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Exact Schauder estimates of solutions of a boundary
value problem for parabolic second order equations and

their application to a nonlinear problem

by Mikhail Borsuk (Olsztyn)

Abstract. We establish exact Schauder estimates of solutions of the transmission
problem for linear parabolic second order equations with explicit dependence on the
smoothness of the coefficients. Next we apply the estimates to the solvability of the non-
linear transmission problem.

Introduction. In order to investigate the solvability of nonlinear bound-
ary value problems for elliptic or parabolic equations it is necessary to look
closer at the solutions of linear problems and obtain sharper estimates for
these solutions. Such estimates are said to be of Schauder type. However
it has turned out that usual estimates of Schauder type are sufficient only
for the proof of solvability for the Dirichlet problem as well as for problems
with semilinear boundary conditions. For other boundary value problems,
when the boundary conditions contain strong nonlinearities, it is essential
to derive exact a priori estimates of Schauder type for solutions of the cor-
responding linear problem with explicit dependence on the smoothness of
the coefficients of the linear problems (see [5, Chapt. X]). Such an estimate
was derived apparently for the first time by R. Caccioppoli and J. Schauder
(1934, see [7, Chapt. V]) for elliptic equations.

An exact a priori estimate of Schauder type for solutions of the linear
oblique derivative problem for elliptic second order equations with smooth
coefficients was derived by R. Fiorenza [3] and with discontinuous coefficients
by the author [1]. For parabolic equations only usual estimates of Schauder
type have been studied: in [4] for oblique derivative problems, in [6] for gen-
eral boundary value problems with smooth coefficients, and in [8] for dis-
continuous coefficients. An exact a priori estimate (in the above-mentioned
sense) for solutions of a parabolic boundary value problem for second order
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equations is proved here for the first time. The results of this paper were
announced without proofs in [2].

This paper consists of four sections. In Section 1 we collect some basic
definitions, notations, preliminaries and state our main results. Boundary
value problems are reduced to problems with zero initial data in Section 2.
Then we derive exact a priori local estimates of Schauder type (in Section 3
we give detailed estimates only near the interface). The explicit dependence
on the smoothness of coefficients of the linear problem in the exact Schauder
estimates enables us to prove in Section 4 a conditional existence theorem
for the general quasilinear problem in a composite domain. This theorem
states essentially that the general quasilinear problem is classically solvable
if there exist a priori estimates for its solutions in the space C(1,λ).

1. Preliminaries

1.1. Notations. We introduce the following notations and definitions:

• Em: the m-dimensional euclidean space of points x = (x′, xm), x′ =
(x1, . . . , xm−1);
• |x− y| = (

∑m
i=1(xi − yi)2)1/2;

• Em+1 = Em × (−∞,∞): the (m + 1)-dimensional euclidean space of
points (x, t);
•
√
|x− y|2 + |t− τ |: “parabolic” distance between two points (x, t) and

(y, τ) of Em+1;
• Ω ⊂ Em: a bounded domain with boundary ∂Ω;
• γ: the union of disjoint (m−1)-dimensional surfaces lying in the interior

of Ω and dividing it into a finite number of domains: Ω =
⋃N
q=1Ω

(q), where
the surfaces forming γ have no common points and do not intersect ∂Ω;
without loss of generality we assume N = 2 so that always q = 1, 2; we set

(1.1) r(γ, ∂Ω) ≡ inf
x∈γ, y∈∂Ω

|x− y| = r0;

• Ω(1): a domain lying inside of γ;

• Ω(1)
= Ω(1) ∪ γ, Ω(2) = Ω \ (Ω(1) ∪ γ), Ω

(2)
= Ω(2) ∪ γ ∪ ∂Ω;

• Γm(x, %): the m-dimensional ball in Em of radius % with centre at x;
• QT = Ω × (0, T ): a cylinder;
• Q(q)

T = Ω(q) × (0, T );
• Qt1,t2 = Ω × (t1, t2);
• Q(q)

t1,t2 = Ω(q) × (t1, t2);
• Ω = Ω ∪ ∂Ω;
• ΩT = Ω × [0, T ];

• Q(q)
T = Ω

(q) × [0, T ];
• γT = γ × (0, T ]: the lateral surface of the cylinder Q(1)

T ;
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• ∂TΩ = ∂Ω × (0, T ]: the lateral surface of the cylinder QT ;
• Π = {(y, t) ∈ Em+1 | ym = 0} ⊂ Em+1;
• ΠT = {(y, t) ∈ Em+1 | ym = 0, 0 < t < T} ⊂ Em+1;
• R+

T = {(y, t) ∈ Em+1 | ym > 0, 0 < t < T};
• R−T = {(y, t) ∈ Em+1 | ym < 0, 0 < t < T};
• E+

m+1 = {(y, t) ∈ Em+1 | ym > 0, t > 0};
• E−m+1 = {(y, t) ∈ Em+1 | ym < 0, t > 0};
• R+

t1,t2 = {(y, t) ∈ Em+1 | ym > 0, 0 < t1 < t < t2 ≤ T};
• R−t1,t2 = {(y, t) ∈ Em+1 | ym < 0, 0 < t1 < t < t2 ≤ T}.
• l, n: positive integers,
• 0 < λ < 1.

1.2. Domains. In what follows we suppose that Ω1, Ω are domains of
Lyapunov type and belong to the class A(n,λ), n ≥ 2. The latter, for example
for the domain Ω, means that there exists a number r1 > 0 such that
for every x ∈ ∂Ω the set ∂Ω ∩ Γm(x, r1) can be represented locally in
a system of coordinates (y1, . . . , ym) with centre at x in the form ym =
Z(y1, . . . , ym−1), where Oym coincides with the interior normal to ∂Ω at x
and Z is a function defined in the projection of ∂Ω ∩ Γm(x, r1) onto the
hyperplane Em−1, belongs to the class C(n,λ) and vanishes at x together
with its first order derivatives. We fix a number r∗ with

(1.2) 0 < r∗ ≤ min(r0/2, r1/2).

For fixed x∗ we put

(1.3)
Ω

(q)
∗ = Ω(q) ∩ Γm(x∗, r∗), γ∗ = γ ∩ Γm(x∗, r∗), x∗ ∈ γ;

Ω∗ = Ω ∩ Γm(x∗, r∗), ∂∗Ω = ∂Ω ∩ Γm(x∗, r∗), x∗ ∈ ∂Ω.
For convenience x∗ is assumed to coincide with the origin, and the Oxm-axis
with the interior normal to ∂Ω(1) (resp. ∂Ω). Then by definition γ∗ can be
represented by an equation

xm = ζ(x1, . . . xm−1), ζ ∈ C(n,λ),

and ∂∗Ω by an equation

xm = Z(x1, . . . xm−1), Z ∈ C(n,λ).

A local change of variables

(1.4)

{
ys = xs, s = 1, . . . ,m− 1,

ym = xm − ζ(x1, . . . xm−1),

or

(1.5)

{
ys = xs, s = 1, . . . ,m− 1,

ym = xm − Z(x1, . . . xm−1),
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defines a regular transformation which is invertible. Note that the Jacobians
of these transformations are equal to 1. The transformation (1.4) leads to
a one-to-one correspondence between Ω

(q)
∗ and a domain ∆(q) of the space

(y1, . . . , ym) ⊂ Em, and between γ∗ and a part σ of the hyperplane {xm=0}
⊂ Em. Similarly we define the domain ∆ as the image of Ω∗ under the
transformation (1.5), and the part Σ of the hyperplane {xm = 0} ⊂ Em as
the image of ∂∗Ω. Furthermore, every function of x is transformed by the
change of variables (1.4) or (1.5) into a function of y denoted by the same
letter with a bar above. We set

(1.6) j(y) =
(

1 +
m−1∑

s=1

ζ2
ys

)1/2
, J(y) =

(
1 +

m−1∑

s=1

Z2
ys

)1/2
.

An element of area of the surface γ (respectively ∂Ω) is then given by

(1.7) dσ = j(y)dy1 . . . dym−1, dΣ = J(y)dy1 . . . dym−1.

We denote by γi(x), respectively ni(x), i = 1, . . . ,m, the components of
the exterior normal to the surface γ (respectively ∂Ω) with respect to Ω(1)

(respectively Ω) at x. Then

(1.8) γi(x) = − 1
j(y)

∂ym
∂xi

, ni(x) = − 1
J(y)

∂ym
∂xi

, i = 1, . . . ,m.

