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Generalized m-quasi-Einstein metric within
the framework of Sasakian and K-contact manifolds

by Amalendu Ghosh (Chandannagar)

Abstract. We consider generalized m-quasi-Einstein metric within the framework of
Sasakian and K-contact manifolds. First, we prove that a complete Sasakian manifold
M admitting a generalized m-quasi-Einstein metric is compact and isometric to the unit
sphere S2n+1. Next, we generalize this to complete K-contact manifolds with m 6= 1.

1. Introduction. Einstein metrics [4] and their generalizations are
very much interesting both in mathematics and physics. One such im-
portant generalization is the so called Ricci solitons which are fixed points
of Hamilton’s Ricci flow: ∂

∂tgij = −2Sij up to diffeomorphisms and scal-
ings, and they correspond to self-similar solutions for this flow. In the
recent literature, we find the study of Riemannian manifolds admitting
Einstein-like metrics, which are natural generalizations of Einstein metrics
and Ricci solitons [7]. These include Ricci almost solitons (introduced and
studied by Pigola el al. [18]), m-quasi-Einstein metrics [8], and (m, ρ)-
quasi Einstein metrics [14]. In [9] Catino introduced and studied Rie-
mannian manifolds satisfying a more general structural equation that cov-
ers all the aforementioned examples as particular cases. These are known
as generalized quasi-Einstein manifolds. A smooth connected Riemannian
manifold (Mn, g) of dimension n > 2 is said to be a generalized quasi-
Einstein manifold if there exist three smooth functions f , α and β such
that

S +∇2f − αdf ⊗ df = βg,(1.1)

where S denotes the Ricci tensor ofM and∇2f is the Hessian of f . Catino [9]
proved a local classification of such metrics with harmonic Weyl conformal
curvature tensor.
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Generalized quasi-Einstein metrics generalize:

• Gradient Ricci solitons: α = 0 and β = λ ∈ R.
• Gradient Ricci almost solitons: α = 0 and β = λ ∈ C∞(M).
• m-quasi-Einstein metrics: α = 1/m, where m is a positive integer, and
β = λ ∈ R, introduced and studied by Case et al. [8]; they have natural
geometric interpretations with warped product Einstein metrics. For
m = 1 these include the static metrics, and have been studied in
depth for their connections to the positive mass theorem and general
relativity (see [1]).
• Generalized quasi-Einstein metrics: α = 1/m, where m is a positive

integer, and β = λ ∈ C∞(M). Existence of such metrics has been
confirmed by Barros and Ribeiro, Jr. [3]. For instance, the standard
unit sphere (Sn, g0) and Euclidean space (Rn, g0) belong to this class.
• (m, ρ)-quasi-Einstein metrics: α = 1/m, where m is a positive in-

teger, and β = ρr + λ with r the scalar curvature of g [14]. If r
is constant, then (m, ρ)-quasi-Einstein metrics reduce to the usual
m-quasi-Einstein metrics.

In this paper, we consider a particular case of a generalized quasi-Einstein
metric which is defined as follows:

Definition 1.1. A Riemannian manifold (M2n+1, g) is said to be a gen-
eralized m-quasi-Einstein-metric if there exist smooth functions f , λ and a
real constant m (0 < m ≤ ∞) such that

S +∇2f − 1

m
df ⊗ df = λg,(1.2)

where S +∇2f − 1
mdf ⊗ df is known as the m-Bakry–Emery Ricci tensor.

A generalized m-quasi-Einstein manifold Mn(g, f,m) is said to be trivial
if the potential function f is constant, and the triviality condition implies
that Mn is an Einstein manifold.

In this paper we expand our earlier work where we investigate rigidity
phenomena coming from generalizing the odd-dimensional Goldberg con-
jecture [13], which states that any compact K-contact Einstein manifold
is Sasakian, and was proven by Boyer and Galicki [6]. Now, one may gen-
eralize the aforementioned result in two ways. The first one is to keep
the Einstein condition and relax the hypothesis of K-contactness to con-
tact metric structure; or to keep K-contactness and relax the hypothesis
on the Einstein condition to either the gradient Ricci soliton [19], or the
gradient Ricci almost soliton [11], or the m-quasi-Einstein metric [12]. It
is interesting to note that the former is not possible, as was pointed out
by Apostolov–Drăghici–Moroianu [2], and in all the latter cases we found
that the manifold becomes Einstein and Sasakian provided it is complete.
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So, it would be relevant if we consider a generalized m-quasi-Einstein con-
dition in the framework of K-contact and Sasakian manifold in order to
generalize the results of Boyer–Galicki [6], Sharma [19] and the author
[11], [12].

