 2085–2104.
- T. Edlund and B. Jöricke, The pluripolar hull of a graph and fine analytic continuation, Ark. Mat., to appear; ArXiv:math.CV/0405025.
- [7] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton Math. Ser. 4, Princeton Univ. Press, Princeton, 1941.
- [8] M. Klimek, *Pluripotential Theory*, London Math. Soc. Monogr. 6, Clarendon Press, 1991.
- N. Levenberg, G. Martin and E. A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515–532.
- [10] N. Levenberg and E. A. Poletsky, *Pluripolar hulls*, Michigan Math. J. 46 (1999), 151–162.
- [11] J. Siciak, *Pluripolar sets and pseudocontinuation*, in: Complex Analysis and Dynamical Systems II (Nahariya, 2003), Contemp. Math. 382, Amer. Math. Soc., Providence, RI, 2005, 385–394.
- [12] W. Zwonek, A note on pluripolar hulls of graphs of Blaschke products, Potential Anal. 22 (2005), 195–206.

Department of Mathematics 215 Carnegie Hall Syracuse University Syracuse, NY 13244, U.S.A. E-mail: eapolets@syr.edu Korteweg-de Vries Institute for Mathematics University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam, The Netherlands E-mail: janwieg@science.uva.nl

Received 27.10.2005

(1645)