1.3. Function spaces. For a domain Q ⊂ Em+1 and function u(x, t) we
define the quantities:

U0(Q) = max
(x,t)∈Q

|u(x, t)|, Ul(Q) =
∑

2i+j=l

max
(x,t)∈Q

|Di
tD

j
xu(x, t)|,

U0,λ(Q) = sup
(x,t),(y,t)∈Q

|u(x, t)− u(y, t)|
|x− y|λ + sup

(x,t),(x,τ)∈Q

|u(x, t)− u(x, τ)|
|t− τ |λ/2 ,

Ul,λ(Q) =
∑

2i+j=l

sup
(x,t),(y,t)∈Q

|Di
tD

j
xu(x, t)−Di

tD
j
xu(y, t)|

|x− y|λ

+
∑

0<l−2i−j+λ<2

sup
(x,t),(x,τ)∈Q

|Di
tD

j
xu(x, t)−Di

tD
j
xu(x, τ)|

|t− τ |(l−2i−j+λ)/2
.

We also introduce the function spaces:

• C(n,λ)(Q) ≡ C
(n,λ)(n/2,λ/2)
x t (Q): the Banach space of functions u(x, t)

continuous on Q with derivatives Di
tD

j
xu (2i + j ≤ n) uniformly Hölder

continuous and having finite norm ‖u‖ =
∑n
l=0 Ul + Un,λ,

• C(n,λ)
0 (Q) ≡ C

(n,λ)(n/2,λ/2)
0 x t (Q): the subspace of functions u(x, t) ∈

C(n,λ)(Q) that satisfy zero initial data: ∂ju
∂tj

∣∣
t=0 = 0, j = 0, 1, . . . , [n/2],
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• C
◦ (n,λ)

0 (Q): the subspace of functions in C(n,λ)
0 (Q) with compact support

in Q,
• u(x, t) = (u(1)(x, t), u(2)(x, t)): vector-functions defined on the cylinder

QT ,
•

(1.9) Ul = U (1)
l + U (2)

l , Ul,λ = U (1)
l,λ + U (2)

l,λ , 0 ≤ l ≤ n,

where U (q)
l ≡ Ul(Q

(q)
T ), U (q)

l,λ ≡ Ul,λ(Q
(q)
T ),

• C(n,λ)(QT ) ≡ C(n,λ)(Q
(1)
T ) +̇ C(n,λ)(Q

(2)
T ): the direct sum space of

vector-functions u(x, t) = (u(1)(x, t), u(2)(x, t)) with u(q) ∈ C(n,λ)(Q
(q)
T ),

having the finite norm

‖u‖ =
n∑

l=0

Ul + Un,λ.

• Let Ω ∈ A(n,λ) and let ϕ(x, t) be a function defined on the lat-
eral surface ∂TΩ of the cylinder QT . We define the space C(n,λ)(∂TΩ) ≡
C

(n,λ)(n/2,λ/2)
x t (∂TΩ) as the set of functions ϕ(x, t) with finite norm Φ0(∂TΩ)

+ Φn,λ(∂TΩ), where Φn,λ has the analogous meaning to Un,λ. It is known
that ϕ(x, t) can be extended to QT (if n ≥ 1) so that the extended function
belongs to C(n,λ)(QT ∪ ∂TΩ); moreover, by means of the same construc-
tion this extension can be made for all functions ϕ ∈ C(n,λ)(∂TΩ) so that
the norms Φ0(QT ∪ ∂TΩ) +Φn,λ(QT ∪ ∂TΩ) and Φ0(∂TΩ) +Φn,λ(∂TΩ) are
equivalent. In view of this, saying that ϕ ∈ C(n,λ)(∂TΩ), n ≥ 1, implies that
ϕ ∈ C(n,λ)(QT ∪ ∂TΩ).

• If Q(1)
T ∈ A(n,λ), the function χ(x, t) is given on the surface γT and

χ(x, t) ∈ C(n,λ)(γT ), this will mean that there exist functions χ(q)(x, t) ∈
C(n,λ)(Q(q)

T ∪ γT ), q = 1, 2, such that χ(x, t) = χ(1)(x, t)|γT − χ(2)(x, t)|γT ,
where

χ(q)(x, t)|γT = lim
Q

(q)
T 3(y,τ)→(x,t)∈γt

χ(q)(y, τ), q = 1, 2.

For f = (f (1), f (2)) the symbol [f ]γT = f (1)|γT − f (2)|γT will denote the
jump of the function f when crossing γT .
• If a vector-function ω(x) is defined on Ω, then we shall consider it in

the space C(n,λ)(Ω) with the norm Ω0 +Ωn,λ.

We now state some inequality for the above introduced quantities.

Lemma 1.1 (see [6, Chapt. II, Lemma 3.2]). Suppose that the domain Ω
satisfies the cone condition, that is, for every point ξ ∈ ∂Ω there exists a
finite right circular cone K with vertex ξ and some altitude d > 0 such that
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K ∩Ω = ξ. Then for any u(x, t) ∈ C(n,λ)(QT ) we have

(1.10)
Ul = O(δn−l+λUn,λ + δ−lU0),

Ul,λ = O(δn−lUn,λ + δ−(l+λ)U0), 0 ≤ l ≤ n,
for any δ ∈ (0,min(d,

√
T )), where the estimating constants depend only on

l, n, λ, m and on the solid angle of the cone K.

Lemma 1.2 (cf. [7, (33)] and [4, estimates (5)–(10)]). Let Ω ∈ A(n,λ). For
all functions u(x, t) ∈ C(2,λ)(QT ) the following inequalities hold uniformly :

Ul = O(U
1

2+λ

2,λ U
2−l+λ
2+λ

0 + U0), 0 < l ≤ 2,(1.11)

Ul,λ = O(U
l+λ
2+λ
2,λ U

2−l
2+λ
0 + U0), 0 < l ≤ 2,(1.12)

where the estimating constants depend only on Ω and T .

Proof. If l = 1, then (1.11) follows from [7, (33.8)]. Let l = 2. In view of
[7, (33.3)], we have

max
t∈[0,T ]

∣∣∣∣
∂u

∂t

∣∣∣∣ = O
{[

sup
t,t′∈[0,T ]

|Dtu(x, t)−Dtu(x, t′)|
|t− t′|α

] 1
1+α

[ max
t∈[0,T ]

|u(x, t)|] α
1+α

+
1
T

max
t∈[0,T ]

|u(x, t)|
}
, ∀x ∈ Ω, α =

λ

2
,

whence it follows that

max
(x,t)∈QT

∣∣∣∣
∂u

∂t

∣∣∣∣ = O(U
2

2+λ

2,λ U
λ

2+λ
0 + U0).

This inequality together with [7, (33.8)] gives (1.11).
We now prove inequality (1.12). Let l = 1 and let Dxu denote the partial

derivative of u(x, t) with respect to any space variable. Then

|Dxu(x, t)−Dxu(x, t′)|
|t− t′|λ2

=
[ |Dxu(x, t)−Dxu(x, t′)|

|t− t′| 1+λ
2

] λ
1+λ

|Dxu(x, t)−Dxu(x, t′)| 1
1+λ ,

whence

(1.13) sup
(x,t),(x,t′)∈QT

|Dxu(x, t)−Dxu(x, t′)|
|t− t′|λ2

= O(U
λ

1+λ

2,λ U
1

1+λ
1 ).

Applying Young’s inequality with p = (1+λ)2

λ(2+λ) , p
′ = (1+λ)2, we deduce from

(1.13) and (1.11) with l = 1 that

(1.14) sup
(x,t),(x,t′)∈QT

|Dxu(x, t)−Dxu(x, t′)|
|t− t′|λ2

= O(U
1+λ
2+λ
2,λ U

1
2+λ
0 + U0).
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Let us now fix δ ∈ (0,
√
T ]. For any x ∈ Ω the following is trivial:

|u(x, t)− u(x, t′)|
|t− t′| 1+λ

2

≤
{
|Dtu(x, τ)|t<τ<t′ | · |t− t′|

1−λ
2 ≤ δ1−λU2, |t− t′| ≤ δ2,

δ−(1+λ) osct u(x, t), |t− t′| ≥ δ2.

Hence

(1.15) sup
(x,t),(x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′| 1+λ

2

≤ min
δ∈(0,

√
T ]
θ(δ),

where θ(δ) = max(δ1−λU2, δ
−(1+λ) supx∈Ω osct u(x, t)). By the trivial in-

equalities

sup
x∈Ω

osct u(x, t) ≤ TU2, sup
x∈Ω

osct u(x, t) ≤ 2U0,

we have

δ−(1+λ) sup
x∈Ω

osct u(x, t) = δ−(1+λ)(sup
x∈Ω

osct u(x, t))
1+λ

2 (sup
x∈Ω

osct u(x, t))
1−λ

2

≤ (δ−1
√
T )1+λU

1+λ
2

2 (2U0)
1−λ

2

and hence, θ(δ) achieves a minimum at δ =
√
T , i.e.

min
δ∈(0,

√
T ]
θ(δ) = U

1+λ
2

2 (2U0)
1−λ

2 .

Consequently, by (1.15) we have

(1.16) sup
(x,t),(x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′| 1+λ

2

= O(U
1+λ

2
2 U

1−λ
2

0 ).