Recently, the author proved that if a complete (m, ρ)-quasi-Einstein met-
ric represents a K-contact metric and m 6= 1, then it is trivial (Einstein) and
Sasakian. It is worth pointing out that any unit sphere S2n+1 with standard
contact metric admits a generalized m-quasi-Einstein metric and a gradient
Ricci almost soliton while it admits no (m, ρ)-quasi-Einstein metrics or m-
quasi-Einstein metrics (see [10]). Moreover in [11], the author proved that if
a compact K-contact metric represents a gradient Ricci almost soliton, then
it is isometric to a unit sphere S2n+1. Thus, the question may arise: Is the
aforementioned result true if one replaces gradient Ricci almost soliton by
generalized m-quasi-Einstein metric? Here, we prove that indeed the answer
to this question is affirmative, even if we relax the compactness hypothesis
to completeness.

The organization of this paper is as follows. In Section 2, we collect some
basic definitions and fundamental formulas for contact metric structures,
in particular for K-contact and Sasakian manifolds. Thereafter, we study
Sasakian manifolds M admitting a generalized m-quasi-Einstein metric, and
prove that M is locally isometric to S2n+1 provided M is complete. Next,
we study complete K-contact manifolds M admitting a generalized quasi-
Einstein metric, and prove that M is compact, Einstein, and Sasakian.

2. Preliminaries. We start by recalling basic definitions and collecting
some formulas for contact metric manifolds. Let M be a smooth Riemannian
manifold of dimension 2n + 1. Then M is said to be a contact manifold if
it has a global 1-form η such that η ∧ (dη)n is non-vanishing everywhere
on M . We call this 1-form a contact 1-form. For such a 1-form η there exists
a unit vector field ξ, called the Reeb vector field, such that η(ξ) = 1 and
dη(ξ, ·) = 0. Moreover, it is always possible to define a Riemannian metric
g and a (1, 1) tensor field ϕ such that

dη(X,Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2X = −X + η(X)ξ.

Clearly these equations also imply that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

A Riemannian manifold M2n+1 together with the structure (ϕ, ξ, η, g) is
said to be a contact metric manifold. The operator h = 1

2£ξϕ is known to
be symmetric and trace free. If the vector field ξ is Killing (equivalently
h = 0), then the contact metric manifold M is said to be K-contact. On a
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K-contact (Sasakian) manifold the following formulas are known [5]:

∇Xξ = −ϕX,(2.1)

Qξ = 2nξ,(2.2)

(∇Xϕ)Y = R(ξ,X)Y.(2.3)

A contact metric manifold is said to be Sasakian if

(2.4) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

On a Sasakian manifold the curvature tensor satisfies

(2.5) R(X,Y )ξ = η(Y )X − η(X)Y.

Also, the contact metric structure on M is said to be Sasakian if the al-
most Kähler structure on the metric cone (M × R+, r2g + dr2) over M is
Kähler. Sasakian manifolds are K-contact, and K-contact 3-manifolds are
Sasakian. For details about contact metric manifolds (including K-contact
and Sasakian ones), we refer to [5].

3. Main results. Before proving our main results we prove the following

Lemma 3.1. Let (M2n+1, g,m, λ) be a generalized quasi-Einstein mani-
fold. If g represents a K-contact metric, then

g(R(X,Y )Df, ξ) = g(QϕY,X)− g(QϕX,Y ) + 4ng(ϕX, Y )(3.1)

+
λ− 2n

m
[(Y f)η(X)− (Xf)η(Y )]

+ [(Xλ)η(Y )− (Y λ)η(X)],

m− 1

m
S(Y,Df) =

1

2
(Y r) +

2nλ− r
m

(Y f)− 2n(Y λ).(3.2)

Proof. We write equation (1.2) as

(3.3) ∇YDf +QY =
1

m
g(Y,Df)Df + λY,

where D is the gradient operator of g. Straightforward computations using
the well-known expression of the curvature tensor,

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ],

and the repeated use of equation (3.3), give

R(X,Y )Df = (∇YQ)X − (∇XQ)Y +
λ

m
[(Y f)X − (Xf)Y ](3.4)

+
1

m
[(Xf)QY − (Y f)QX] + [(Xλ)Y − (Y λ)X].

Next, differentiating (2.2) and using (2.1) gives

(3.5) (∇XQ)ξ = QϕX − 2nϕX.
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Taking the scalar product of (3.4) with ξ and recalling (3.5) and (2.2) gives
(3.1). To prove (3.2), we only need to take the trace of (3.4) over X. This
completes the proof.

