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A criterion for pure unrectifiability of sets
(via universal vector bundle)

by Silvano Delladio (Trento)

Abstract. Let m,n be positive integers such that m < n and let G(n,m) be the
Grassmann manifold of all m-dimensional subspaces of Rn. For V ∈ G(n,m) let πV

denote the orthogonal projection from Rn onto V . The following characterization of purely
unrectifiable sets holds. Let A be an Hm-measurable subset of Rn with Hm(A) <∞. Then
A is purelym-unrectifiable if and only if there exists a null subset Z of the universal bundle
{(V, v) | V ∈ G(n,m), v ∈ V } such that, for all P ∈ A, one has Hm(n−m)({V ∈ G(n,m) |
(V, πV (P )) ∈ Z}) > 0. One can replace “for all P ∈ A” by “for Hm-a.e. P ∈ A”.

1. Introduction. Given a couple of positive integers n and m, with
m < n, let G(n,m) be the Grassmann manifold of all m-dimensional sub-
spaces of Rn. Then let E(n,m) denote the corresponding universal vector
bundle, i.e.

E(n,m) := {(V, v) | V ∈ G(n,m), v ∈ V }

(see [Mil, §5]). Recall that G(n,m) is a manifold of dimension k := m(n−m)
(see [Fed, 3.2.28], [Mil, Lemma 5.1]), hence E(n,m) has dimension k+m =
m(n + 1 − m). Thus we say that a subset of E(n,m) is “null” when its
Hk+m-measure is zero.

Consider the natural projection map

Π : G(n,m)× Rn → E(n,m), (V, P ) 7→ (V, πV (P )),

where πV is the orthogonal projection from Rn onto V . For P ∈ Rn define
ΠP : G(n,m)→ E(n,m) by

ΠP (V ) := Π(V, P ) = (V, πV (P )), V ∈ G(n,m).

Given a subset Z of E(n,m), let

ΣZ := {P ∈ Rn | Hk(Π−1
P (Z)) > 0}.
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This paper is devoted to proving the following characterization of pure un-
rectifiability.

Theorem 1.1. Let A be an Hm-measurable subset of Rn with Hm(A)
<∞. Then the following statements are equivalent.

(1) The set A is purely m-unrectifiable.
(2) There exists a null subset Z of E(n,m) such that A ⊂ ΣZ .
(3) There exists a null subset Z of E(n,m) such that Hm(A \ΣZ) = 0.

We will show that (1)⇒(2) follows from an easy argument based on the
celebrated criterion for pure unrectifiability, the Besicovitch–Federer projec-
tion theorem [Mat, Theorem 18.1]. So the main part of our work will be
proving (3)⇒(1) and more precisely the following result.

Theorem 1.2. If Z is a null subset of E(n,m) then ΣZ is purely m-
unrectifiable, that is,

Hm(ΣZ ∩ E) = 0

for every m-rectifiable subset E of Rn.

Other characterizations of pure unrectifiability, besides the Besicovitch–
Federer projection theorem mentioned above, can be found in [Mat, Corollary
15.20, Theorem 17.6] and in [KMM, Theorem 2.1].

2. Technical lemma

Lemma 2.1. Let u1, . . . , um be linearly independent vectors in Rn and let

G := {V ∈ G(n,m) | πV (u1) ∧ · · · ∧ πV (um) = 0}.

Then

(2.1) Hk(G) = 0

where k is the dimension of G(n,m), i.e. k := m(n−m).

Proof. Recall that G(n,m) is a connected real analytic variety and ob-
serve that G is the set of zeros of the analytic function

G(n,m)→ R, V 7→ ‖πV (u1) ∧ · · · ∧ πV (um)‖2,

which is nonconstant (it is nonzero on span{u1, . . . , um}, while it takes value
zero at any V orthogonal to u1). Then the conclusion follows easily from the
following well-known fact [Fed, 3.1.24]: If f is an analytic function whose
domain is a connected open subset A of Rk, then either f−1{0} = A or
Lk(f−1{0}) = 0.