From (1.16) and (1.11) for l = 2 we obtain

(1.17) sup
(x,t),(x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′| 1+λ

2

= O{U
1+λ
2+λ

2,λ U
1

2+λ
0 + U0}.

Inequalities (1.14), (1.17) together with [7, (33.9)] imply (1.12) if l = 1.
Finally, if l = 0 we have

(1.18)
|u(x, t)− u(x, t′)|

|t− t′|λ2
=
( |u(x, t)− u(x, t′)|

|t− t′| 1+λ
2

) λ
1+λ

|u(x, t)−u(x, t′)| 1
1+λ ,

therefore by (1.12) for l = 1 we get

sup
(x,t),(x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′|λ2

= O(U
λ

1+λ

1,λ U
1

1+λ
0 )(1.19)

= O(U
λ

2+λ
2,λ U

2
2+λ
0 + U0).

This together with [7, (33.9)] proves (1.12) for l = 0. Lemma 1.2 is proved.
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1.4. Local cylinders. We define local neighbourhoods of the surface γT .
For 0 < τ < T , 0 < t1 < t2 < T we put:

• Q(q)
∗τ = Ω

(q)
∗ × (0, τ ], Q

(q)
∗t1,t2 = Ω

(q)
∗ × (t1, t2), q = 1, 2;

• γ∗τ = γ∗ × (0, τ ], γ∗t1,t2 = γ∗ × (t1, t2);

• Q∗τ = Q
(1)
∗τ ∪Q(2)

∗τ ∪ γ∗τ , Q∗t1,t2 = Q
(1)
∗t1,t2 ∪Q

(2)
∗t1,t2 ∪ γ∗t1,t2

(here the domains with a star are defined by (1.3)). By means of the local
transformation (1.4) we find the images of these sets:

(1.20)
p(q)
τ = ∆(q) × (0, τ ], p

(q)
t1,t2 = ∆(q) × (t1, t2), q = 1, 2,

στ = σ × (0, τ ], σt1,t2 = σ × (t1, t2).

We consider domains that are symmetric with respect to the (m − 1)-
dimensional hyperplane {ym = 0} ⊂ Em:

∆̃(q) ⊆ ∆(q), q = 1, 2, ∂∆̃(1) ∩ ∂∆̃(2) = σ

and the corresponding sets

p̃(q)
τ = ∆̃(q) × (0, τ ], p̃

(q)
t1,t2 = ∆̃(q) × (t1, t2), q = 1, 2,

p̃τ = p̃(1)
τ ∪ p̃(2)

τ ∪ στ , τ ∈ (0, T ),(1.21)

p̃t1,t2 = p̃
(1)
t1,t2 ∪ p̃

(2)
t1,t2 ∪ σt1,t2 , 0 < t1 < t2 < T.

We also consider an infinite set of pairs of points P0 = (P (1)
0 , P

(2)
0 ) with

P
(q)
0 = (y(q)

0 ) ∈ ∆̃(q) which are symmetric with respect to σ and where
P

(q)
0 ∈ ∆̃(q), q = 1, 2, can be set in correspondence with each point P ′0 =

(y′0, 0, 0) ∈ σ. We put

(1.22) N = (∂∆̃(1)∩∂∆̃(2))\σ, Nτ = N×(0, τ ], Nt1,t2 = N×(t1, t2).

For each P0 = (P (1)
0 , P

(2)
0 ) with P

(q)
0 ∈ ∆̃(q) \ N (q = 1, 2), we put

(1.23) r(P0,N ) = 4d(P0), κd(P0) = %, ∀κ ≤ κ0 < 1

where r(P0,N ) = infP∈N P0P denotes the distance from P0 = (y0, 0) to
the set N , and by the symmetry of ∆̃(1) and ∆̃(2) we have r(P0,N ) =
r(P (1)

0 ,N ) = r(P (2)
0 ,N ). We fix a number k > 3 and denote by Γm(P0, k%)

the pair of m-dimensional hyperspheres

Γm(P0, k%) = {Γm(P (1)
0 , k%), Γm(P (2)

0 , k%)}.

It is easy to see that Γm(P (1)
0 , k%) ∩ σ = Γm(P (2)

0 , k%) ∩ σ. If kκ < 4 then
by (1.23), Γm(P0, k%) has points in common with ∂∆̃(1) ∪ ∂∆̃(2) only on σ.
The set of these points forms a hypersphere of dimension m− 1 with centre
at P ′0. Its radius is denoted by νd(P ′0).
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Now we define

(1.24)

c(q)(β)
τ = p̃

(q)
τ ∩ {Γm(P0, βd(P0))× [0, τ ]},

c
(q)(β)
t1,t2 = p̃

(q)
t1,t2 ∩ {Γm(P0, βd(P0))× [t1, t2]},

σ(β)
τ = {σ ∩ Γm(P0, βd(P0))} ∩ [0, τ ],

σ
(β)
t1,t2 = {σ ∩ Γm(P0, βd(P0))} ∩ [t1, t2], ∀β, 0 < β < 4.

Later on we shall distinguish three kind of cylinders in the neighbourhood
of the surface σT :

(1) the cylinders c(κ)
τ , c(kκ)

τ that adjoin the surfaces ∆̃(q), στ ; these cylin-
ders are sets from (1.24) if % > r(P0, σ);

(2) the cylinders c(κ)
t1,t2 , c(kκ)

t1,t2 that adjoin only the surface σt1,t2 and do
not have common points with the hyperplane {t = 0}; they are obtained
from (1.24) if % > r(P0, σ), t2 > t1 > 0;

(3) the cylinders c(κ)
τ , c(kκ)

τ that adjoin the lower base of the cylinder
QT , i.e. the set {t = 0}, and do not have common points with στ ; they are
sets from (1.24) if k% < r(P0, σ).

Similarly, we consider local cylinders of three kinds in the neighbourhood
of the surface ∂TΩ.

If v(y, t) ∈ C(n,λ)(QT ), then for any point P0 = (P (1)
0 , P

(2)
0 ) with P (q)

0 ∈
p̃

(q)
τ \Nτ , q = 1, 2, and any number β ∈ (0, 4) and integer l ∈ [0, n] we define

(1.25)
V

(q)(β)
(τ)l = V

(q)
l (c(q)(β)

τ ), V
(q)(β)
(τ)l,λ = V

(q)(β)
l,λ (c(q)(β)

τ ),

V(β)
(τ)l = V

(1)(β)
(τ)l + V

(2)(β)
(τ)l , V(β)

(τ)l,λ = V
(1)(β)
(τ)l,λ + V

(2)(β)
(τ)l,λ .

If ϕ(y, t) ∈ C(n,λ)(Π), then for any point P ′0 ∈ σ we set

(1.26) Φ
(β)
(τ)l(P

′
0) = Φl(σ(β)

τ (P ′0)), Φ
(β)
(τ)l,λ(P ′0) = Φl,λ(σ(β)

τ (P ′0)).

Similarly, we define the quantities V (β)
(t1,t2)l, V

(β)
(t1,t2)l,λ. If ω(x) ∈ C(n,λ)(Ω),

then for any point P0 ∈ ∆̃ we put:

Ω
(q)(β)
l = Ω

(q)
l {∆̃(q) ∩ Γm(P0, βd(P0))},

Ω
(q)(β)
l,λ = Ω

(q)
l,λ {∆̃(q) ∩ Γm(P0, βd(P0))},(1.27)

Ω
(β)
l = Ω

(1)(β)
l +Ω

(2)(β)
l , Ω

(β)
l,λ = Ω

(1)(β)
l,λ +Ω

(2)(β)
l,λ .

Later on we shall choose the number κ0 < 1 from (1.23) so that kκ < 4,
ν ≤ 3.
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Finally, we define the following quantities provided that τ = t2−t1 = %2:

d0 = sup d(P0),

B
(q)(κ)
2 = sup %2V

(q)(κ)
2 , B

(q)(κ)
2,λ = sup %2+λV

(q)(κ)
2,λ ,(1.28)

B(κ)
2 = B

(1)(κ)
2 +B

(2)(κ)
2 , B(κ)

2,λ = B
(1)(κ)
2,λ +B

(2)(κ)
2,λ

(here the sup is taken over all points P0 = (P (1)
0 , P

(2)
0 ) with P (q)

0 ∈ ∆̃(q) \N ,
q = 1, 2). For the above-defined quantities the following assertions are valid.

Lemma 1.3 (cf. [7, Chapt. VIII, §33]). If kκ < 4 then

(1.29) B(kκ)
2,λ = O{k2+λ(B(κ)

2,λ + B(κ)
2 )}

uniformly with respect to κ.