Theorem 3.2. Let (M2n+1, g,m, λ) be a generalized quasi-Einstein man-
ifold. If g represents a Sasakian metric, then it is Einstein. If in addition
M is complete, then it is compact and isometric to the unit sphere S2n+1.

Proof. We know that on a Sasakian manifold, Q and ϕ commute, i.e.
Qϕ = ϕQ (see [5]). Therefore, equation (3.1) reduces to

g(R(X,Y )Df, ξ) = −2g(QϕX,Y ) + 4ng(ϕX, Y )

+
λ− 2n

m
[(Y f)η(X)− (Xf)η(Y )]

+ [(Xλ)η(Y )− (Y λ)η(X)].

Replacing X by ϕX, Y by ϕY , and noting that R(ϕX,ϕY )ξ = 0 (fol-
lows from (2.5)), we find that ϕQX = 2nϕX. Next, applying ϕ to the last
equation and then recalling (2.2) yields QX = 2nX. Hence M is Einstein.
Consequently, (3.3) reduces to

(3.6) ∇YDf =
1

m
g(Y,Df)Df + (λ− 2n)Y.

We now introduce a new function u = e−f/m on M . Then it follows that
Du = − u

mDf. From this we also have (see e.g. [8])

(3.7) ∇YDf −
1

m
g(Y,Df)Df = −m

u
∇YDu.

Combining (3.6) with (3.7) yields

(3.8) ∇YDu =
(2n− λ)u

m
Y.

Since M is Einstein, its scalar curvature is r = 2n(2n + 1). Consequently,
equation (3.2) transforms to (λ − 2n −m)Df = mDλ. By virtue of Du =
− u
mDf the foregoing equation reduces to

(λ− 2n−m)Du = −uDλ.
From this we can deduce that λDu + uDλ = (2n + m)Du, which can be
written as D(λu) = (2n+m)Du. In other words, λu = (2n+m)u+k, where
k is a constant. Making use of this in (3.8) we immediately infer that

∇YDu =

(
−u− k

m

)
Y.

We now apply Tashiro’s theorem [20]: “If a complete Riemannian manifold
Mn of dimension ≥ 2 admits a special concircular field ρ satisfying ∇∇ρ =
(−c2ρ+ b)g, then it is isometric to a sphere Sn(c2)” to conclude that M is
isometric to the unit sphere S2n+1.



38 A. Ghosh

Theorem 3.3. Let (M2n+1, g,m, λ) be a complete generalized quasi-
Einstein manifold. If g represents a K-contact metric and m 6= 1, then
it is compact, Einstein, Sasakian, and isometric to the unit sphere S2n+1.

Proof. Note that for a K-contact manifold, ξ is Killing, and hence
£ξQ = 0. In view of (2.1), this is equivalent to ∇ξQ = Qϕ − ϕQ. Next,
replacing X by ξ in (3.4) and taking into account the preceding equation
and (2.3), we get

−g((∇Y ϕ)X,Df) = g(ϕQY,X)− 2ng(ϕY,X)(3.9)

+
ξf

m
g(QY,X) +

[
ξλ− λ

m
(ξf)

]
g(Y,X)

+

[
λ− 2n

m

]
(Y f)η(X)− (Y λ)η(X).

Replacing X by ϕX and Y by ϕY in (3.9), adding the resulting equation to
(3.9) and then recalling the well-known formula (see [5, p. 95] or [17])

(∇Y ϕ)X + (∇ϕY ϕ)ϕX = 2g(Y,X)ξ − η(X)(Y + η(Y )ξ),

we obtain

−2(ξf)g(Y,X) + (Y f)η(X) + (ξf)η(Y )η(X) = g((Qϕ+ ϕQ)Y,X)

− 4ng(ϕY,X) +
ξf

m
g(QY − ϕQϕY,X) + 2

[
ξλ− λ

m
(ξf)

]
g(Y,X)

−
[
ξλ− λ

m
(ξf)

]
η(Y )η(X) +

λ− 2n

m
(Y f)η(X)− (Y λ)η(X).

Anti-symmetrizing the foregoing equation yields

(Y f)η(X)− (Xf)η(Y ) = 2g((Qϕ+ ϕQ)Y,X)− 8ng(ϕY,X)(3.10)

+
λ− 2n

m
[(Y f)η(X)− (Xf)η(Y )]

+ (Xλ)η(Y )− (Y λ)η(X).