Remark 2.2. The result stated in Lemma 2.1 can also be derived from
general theorems about the dimension of an analytic set (e.g. Propositions 15
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and 18 in [Nar, Ch. V] or Proposition 2 in [Lo, Sect. 18]). A sharp dimen-
sional argument can be obtained directly as follows. For i = 1, . . . , µ :=
min{m,n−m}, let

Gi := {V ∈ G(n,m) | dim(V0 ∩ V ⊥) = i}, V0 := span{u1, . . . , um},
G⊥i := {V ⊥ | V ∈ Gi} = {V ⊥ | V ∈ G(n,m), dim(V0 ∩ V ⊥) = i}

and observe that G is the set of V ∈ G(n,m) such that πV (u1), . . . , πV (um)
are linearly dependent. Hence

G =
{
V ∈G(n,m)

∣∣∣ πV ( m∑
j=1

xjuj

)
= 0 for some (x1, . . . , xm)∈Rm \ {0}

}
=
{
V ∈G(n,m)

∣∣∣ m∑
j=1

xjuj ∈ V ⊥ for some (x1, . . . , xm) ∈ Rm \ {0}
}

= {V ∈G(n,m) | V0 ∩ V ⊥ 6= {0}} =
µ⋃
i=1

Gi.

Since

• Gi and G⊥i have the same dimension;
• the set G⊥i can be viewed as a bundle over the Grassmannian mani-

fold of all i-dimensional subspaces of V0 with fiber the Grassmannian
manifold of all (n−m− i)-dimensional subspaces of V ⊥0 ,

we get

dim(Gi) = dimG(m, i) + dimG(n−m,n−m− i)
= i(m− i) + (n−m− i)i = i(n− 2i),

and an elementary computation shows that i(n−2i) < k for all i = 1, . . . , µ.
The subadditivity of Hk finally yields (2.1).

3. Proof of theorems

3.1. Proof of Theorem 1.2. By the definition of rectifiable set, it is
enough to show that

Hm(ΣZ ∩ ϕ(Ω)) = 0

for every 1-1 map ϕ : Ω := (0, 1)m → Rn of class C1 with bounded deriva-
tives. Without loss of generality, we can also suppose that

(3.1) Jϕ(ρ) := ‖D1ϕ(ρ) ∧ · · · ∧Dmϕ(ρ)‖ 6= 0

for all ρ ∈ Ω. Define the map

Φ(V, ρ) := (V, πV (ϕ(ρ)), ρ), (V, ρ) ∈ G(n,m)×Ω,
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and the following measurable subsets of G(n,m)×Ω:

E := Φ−1(Z ×Ω),
G := {(V, ρ) ∈ G(n,m)×Ω | πV (D1ϕ(ρ)) ∧ · · · ∧ πV (Dmϕ(ρ)) = 0},
H := E \G.

One has E = {(V, ρ) ∈ G(n,m)×Ω | (V, πV (ϕ(ρ))) ∈ Z}, hence

Eρ := {V ∈ G(n,m) | (V, ρ) ∈ E} = Π−1
ϕ(ρ)(Z)

for all ρ ∈ Ω. It follows that
�

ΣZ∩ϕ(Ω)

Hk(Π−1
P (Z)) dHm(P ) ≤

�

ϕ(Ω)

Hk(Π−1
P (Z)) dHm(P )(3.2)

=
�

Ω

Hk(Π−1
ϕ(ρ)(Z))Jϕ(ρ) dρ

=
�

Ω

Hk(Eρ)Jϕ(ρ) dρ.

Since

(Hk × Lm)(E) ≤ (Hk × Lm)(G(n,m)×Ω) ≤ Hk(G(n,m))Lm(Ω) <∞

Fubini’s theorem [Fed, 2.6.2] yields
�

E

Jϕ(ρ) d(Hk × Lm)(V, ρ) =
�

Ω

Hk(Eρ)Jϕ(ρ) dρ.

By (3.2) we get

(3.3)
�

ΣZ∩ϕ(Ω)

Hk(Π−1
P (Z)) dHm(P ) ≤

�

E

Jϕ(ρ) d(Hk × Lm)(V, ρ).