Proof. We prove (1.29) e.g. for the quantities that are defined on the
cylinders c(kκ)

τ . Covering the base of the cylinder c(q)(kκ)
τ by a finite number

nq of balls Γm of radius % = κd(P0) we have

sup
P

(q)
0 ∈∆̃(q)\N

(k%)2+λ sup
(y,t),(y,t)∈c(q)(kκ)

τ (P (q)
0 )

|D2
yv

(q)(y, t)−D2
yv

(q)(y, t)|
|y − y|λ

≤ sup
P

(q)
0 ∈∆̃(q)\N

(k%)2+λ sup
∀y,y:|y−y|≤%,

t∈[0,τ ]

|D2
yv

(q)(y, t)−D2
yv

(q)(y, t)|
|y − y|λ

+ sup
P

(q)
0 ∈∆̃(q)\N

(k%)2+λ sup
∀y,y:|y−y|>%,

(y,t),(y,t)∈c(q)(kκ)
τ (P (q)

0 )

|D2
yv

(q)(y, t)−D2
yv

(q)(y, t)|
|y − y|λ

≤ k2+λB
(q)(κ)
2,λ + k2+λ sup

P
(q)
0 ∈∆̃(q)\N

%22 sup
(y,t)∈c(q)(kκ)

τ (P (q)
0 )

|D2
yv

(q)(y, t)|

= O{k2+λ(B(q)(κ)
2,λ + 2B(q)(κ)

2 )}, q = 1, 2,

sup
P

(q)
0 ∈∆̃(q)\N

(k%)2+λ sup
(y,t),(y,t′)∈c(q)(kκ)

τ (P (q)
0 )

|D2
yv

(q)(y, t)−D2
yv

(q)(y, t′)|
|t− t′|λ/2

≤ nqk2+λB
(q)(κ)
2,λ , q = 1, 2.

Similarly, we estimate the remaining quantities that define B(q)(κ)
2,λ . Sum-

ming the resulting inequalities over q = 1, 2, we get (1.29).

Lemma 1.4 (cf. [7, Chapt. VIII, §33]). For any closed domain πτ ⊂ p̃τ \
Nτ such that dist(p̃τ ,Nτ ) = δ > 0, if κ < 4, then

(1.30) V2,λ(πτ ) = O{(κδ)−(2+λ)(B(κ)
2,λ + 2B(κ)

2 )}.
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Proof. We cover the base of the cylinder π(q)
τ with a finite number nq of

balls Γm of radius % = κd(P (q)
0 ) with centre at P (q)

0 ∈ π(q)
τ ∩ {t = 0}. Then

by analogy to Lemma 1.3 we obtain

(1.31) B2,λ(π(q)
τ ) = O{B(q)(κ)

2,λ + 2B(q)(κ)
2 )}, q = 1, 2.

On the other hand, by definition we have

(1.32) B2,λ(π(q)
τ ) = sup

P
(q)
0 ∈π

(q)
τ

(κd(P (q)
0 ))2+λV2,λ(π(q)

τ ).

But by (1.23) we have d(P (q)
0 ) = 1

4r(P
(q)
0 ,N ), and by the assumptions of

the lemma r(πτ ,Nτ ) = δ > 0, whence r(P (q)
0 ,N ) ≥ δ for all P (q)

0 ∈ π(q)
τ and

therefore κd(P (q)
0 ) = κ

4 r(P
(q)
0 ,N ) ≥ κ

4 δ. Then from (1.31), (1.32) it follows
that

(
κ
4
δ

)2+λ

V2,λ(π(q)
τ ) = O{B(q)(κ)

2,λ + 2B(q)(κ)
2 )}, q = 1, 2.

The inequality (1.30) follows.

1.5. Formulation of the problems. Assumptions. The main result. We
consider the following boundary value problem:

(I)





L(q)(x, t,Dx)u(q) ≡ ∂u(q)

∂t
+

m∑

i,j=1

a
(q)
i,j (x, t)u(q)

xixj +
m∑

i=1

b
(q)
i (x, t)u(q)

xi

+ c(q)(x, t)u(q) = f (q)(x, t), (x, t) ∈ Q(q)
T , q = 1, 2;

[u]γT = χ(x, t);
[ m∑

i=1

τi(x, t)uxi + σ(x, t)u
]
γT

= ψ(x, t), (x, t) ∈ γT ;

m∑

i=1

νi(x, t)u(2)
xi + µ(x, t)u(2)

∣∣∣
∂TΩ

= ϕ(x, t), (x, t) ∈ ∂TΩ;

u(q)(x, 0) = ω(q)(x), x ∈ Ω(q), q = 1, 2.

We shall need the following

Assumptions I. (1) Uniform parabolicity :

ν(q)
m∑

i=1

ξ2
i ≤

m∑

i,j=1

a
(q)
i,j (x, t)ξiξj ≤ µ(q)

m∑

i=1

ξ2
i , (x, t) ∈ Q(q)

T , q = 1, 2,

where ν(q), µ(q) are positive constants.
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(2) Smoothness:

A0 + T0 +N0 +Σ0 +M0 = O(1),

where A0, T0, N0, Σ0,M0 relate to ai,j(x, t), τi(x, t), νi(x, t), σ(x, t), µ(x, t)
and are defined with regard to (1.9);

ai,j(x, t), bi(x, t), c(x, t), f(x, t) ∈ C(0,λ)(QT ),

τi(x, t), σ(x, t) ∈ C(1,λ)(QT ), ψ(x, t) ∈ C(1,λ)(γT ),

νi(x, t), µ(x, t), ϕ(x, t) ∈ C(1,λ)(∂TΩ),

χ(x, t) ∈ C(2,λ)(γT ), ω(x) ∈ C(2,λ)(Ω).

(3) Complementarity (see [8]):
m∑

i=1

τ
(q)
i (x, t)γi(x) ≥ ν(q)

0 = const > 0, (x, t) ∈ γT , q = 1, 2,

m∑

i=1

νi(x, t)ni(x) ≥ ν0 = const > 0, (x, t) ∈ ∂TΩ.

(4) Compatibility (zero-order compatibility conditions for initial and
boundary data, see [8]):
[ m∑

i,j=1

ai,j(x, 0)ωxixj (x) +
m∑

i=1

bi(x, 0)ωxi(x) + c(x, 0)ω(x)− f(x, 0)
]
γ

=
∂χ(x, 0)
∂t

, x ∈ γ, [ω(x)]γ = χ(x, 0),

[ m∑

i=1

τi(x, 0)ωxi(x) + σ(x, 0)ω(x)
]
γ

= ψ(x, 0), x ∈ γ,

m∑

i=1

νi(x, 0)ω(2)
xi + µ(x, 0)ω(2)(x) = ϕ(x, 0), x ∈ ∂Ω.

(5) Ω(q) ∈ A(2,λ), q = 1, 2.

We shall now denote by Al,Al,λ,Bl,Bl,λ etc. the sums of the maximum
moduli and of the Hölder coefficients of all derivatives of order l ≥ 0 of the
coefficients ai,j(x, t), bi(x, t) etc., respectively.

Theorem 1.5. Under the above assumptions (1)–(5), for any solution of
class C(2,λ)(QT ) of (I) we have

U2,λ(QT ) = O{[(1 +A0,λ + T0,λ)(1 + B0 + C0 + T1)(1.33)

+ (1 +A0,λ +N0,λ)(1 + B0 + C0 +N1)

+ (1 +A0,λ + T0,λ +N0,λ)
1+λ
λ

+ B0,λ + C0,λ + T1,λ +Σ1,λ +N1,λ +M1,λ]F0
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+ [(1 +A0,λ + T0,λ)(1 + B0 + T1)

+ (1 +A0,λ +N0,λ)(1 + B0 +N1)

+ (1 +A0,λ +N0,λ)
1+λ
λ + C0 + B0,λ

+ T1,λ +N1,λ +Σ1 +M1]F0,λ

+ (1 +A0,λ + T0,λ)
1+λ
λ Ψ0 + Ψ1,λ

+ (1 +A0,λ +N0,λ)
1+λ
λ Φ0 + Φ1,λ

+ [(1 +A0,λ + T0,λ)
1+λ
λ + (1 + T1)(1 +A0,λ + T0,λ)

+ T1,λ +Σ1,λ]Ξ0

+ [Σ1 + (1 + T1)(1 +A0,λ + T0,λ) + T1,λ]Ξ2,λ

+ [(1 +A0,λ + T0,λ +N0,λ)
1+λ
λ

+ (1 + B0 + T0,λ + T1 +N1)1+λ

+ (1 +A0,λ + T0,λ)(1 + B0 + T1)

+ (1 +A0,λ +N0,λ)(1 + B0 +N1)

+ B0,λ +M0,λ + T1,λ +Σ0,λ +N1,λ]U1

+ [(C0 +Σ1 +M1)1+λ/2 + (1 +A0,λ + T0,λ +N0,λ)
1+λ
λ

+ C0(1 +A0,λ + T0,λ +N0,λ) + C0,λ +Σ1,λ +M1,λ]U0

+ [(1 +A0,λ + T0,λ +N0,λ)
1+λ
λ

+ (1 +A0,λ + T0,λ +N0,λ)(1 + B0 + C0 + T1 +N1)

+ B0,λ + C0,λ + T1,λ +N1,λ +M1,λ

+Σ1,λ](U(1)0 + U(1)0,λ +Ω0 +Ω2,λ)},
where the estimating constant depends on m, the domain Ω and on the
constants from assumptions (1)–(4); the quantities U(1)0, and U(1)0,λ relate

to the functions u(q)
(1) ≡ ∂u(q)

∂t

∣∣
t=0, q = 1, 2.