Choosing X,Y ⊥ ξ in (3.10) provides

g((Qϕ+ ϕQ)Y,X) = 4ng(ϕY,X).

Clearly for any vector field X, X − η(X)ξ is orthogonal to ξ. Therefore,
replacing X by X − η(X)ξ and Y by Y − η(Y )ξ in the preceding equation,
we ultimately obtain

(3.11) (Qϕ+ ϕQ)Y = 4nϕY

for any vector field Y . In view of this, equation (3.10) transforms to

(3.12)
λ− 2n−m

m
{(Y f)η(X)− (Xf)η(Y )} = (Y λ)η(X)− (Xλ)η(Y ).
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Let σ = λ− 2n−m. Then Dσ = Dλ. Thus (3.12) takes the form

(3.13) σDf −mDσ = {σ(ξf)−m(ξσ)}ξ.
Taking covariant differentiation of (3.13) along X and using (2.1) gives

(Xσ)Df + σ∇XDf −m∇XDσ = X{σ(ξf)−m(ξσ)}ξ
−{σ(ξf)−m(ξσ)}ϕX.

Taking the inner product of this equation with Y and anti-symmetrizing
provides

(3.14) (Xσ)(Y f)− (Y σ)(Xf) = X{σ(ξf)−m(ξσ)}η(Y )

− Y {σ(ξf)−m(ξσ)}η(X) + 2{σ(ξf)−m(ξσ)}dη(X,Y ),

where we have used g(∇XDf, Y ) = g(∇YDf,X), which holds for any
smooth function f on M . Now (3.13) can be written as

Xσ =
σ

m
(Xf)− 1

m
{σ(ξf)−m(ξσ)}η(X).

Making use of this in (3.14), choosing X,Y ⊥ ξ and noting that dη 6= 0 (by
definition of contact metric structure), we get σ(ξf) − m(ξσ) = 0. Hence
from (3.13) we have

(3.15) (λ− 2n−m)(Xf) = m(Xλ).

Let {ea, ϕea, ξ}, a = 1, . . . , n, be a ϕ-basis of M such that Qea = σaea. Then
ϕQea = σaϕea. Taking ea instead of Y in (3.11) and using the foregoing
equations we obtain Qϕea = (4n− σa)ϕea. Computing the scalar curvature
r = g(Qξ, ξ) +

∑n
a=1[g(Qea, ea) + g(Qϕea, ϕea)] with the use of (2.2) we

get r = 2n(2n+ 1). By virtue of this and (3.15) one can deduce from (3.2)
that QDf = 2nDf , as m 6= 1. Differentiating this along an arbitrary vector
field X, recalling (3.3) and QDf = 2nDf , we obtain

(∇XQ)Df −Q2X + (λ+ 2n)QX − 2nλX = 0.

Contracting the foregoing equation over X, noting that the scalar curvature
is constant, we deduce |Q|2 = 2nr. By virtue of this and r = 2n(2n+ 1), we
compute∣∣∣∣Q− r

2n+ 1
I

∣∣∣∣2 = |Q|2 − 2r2

2n+ 1
+

r2

2n+ 1
= 2nr − r2

2n+ 1

= 4n2(2n+ 1)− 4n2(2n+ 1) = 0.

Since the length of the symmetric tensor Q − r
2n+1I vanishes, we must

have Q = r
2n+1I = 2nI. This shows that M is Einstein with Einstein con-

stant 2n. Since M is complete and Einstein, it is compact by Myers’ theo-
rem [15]. Thus applying the result of Boyer–Galicki [6], we conclude that M
is Sasakian. Finally, using the last theorem we complete the proof.
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In [11] the author proved that if a compact K-contact metric represents
a Ricci almost soliton, then it is locally isometric to S2n+1. But following
the proof of the above theorem, it is easy to observe that the above result
is true if one relaxes the compactness hypothesis to completeness. In fact,
we have the following

Corollary 3.4. Let M2n+1(ϕ, ξ, ξ, g) be a complete K-contact mani-
fold. If g represents a gradient Ricci almost soliton, then it is isometric to
a unit sphere.

Further, we remark that Theorem 3.3 also generalizes the following result
on K-contact manifolds admitting an m-quasi-Einstein metric.

Corollary 3.5. Let M2n+1(ϕ, ξ, η, g) be a complete K-contact man-
ifold. If g represents an m-quasi-Einstein metric and m 6= 1, then f is
constant and M is compact, Einstein, and Sasakian.

Remark 3.6. Examples of generalized quasi-Einstein structures on Sn

are given in [3]; the construction given there is valid for any m > 0.
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