Observe that, for all ρ ∈ Ω, one has

Gρ := {V ∈ G(n,m) | (V, ρ) ∈ G}
= {V ∈ G(n,m) | πV (D1ϕ(ρ)) ∧ · · · ∧ πV (Dmϕ(ρ)) = 0}.

Since D1ϕ(ρ), . . . , Dmϕ(ρ) are linearly independent, by (3.1), we can apply
Lemma 2.1 to obtain

Hk(Gρ) = 0 for all ρ ∈ Ω.

By invoking Fubini’s theorem again, we get

(3.4) (Hk × Lm)(G) = 0.

Now, for V ∈ G(n,m), define

ZV := {v ∈ V | (V, v) ∈ Z}
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and

HV := {ρ ∈ Ω | (V, ρ) ∈ H}
= {ρ ∈ Ω | πV (ϕ(ρ)) ∈ ZV , πV (D1ϕ(ρ)) ∧ · · · ∧ πV (Dmϕ(ρ)) 6= 0}.

From (3.3), (3.4) and again by Fubini’s theorem, we obtain�

ΣZ∩ϕ(Ω)

Hk(Π−1
P (Z)) dHm(P ) ≤

�

H

Jϕ(ρ) d(Hk × Lm)(V, ρ)

=
�

G(n,m)

( �

HV

Jϕ(ρ) dρ
)
dHk(V ).

Then it remains to show that

(3.5) Lm(HV ) = 0 for Hk-a.e. V ∈ G(n,m).

To this end, observe that Hm(ZV ) = 0 for Hk-a.e. V ∈ G(n,m), by Fubini’s
theorem for Riemannian submersions [Sak, Ch. II, Theorem 5.6]. Then, ap-
plying [Fed, 3.2.3] with

f := πV ◦ ϕ, A := HV ,

and recalling that πV (ϕ(ρ)) ∈ ZV for all ρ ∈ ZV , we find that�

HV

‖πV (D1ϕ(ρ)) ∧ · · · ∧ πV (Dmϕ(ρ))‖ dρ =
�

Rn

N((πV ◦ ϕ)|HV , y) dHm(y)

=
�

ZV

N((πV ◦ϕ)|HV , y) dHm(y) = 0

for Hk-a.e. V ∈ G(n,m). Hence (3.5) follows immediately from the definition
of HV .

3.2. Proof of Theorem 1.1. (1)⇒(2). Consider the following measu-
rable subset of E(n,m):

Z := {(V, v) | V ∈ G(n,m), v ∈ πV (A)}.
Since

ZV := {v ∈ V | (V, v) ∈ Z} = πV (A)

for all V ∈ G(n,m), the Besicovitch–Federer projection theorem [Mat, Theo-
rem 18.1] yields Hm(ZV ) = 0 for Hk-a.e. V ∈ G(n,m). Hence Hk+m(Z) = 0
by Fubini’s theorem for Riemannian submersions [Sak, Ch. II, Theorem 5.6].
Moreover, for P ∈ A, one has

Π−1
P (Z) = {V ∈ G(n,m) | πV (P ) ∈ ZV }

= {V ∈ G(n,m) | πV (P ) ∈ πV (A)} = G(n,m).

Hence we finally obtain Hk(Π−1
P (Z)) > 0 for all P ∈ A, which concludes the

proof of (2).
(2)⇒(3) is trivial.
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(3)⇒(1). To see this, consider any m-rectifiable subset E of Rn. We will
show that Hm(E ∩A) = 0. Observe first of all that

A ∩ E = [(A \ΣZ) ∩ E] ∪ [(A ∩ΣZ) ∩ E] ⊂ (A \ΣZ) ∪ (ΣZ ∩ E),

hence
Hm(A ∩ E) ≤ Hm(A \ΣZ) +Hm(ΣZ ∩ E) = Hm(ΣZ ∩ E).

The conclusion now follows immediately from Theorem 1.2.
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