1.6. Conjunction problem (see [8]). As an auxiliary problem we consider
the conjunction problem for w(y, t) ∈ C(2,λ)

0 (RT ) that satisfies in the whole
space Em+1 the parabolic equation with step coefficients and the conjunction
conditions on the hyperplane ΠT :

(II)





m∑

i,j=1

α
(q)
i,j w

(q)
yiyj −

∂w(q)

∂t
= h(q)(y, t), (y, t) ∈ E±m+1, q = 1, 2,

[w]|ΠT = η(y′, t),
[ m∑

i=1

βiwyi

]∣∣∣
ΠT

= ϑ(y′, t), (y′, t) ∈ ΠT ,

where α(q)
i,j , βi (i, j = 1, . . . ,m, q = 1, 2) are in general complex numbers.
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Lemma 1.6 (see [8, estimate (5.14)]). Let the vector-function w(y, t) ∈
C(2,λ)

0 (RT ) be a solution of the problem (II). Let the equations of (II) be
correctly parabolic and the complementarity condition be fulfilled. Let

h(y, t) ∈ C
◦ (0,λ)

0 (RT ), η(y′, t) ∈ C
◦ (2,λ)

0 (ΠT ), ϑ(y′, t) ∈ C
◦ (1,λ)

0 (ΠT ).

Then we have the a priori estimate

(1.34) W2,λ(RT ) = O(H0,λ +H2,λ +Θ1,λ),

where the estimating constant depends only on the parabolicity constant , the
quantities A0, B0 (that relate to α(q)

i,j , β
(q)
i ),m, λ ∈ (0, 1) and is independent

of T > 0.

Lemma 1.7. Let the conditions of Lemma 1.6 be fulfilled. Then the prob-
lem (II) is uniquely solvable in the class C

◦ (2,λ)
0 (RT ).

2. Reduction of the problem (I) to the problem (I)0 with zero
initial data

2.1. Lemma 2.1 (cf. [6, Chapt. IV, Theorem 4.3]). For any vector-
functions ω(x) ∈ C(2,λ)(Ω), u(1)(x) ∈ C(0,λ)(Ω) there is a vector-function
v(x, t) ∈ C(2,λ)(QT ) satisfying

v(x, t)|t=0 = ω(x),
∂v

∂t

∣∣∣∣
t=0

= u(1)(x), x ∈ Ω;

for that function we have the a priori estimates

V0(QT ) = O{U(1)0(Ω) +Ω0(Ω) +Ω2(Ω)},(2.1)

V2,λ(QT ) = O{U(1)0(Ω) + U(1)0,λ(Ω) +Ω0(Ω) +Ω2,λ(Ω)}.(2.2)

Proof. We denote by ω̃(x), ũ(1)(x) the extensions of ω(x), u1(x) onto the
whole space Em with the conservation of class (see for example [6, Theo-
rem 4.1, Chapt. IV]): that is, ω̃(x), ũ(1)(x) coincide on Ω with ω(x), u(1)(x)
and ω̃(x) ∈ C2,λ(Em), ũ(1)(x) ∈ C0,λ(Em) and also

(2.3)
‖ω̃‖C(2,λ)(Em) = O{‖ω̃‖C(2,λ)(Ω)},

‖ũ(1)‖C(0,λ)(Em) = O{‖u(1)‖C(0,λ)(Ω)}.
Now we consider the Cauchy problems in the layer Em × [0, T ]:

(2.4)





∂w

∂t
−∆w = 0, (x, t) ∈ Em × (0, T ],

w(x, t)|t=0 = ũ1(x)−∆ω̃(x), x ∈ Em.
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(2.5)




∂ṽ

∂t
−∆ṽ = w(x, t), (x, t) ∈ Em × (0, T ],

ṽ(x, t)|t=0 = ω̃(x), x ∈ Em.
It is well known that the problem (2.4) is uniquely solvable in the class
C(0,λ)(Em × [0, T ]) and its solutions satisfy the a priori estimates

(2.6)
W0(Em × [0, T ]) = O{Ũ(1)0(Em) + Ω̃2(Em)},
W0,λ(Em × [0, T ]) = O{Ũ(1)0,λ(Em) + Ω̃2,λ(Em)}.

(see [6, Theorem 2.5, Chapt. I and inequality (2.2), Chapt. IV]).
The resulting solution w(x, t) ∈ C(0,λ)(Em× [0, T ]) of the problem (2.4)

is now substituted in the right hand side of the equation of the problem
(2.5). Then by [6, Theorem 5.1, Chapt. IV] the problem (2.5) is uniquely
solvable, and its solution ṽ(x, t) ∈ C(2,λ)(Em × [0, T ]) satisfies the a priori
estimate

Ṽ2,λ(Em × [0, T ]) = O{W0(Em × [0, T ]) +W0,λ(Em × [0, T ])(2.7)

+ Ω̃0(Em) + Ω̃2,λ(Em)}.
Moreover, it is well known (see e.g. [6, Theorem 2.5, Chapt. I]) that

(2.8) Ṽ0(Em × [0, T ]) = O{W0(Em × [0, T ]) + Ω̃0(Em)}.
By (2.4), (2.5), ∂ṽ

∂t

∣∣
t=0 = u(1)(x), x ∈ Em. Thus we have constructed the

vector-function ṽ(x, t) ∈ C(2,λ)(Em × [0, T ]) satisfying

ṽ(x, t)|t=0 = ω̃(x),
∂ṽ

∂t

∣∣∣∣
t=0

= ũ(1)(x), x ∈ Em,

and the a priori estimates

Ṽ2,λ(Em × [0, T ]) = O{Ũ(1)0 + Ũ(1)0,λ + Ω̃0 + Ω̃2,λ},(2.9)

Ṽ0(Em × [0, T ]) = O{U(1)0 + Ω̃0 + Ω̃2},(2.10)

where the quantities on the right hand side relate to the space Em. Now
we consider some bounded domain Ω̃ ⊂ Ω and the corresponding cylinder
Q̃T ⊂ QT . We define a cut-off function ξ(x) ∈ C(2,λ)(Em) such that 0 ≤
ξ(x) ≤ 1, x ∈ Ω̃, and

ξ(x) =
{

1, x ∈ Ω,
0, x 6∈ Ω̃.

We consider the vector-function v(x, t) = ξ(x)ṽ(x, t). By the properties of
ṽ, ξ, we derive
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v(x, t) ≡
{
ṽ(x, t), (x, t) ∈ QT ,
0, (x, t) 6∈ Q̃T ,

v(x, t) ∈ C(2,λ)(Em × [0, T ]) and

(2.11)
V2,λ(Em × [0, T ]) = O{Ṽ2,λ(Em × [0, T ]) + Ṽ0(Em × [0, T ])},
V0(Em × [0, T ]) ≤ Ṽ0(Em × [0, T ]).

From (2.9)–(2.11) with regard to (2.3) we finally obtain the desired a priori
estimates (2.1), (2.2). From the properties of ṽ(x, t), ω̃(x)ũ(1)(x) it is easy to
see that the constructed vector-function v(x, t) satisfies the initial conditions
of the lemma.

2.2. Now we are in a position to reduce the problem (I) to the boundary
value problem with zero initial data. Following [6, 8] we write

u
(q)
(k)(x) =

∂ku(q)(x, t)
∂tk

∣∣∣∣
t=0

, k = 0, 1, q = 1, 2.

If u(x, t) is a solution of the boundary value problem (I), then we have

u
(q)
(0)(x) = ω(q)(x), x ∈ Ω(q), q = 1, 2,

(2.12)
u

(q)
(1)(x) = L(q)(x, 0,Dx)ω(q)(x)− f (q)(x, 0)

≡
m∑

i,j=1

a
(q)
i,j (x, 0)ω(q)

xixj (x) +
m∑

i=1

b
(q)
i (x, 0)ω(q)

xi (x)

+ c(q)(x, 0)ω(q)(x)− f (q)(x, 0), x ∈ Ω(q), q = 1, 2.

Let v(x, t) be the vector-function constructed in Lemma 2.1. Then

(2.13) w(x, t) = u(x, t)− v(x, t)

is a solution of the boundary value problem

(I)0





L(q)(x, t,Dx)w(q) =
∂w(q)

∂t
+ f̃ (q)(x, t), (x, t) ∈ Q(q)

T , q = 1, 2,

[w]γT = χ̃(x, t),
[ m∑

i=1

τi(x, t)wxi + σ(x, t)w
]
γT

= ψ̃(x, t), (x, t)∈γT ,

m∑

i=1

νi(x, t)w(2)
xi + µ(x, t)w(2)

∣∣∣
∂TΩ

= ϕ̃(x, t), (x, t) ∈ ∂TΩ,

w(q)(x, 0) = 0,
∂w(q)

∂t

∣∣∣∣
t=0

= 0, x ∈ Ω(q), q = 1, 2,
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where

(2.14)

f̃ (q)(x, t) = f (q)(x, t)− L(q)v(q) +
∂v(q)

∂t
, q = 1, 2,

χ̃(x, t) = χ(x, t)− [v]γT ,

ψ̃(x, t) = ψ(x, t)−
[ m∑

i=1

τi(x, t)vxi + σ(x, t)v
]
γT
,

ϕ̃(x, t) = ϕ(x, t)−
{ m∑

i=1

νi(x, t)v(2)
xi + µ(x, t)v(2)

}∣∣∣
∂TΩ

.

By the properties of v(x, t), (2.12) and the compatibility conditions (4) from
Assumptions I it is not difficult to derive that

(2.15)
f̃ ∈ C(2,λ)

0 (QT ), ψ̃ ∈ C(1,λ)
0 (γT ),

ϕ̃ ∈ C(1,λ)
0 (∂TΩ), χ̃ ∈ C(2,λ)

0 (γT ).

The equalities (I)0 together with conditions (2.15) will be called the bound-
ary value problem with zero initial data.

Thus, as (2.13) shows, for the proof of Theorem 1.5 it is necessary to
investigate the boundary value problem (I)0 and to derive the corresponding
a priori estimates for its solutions.

2.3. Calculating the quantities for the function u(1)(x) from (2.12) we
now obtain, by the estimates (2.1), (2.2),

(2.16) V0 = O{F0 + (1 + B0 + C0)Ω0 + (1 + B0)Ω2},
(2.17) V2,λ = O{F0 + F0,λ + (1 +A0,λ + B0 + C0 + B0,λ + C0,λ)Ω0

+ (1 +A0,λ + B0 + C0 + B0,λ)Ω2,λ}.

3. Local estimates of solutions of the problem (I)0. Now we derive
local estimates of solutions of (I)0. We shall consider cylinders of type (1)
from Section 1.4. The estimates for the other cylinders are derived similarly.

Let % > r(P0, σ) and let c(κ)
τ , c(kκ)

τ be cylinders related to the surfaces
∆̃(q), στ . Let w(x, t) ∈ C(2,λ)(QT ) be a solution of (I)0 and first suppose
that

(3.1) b
(q)
i (x, t) ≡ c(q)(x, t) ≡ σ(x, t) ≡ 0, i = 1, . . . ,m, q = 1, 2.

Since we are considering only a neighbourhood of γT , no attention need be
given to the boundary condition on ∂TΩ. On carrying out the coordinate
transformation (1.4) we find that w(y, t) (the image of w(x, t)) satisfies the
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conjunction problem

(3.2)





m∑

i,j=1

α
(q)
i,j (y, t)w(q)

yiyj +
m∑

i=1

β
(q)
i (y, t)w(q)

yi −
∂w(q)

∂t

= f̃ (q)(y, t), (y, t) ∈ c(q)(kκ)
τ (P0), q = 1, 2,

[w(y, t)]στ = χ̃(y′, t), (y′, t) ∈ σ(kκ)
τ (P0),

[m−1∑

i=1

τ i(y, t)wyi(y, t) +
(
τm(y, t)−

m−1∑

i=1

τ i(y, t)ζyi(y′)
)
wym

]
στ

= ψ̃(y′, t), (y′, t) ∈ σ(kκ)
τ (P0),

w(q)(y, 0) = 0, y ∈ ∆̃(q) ∩ Γ (P0, k%), q = 1, 2,

∂w(q)

∂t

∣∣∣∣
t=0

= 0, y ∈ ∆̃(q) ∩ Γ (P0, k%), q = 1, 2,

where the functions α(q)
i,j (y, t), β(q)

i (y, t) depend on y, t through a(q)
i,j (y, t) and

the first and second derivatives of ζ(y) from (1.4).

We put

(3.3)

[τ i(y, t)]στ = li(y′, t), i = 1, . . . ,m− 1,

τ (q)
m (y, t)−

m−1∑

i=1

τ
(q)
i (y, t)ζyi(y

′) = l(q)m (y, t), q = 1, 2,

and

(3.4)

g(q)(y, t) ≡ f̃ (q)(y, t)−
m∑

i,j=1

(α(q)
i,j (y, t)− α(q)

i,j (y0, 0))w(q)
yiyj

−
m∑

i=1

β
(q)
i (y, t)w(q)

yi , q = 1, 2,

θ(y′, t) ≡ ψ̃(y′, t)−
[m−1∑

i=1

(τ i(y, t)− τ i(y0, 0))wyi(y, t)
]
στ

− [(lm(y, t)− lm(y0, 0))wym ]στ .

Then the problem (3.2) can be put in the form
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(3.5)





m∑

i,j=1

α
(q)
i,j (y0, 0)w(q)

yiyj−
∂w(q)

∂t
=g(q)(y, t), (y, t)∈c(q)(kκ)

τ (P0), q=1, 2,

[w(y, t)]στ = χ̃(y′, t),
[
∂w

∂l

]

στ

= θ(y′, t), (y′, t) ∈ σ(kκ)
τ (P0),

w(q)(y, 0) = 0,
∂w(q)

∂t

∣∣∣∣
t=0

= 0, y ∈ ∆̃(q) ∩ Γ (P0, k%), q = 1, 2,

where l is the axis with direction cosines

{τ1(y′0, 0), . . . , τm−1(y′0, 0), lm(y′0, 0)}.

Our aim is to find an estimate forW(κ)
(τ)2,λ. To this end we define the new

vector-function z(x, t) = ξ(y)w(y, t), where ξ(y) is the truncation function

ξ(y) =
{

1, y ∈ ∆̃ ∩ Γ (P0, %),
0, y 6∈ ∆̃ ∩ Γ (P0, k%),

with the properties

(1) 0 ≤ ξ(y) ≤ 1,
(2) Dnξ = O(%−n) ∀n ∈ N.

The vector-function z(y, t) is a solution of the problem

(3.6)





m∑

i,j=1

α
(q)
i,j (y0, 0)z(q)

yiyj −
∂z(q)

∂t
= h(q)(y, t),

(y, t) ∈ c(q)(kκ)
τ (P0), q = 1, 2,

[z]στ = η(y′, t),
[
∂z

∂l

]

στ

= ϑ(y′, t), (y′, t) ∈ σ(kκ)
τ (P0),

z(q)(y, 0) = 0,
∂z(q)

∂t

∣∣∣∣
t=0

= 0, y ∈ Em, q = 1, 2,

where h(q)(y, t), η(y′, t), ϑ(y′, t) are defined by [1, (2.17)]; moreover, it is not
difficult to verify by (2.15) that

(3.7)
h(y, t) ∈ C

◦ (0,λ)
0 (Rτ ), η(y′, t) ∈ C

◦ (2,λ)
0 (Πτ ),

ϑ(y′, t) ∈ C
◦ (1,λ)

0 (Πτ ).

Therefore the vector-function z(y, t) is in C
◦ (2,λ)

0 (Rτ ) and is a solution of the
problem (3.6), a problem of type (II); moreover, (3.7) and Assumptions I
guarantee the fulfilment of all conditions of Lemmas 1.6 and 1.7. Hence
the problem (3.6) has a unique solution z(y, t) of class C

◦ (2,λ)
0 (Rτ ) and the

estimate

(3.8) Z(kκ)
(τ)2,λ = O(H(kκ)

(τ)0,λ +H
(ν)
(τ)2,λ +Θ

(ν)
(τ)1,λ),
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holds uniformly with respect to τ . Now taking account of the trivial inequal-
ity

(3.9) W(κ)
(τ)2,λ ≡ Z(κ)

(τ)2,λ ≤ Z
(kκ)
(τ)2,λ, k > 3

and calculating the quantities on the right side of (3.8) (see [1, p. 23]) we
obtain, by (3.8)–(3.9),

W(κ)
(τ)2,λ = O(εW(kκ)

(τ)2,λ + %−(2+λ)W(kκ)
(τ)0 + G(kκ)

(τ)0,λ + %−λG(kκ)
(τ)0(3.10)

+ Ξ̃
(ν)
(τ)2,λ +Θ

(ν)
(τ)1,λ + %−(1+λ)Θ

(ν)
(τ)0), ∀ε > 0

(here we use the inequality (1.10) of Lemma 1.1). This is the desired es-
timate. It should be noted that the O-quantity on the right side of (3.10)
depends only on A0 + T0 = O(1) (see condition 2) of Assumptions I), the
parabolicity constant, and the numbers m, λ, but it is independent of τ .
The estimate (3.10) may be simplified (cf. [1]). In fact, the vector-function
w(y, t) = (w(1)(y, t), w(2)(y, t)) can be decomposed by the Taylor formula in
the neighbourhood of P ′0 = (y′0, 0, 0) ∈ σ with zero initial data:

w(q)(y, t) = w(q)(P ′0) +
m−1∑

i=1

(yi − y′0i)w(q)
yi (ỹ′, 0, 0)(3.11)

+ ymw
(q)
ym(y′0, ỹm, 0) + tw

(q)
t (y′0, 0, t̃ )

= tw
(q)
t (y′0, 0, t̃ ),

(ỹ, t̃ ) ∈ c(q)(kκ)
τ ∩ Γm+1(P ′0, r(P,P

′
0)), q = 1, 2.

Now we choose τ = %2. By (3.11) we obtain

(3.12) W(kκ)
0 = O(τW(kκ)

2 ) = O(%2W(kκ)
2 ).

Further, it is easy to see by (2.15) and initial data of (3.5) from (3.4) that
θ(y′, 0) = 0 and therefore we have

θ(y′, t) = (θ(y′, t)− θ(y′0, t)) + (θ(y′0, t)− θ(y′0, 0))(3.13)

= O{|y′ − y′0|Θ(ν)
1 + τ

1+λ
2 Θ

(ν)
1,λ}

= O(%Θ(ν)
1 + %1+λΘ

(ν)
1,λ).

Thus by (3.12), (3.13) the estimate (3.10) simplifies to

W(κ)
2,λ = O(εW(kκ)

2,λ + %−λW(kκ)
2 + G(kκ)

0,λ + %−λG(kκ)
0 + Ξ̃

(ν)
2,λ(3.14)

+Θ
(ν)
1,λ + %−λΘ(ν)

1 ), ∀ε > 0.

Calculating the quantities on the right side of (3.14) in the same way as
in [1] and setting ε = %λ we see that for any solution of (3.2) we have the
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estimate (cf. [1, (2.25)])

W(κ)
2,λ = O{F̃ (kκ)

0,λ + %−λ(F̃ (kκ)
0 + Ψ̃

(ν)
1 )(3.15)

+ (1 + T (ν)
0,λ + T (ν)

1 + %−λT (ν)
1 + T (ν)

1,λ)(Ξ̃(ν)
0 + Ξ̃

(ν)
2,λ)

+ %λ(1 +A(kκ)
0,λ + T (ν)

0,λ)W(kκ)
2,λ

+ (1 + %−λ +A(kκ)
0,λ + T (ν)

0,λ)W(kκ)
2

+ (1 + T (ν)
0,λ + T (ν)

1 )W(kκ)
1,λ + Ψ̃1,λ

(ν)

+ (1 + %−λ+A(kκ)
0,λ +T (ν)

0,λ+T (ν)
1 +%−λT (ν)

1 +T (ν)
1,λ)W(kκ)

1 }.
We put

(3.16) J ≡ 1 +A0,λ + T 0,λ

and rewrite (3.15) in shortened form:

(3.17) W(κ)
2,λ = O(%λJ (kκ)W(kκ)

2,λ +K(κ;P0)).

We multiply both sides of (3.17) by %2+λ and take into account the inequality
(1.29) of Lemma 1.3:

(3.18) %2+λW(κ)
2,λ ≤ k1%

λ
0J (p̃τ )(B(κ)

2,λ + B(κ)
2 ) + k2%

2+λ
0 K(κ, P0),

∀τ ≥ d2
0, %0 = κd0,

where k1, k2 are constants independent of κ, τ . Up to this point the number
κ was any positive number such that κ ≤ κ0 < 1, kκ < 4, k > 3. Now let

(3.19) κ1 = sup{κ | κ < κ0, k1%
λ
0J (p̃τ ) < 1/4}.

Then we derive

(3.20) (κ1d0)−λ = O(1 + J (p̃τ )).

Now fix the point P0 so that

(κ1d(P0))2+λW(κ1)
2,λ >

1
2
B(κ1)

2,λ .

Then from (3.18), (3.19) we obtain

(3.21) B(κ1)
2,λ = O(B(κ1)

2 (p̃τ ) + (κ1d(P0))2+λK(κ1; p̃τ )).

Let πτ be cylinders that are symmetric with respect to the hyperplane στ
and satisfy the assumptions of Lemma 1.4. By this lemma with κ = κ1 and
the inequality (3.21) we have

δ2+λW2,λ(πτ ) = O((κ1d0)−λW2(p̃τ ) +K(κ1; p̃τ )), πτ ⊂ p̃τ .
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Hence taking into account (3.20) and recalling the expression for K(κ1; p̃τ )
from (3.17) and (3.15) we finally obtain

δ2+λW2,λ(πτ ) = O{F̃0,λ + J F̃0(3.22)

+ (1 + T 0,λ + J T 1 + T 1,λ)(Ξ̃0 + Ξ̃2,λ)

+ Ψ̃1,λ + J Ψ̃1 + JW2 + (1 + T 0,λ + T 1)W1,λ

+ (J (1 + T 1) + T 1,λ)W1},
where the quantities on the right hand side relate to the cylinder p̃τ ⊃ πτ .

On applying the transformation inverse to (1.4) the cylinders π(q)
τ go to

cylinders Π(q)
τ ⊂ Q

(q)
∗τ , whose boundary contains the part of γ∗τ ∪Ω(q)

∗ and
whose distance from ∂[Q(q)

∗τ \(γ∗τ ∪Ω(q)
∗ )], taken to be minimum over q = 1, 2

and denoted by δ, is positive. By (3.16) we now have

δ2+λW2,λ(Πτ )= O{(1 +A0,λ + T0,λ)(F̃0 + Ψ̃1)(3.23)

+ {1+T0,λ+(1+A0,λ+T0,λ)T1+T1,λ}(Ξ̃0+Ξ̃2,λ)

+ (1 +A0,λ + T0,λ)W2 + (1 + T0,λ + T1)W1,λ

+ F̃0,λ + Ψ̃1,λ

+ {(1 +A0,λ + T0,λ)(1 + T1) + T1,λ}W1},
where the quantities on the right side relate to the cylinder Q∗τ .

If we now discard the assumption (3.1), we must use the estimate (3.23),
replacing f̃ (q)(x, t) by the function

f̃ (q)(x, t)−
m∑

i=1

b
(q)
i (x, t)w(q)

xi − c(q)(x, t)w(q)

and ψ̃(x, t) by ψ̃(x, t)− [σ(x, t)w]γτ .
Therefore for the solution of the problem (I)0 we arrive at the following

local estimate in the neighborhood of the intersection Ω ∩ γT :

(3.24) δ2+λW2,λ(Πτ )

= O{{1 + T0,λ + (1 +A0,λ + T0,λ)(T1 +Σ0) + T1,λ +Σ1}Ξ̃2,λ

+ {1 + T0,λ + (1 +A0,λ + T0,λ)(T1 +Σ0 +Σ1) + T1,λ +Σ1,λ}Ξ̃0

+ (1 +A0,λ + T0,λ)W2 + (1 + T0,λ + T1 + B0 + S0)W1,λ

+ {(1 +A0,λ + T0,λ)(1 + T1 + B0 + S0) + T1,λ + B0,λ + S0,λ}W1

+ {(C0 + S1)(1 +A0,λ + T0,λ) + C0,λ + S1,λ}W0

+ (1 +A0,λ + T0,λ)(F̃0 + Ψ̃1) + (C0 + S1)W0,λ + F̃0,λ + Ψ̃1,λ},
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where the quantities on the right side relate to the cylinder Q∗τ ; here the
S-quantities relate to the function s(x, t) = [σ(x, t)]γτ . We note that the
estimate (3.24) is uniform with respect to τ .

4. Conditional existence theorem. In this section we consider the
nonlinear problem

(III)





L(q)(x, t,Dx)u(q) = 0, (x, t) ∈ Q(q)
T ,

[u]γT = χ(x, t),

[ΛγT u] ≡
[
b(x, t, u, ux) +

m∑

i=1

bi(x, t, u)uxi + b0(x, t, u)
]
γT

= ψ(x, t), (x, t) ∈ γT ,

Λ∂TΩu≡c(x, t, u(2), u(2)
x )+

m∑

i=1

ci(x, t, u(2))u(2)
xi +c0(x, t, u(2))

∣∣∣
∂TΩ

= ϕ(x, t), (x, t) ∈ ∂TΩ,

u(q)(x, 0) = ω(q)(x), x ∈ Ω(q), q = 1, 2,

where

L(q)(x, t,Dx)u(q) ≡
m∑

i,j=1

a
(q)
i,j (x, t, u(q), u(q)

x )u(q)
xixj + a(q)(x, t, u(q), u(q)

x )

− ∂u(q)

∂t
.

For this problem we state a conditional existence theorem. It is important to
note that the nonlinear dependence of the coefficients of the boundary con-
dition and the conjunction condition on the first derivatives of the unknown
function does not permit the use of the Leray–Schauder topological principle
(fixed point theorem). Instead we use the Caccioppoli principle (see [7, §1,
5, Chapt. X]) which enables us to circumvent this difficulty thanks due to
the exact a priori estimates for the linear problem (I) derived above.

We define

℘ = {(x, t, u, p) | (x, t) ∈ QT , u ∈ R, p ∈ Rn}.
Assumptions II. (1) Uniform parabolicity :
m∑

i,j=1

a
(q)
i,j (x, t, u, p)ξiξj ≥ ν(q)(|u|, |p|)

m∑

i=1

ξ2
i , ∀(x, t, u, p) ∈ ℘, q = 1, 2,

where ν(q)(t1, t2) are positive continuous functions which are nonincreasing
with respect to both arguments and are defined for t1 ≥ 0, t2 ≥ 0.
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(2) Smoothness: The functions

a
(q)
i,j (x, t, u, p),

∂a
(q)
i,j (x, t, u, p)

∂pk
,
∂a

(q)
i,j (x, t, u, p)

∂u
, a(q)(x, t, u, p),

∂a(q)(x, t, u, p)
∂pi

,
∂a(q)(x, t, u, p)

∂u
, b(q)(x, t, u, p),

∂b(q)(x, t, u, p)
∂pi

,

∂b(q)(x, t, u, p)
∂u

,
∂2b(q)(x, t, u, p)

∂pi∂pj
,
∂2b(q)(x, t, u, p)

∂u∂pj
,

∂2b(q)(x, t, u, p)
∂u∂xj

,
∂2b(q)(x, t, u, p)

∂u2 ,
∂2b(q)(x, t, u, p)

∂pi∂xj
, b

(q)
i (x, t, u),

∂b
(q)
i (x, t, u)
∂xi

,
∂b

(q)
i (x, t, u)
∂u

,
∂2b

(q)
i (x, t, u)
∂u2 ,

∂2b
(q)
i (x, t, u)
∂u∂xi

, b
(q)
0 (x, t, u),

∂2b
(q)
0 (x, t, u)
∂u2 ,

∂2b
(q)
0 (x, t, u)
∂u∂xj

, c(x, t, u, p),
∂c(x, t, u, p)

∂pi
,
∂c(x, t, u, p)

∂u
,

∂2c(x, t, u, p)
∂pi∂pj

,
∂2c(x, t, u, p)

∂u∂pj
,
∂2c(x, t, u, p)

∂u∂xj
,
∂2c(x, t, u, p)

∂u2 ,

∂2c(x, t, u, p)
∂pi∂xj

, ci(x, t, u),
∂ci(x, t, u)

∂xi
,
∂ci(x, t, u)

∂u
,

∂2ci(x, t, u)
∂u2 ,

∂2ci(x, t, u)
∂u∂xi

, c0(x, t, u),
∂2c0(x, t, u)

∂u2 ,
∂2c0(x, t, u)
∂u∂xj

,

i, j = 1, . . . ,m, q = 1, 2,

are defined on ℘ and have the following properties:

(i) they are bounded;
(ii) they satisfy a Hölder condition with exponent λ ∈ (0, 1) with respect

to xi, i = 1, . . . ,m, and with exponent λ/2 with respect to t;
(iii) they satisfy a Lipschitz condition with respect to u, pi, i = 1, . . . ,m;
(iv) the functions

∂b(q)(x, t, u, p)
∂pi

,
∂b(q)(x, t, u, p)

∂u
, b

(q)
i (x, t, u),

∂b
(q)
i (x, t, u)
∂u

,
∂b

(q)
0 (x, t, u)
∂u

,

∂c(x, t, u, p)
∂pi

,
∂c(x, t, u, p)

∂u
, ci(x, t, u),

∂ci(x, t, u)
∂u

,
∂c0(x, t, u)

∂u

satisfy a Hölder condition with exponent 1+λ
2 with respect to t;

ψ(x, t) ∈ C(1,λ)(γT ), ϕ(x, t) ∈ C(1,λ)(∂TΩ),

χ(x, t) ∈ C(2,λ)(γT ), ω(x) ∈ C(2,λ)(Ω).
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(3) Complementarity (see [8]):
m∑

i=1

{
∂b(q)(x, t, u, p)

∂pi
+ b

(q)
i (x, t, u)

}
γi(x) ≥ ν(q)

0 (|u|, |p|) > 0,

∀(x, t) ∈ γT , u ∈ R, p ∈ Rn, q = 1, 2,
m∑

i=1

{
∂c(x, t, u, p)

∂pi
+ ci(x, t, u)

}
ni(x) ≥ ν0(|u|, |p|) > 0,

∀(x, t) ∈ ∂TΩ, u ∈ R, p ∈ Rn,

where ν(q)
0 (t1, t2), ν0(t1, t2) are positive continuous functions which are non-

increasing with respect to both arguments and are defined for t1 ≥ 0, t2 ≥ 0.
(4) Compatibility (zero-order compatibility conditions for initial and

boundary data, see [8]):

[ω(x)]γ = χ(x, 0), x ∈ γ,
[ m∑

i,j=1

ai,j(x, 0, ω, ωx)ωxixj (x) + a(x, 0, ω, ωx)
]
γ

=
∂χ(x, 0)
∂t

, x ∈ γ,

[
b(x, 0, ω, ωx) +

m∑

i=1

bi(x, 0, ω)ωxi + b0(x, 0, ω)
]
γ

= ψ(x, 0), x ∈ γ,

c(x, 0, ω(2), ω(2)
x ) +

m∑

i=1

ci(x, 0, ω(2))ω(2)
xi + c0(x, 0, ω(2)) = ϕ(x, 0), x ∈ ∂Ω.

(5) Ω(q) ∈ A(2,λ), q = 1, 2.

Theorem 4.1 (Conditional theorem). Suppose that four families of dif-
ferential operators L(q)

(τ)(x, t,Dx), q = 1, 2, ΛγT(τ), Λ
∂TΩ
(τ) are as in (III), con-

tinuously depend on the parametr τ ∈ [0, 1], satisfy assumptions (1)–(5)
uniformly with respect to τ ∈ [0, 1] and are such that for τ = 1 the problem

(IIIτ )





L
(q)
(τ)(x, t,Dx)u(q) = 0, (x, t) ∈ Q(q)

T , q = 1, 2,

[u]γT = χ(x, t),

[ΛγT(τ)u] = ψ(x, t), (x, t) ∈ γT ,
Λ∂TΩ(τ) u(2) = ϕ(x, t), (x, t) ∈ ∂TΩ,
u(q)(x, 0) = ω(q)(x), x ∈ Ω(q), q = 1, 2,

coincides with (III). Let the following conditions hold :

(a) for all solutions u(x, t, τ) ∈ C(2,λ)(QT ) of (IIIτ ) the corresponding
variational problem is unconditionally solvable;
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(b) the possible solutions of (IIIτ ) and their first derivatives are uni-
formly bounded and equicontinuous in QT for all τ ∈ [0, 1] as χ(x, t), ψ(x, t),
ϕ(x, t), ω(x) vary in all families of functions for which the corresponding
quantities Ξ0 +Ξ2,λ, Ψ0 + Ψ1,λ, Φ0 + Φ1,λ, Ω0 +Ω2,λ remain bounded ;

(c) for τ = 0 and fixed ψ(x, t) ∈ C(1,λ)(γT ), ϕ(x, t) ∈ C(1,λ)(∂TΩ),
χ(x, t) ∈ C(2,λ)(γT ), ω(x) ∈ C(2,λ)(Ω) there exists a unique solution u(x, t)
∈ C(2,λ)(QT ) of (IIIτ ).

Then for any ψ(x, t) ∈ C(1,λ)(γT ), ϕ(x, t) ∈ C(1,λ)(∂TΩ), χ(x, t) ∈
C(2,λ)(γT ), ω(x) ∈ C(2,λ)(Ω) there exists a unique solution u(x, t) ∈
C(2,λ)(QT ) of (IIIτ ), for every τ ∈ [0, 1].

This theorem is proved in the same way as in [7, §42]; [5, Chapt. X]; [3];
[1, §3] on the basis of the exact a priori estimate (1.33).
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