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Existence of positive solutions
for second order m-point boundary value problems

by Ruyun Ma (Lanzhou)

Abstract. Let α, β, γ, δ ≥ 0 and % := γβ + αγ + αδ > 0. Let ψ(t) = β + αt,
φ(t) = γ + δ − γt, t ∈ [0, 1]. We study the existence of positive solutions for the m-point
boundary value problem





u′′ + h(t)f(u) = 0, 0 < t < 1,

αu(0)− βu′(0) =
∑m−2
i=1 aiu(ξi),

γu(1) + δu′(1) =
∑m−2
i=1 biu(ξi),

where ξi ∈ (0, 1), ai, bi ∈ (0,∞) (for i ∈ {1, . . . ,m − 2}) are given constants satisfying
%−∑m−2

i=1 aiφ(ξi) > 0, %−∑m−2
i=1 biψ(ξi) > 0 and

∆ :=

∣∣∣∣∣
−∑m−2

i=1 aiψ(ξi) %−∑m−2
i=1 aiφ(ξi)

%−∑m−2
i=1 biψ(ξi) −∑m−2

i=1 biφ(ξi)

∣∣∣∣∣ < 0.

We show the existence of positive solutions if f is either superlinear or sublinear by a simple
application of a fixed point theorem in cones. Our result extends a result established by
Erbe and Wang for two-point BVPs and a result established by the author for three-point
BVPs.

1. Introduction. The study of multi-point boundary value problems
for linear second order ordinary differential equations was initiated by Il’in
and Moiseev [6]. Motivated by [6], Gupta [4] studied certain three-point
boundary value problems for nonlinear ordinary differential equations. Since
then, more general nonlinear multi-point boundary value problems have
been studied by several authors. We refer the reader to [4–6, 8–10] for some
relevant references.
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In this paper, we are interested in the existence of positive solutions of
the second order m-point boundary value problem

(1.1)





u′′ + h(t)f(u) = 0, 0 < t < 1,

αu(0)− βu′(0) =
m−2∑

i=1

aiu(ξi),

γu(1) + δu′(1) =
m−2∑

i=1

biu(ξi),

where ξi ∈ (0, 1), ai, bi ∈ (0,∞) (for i ∈ {1, . . . ,m−2}) are given constants.
If ai = bi = 0 for i = 1, . . . ,m− 2, then the m-point BVP (1.1) reduces

to the two-point BVP

(1.2)





u′′ + h(t)f(u) = 0, 0 < t < 1,

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0.

In 1994, Erbe and Wang [3] obtained the following excellent result for (1.2).

Theorem A ([3, Theorem 1]). Suppose that

(A1) f ∈ C([0,∞), [0,∞));
(A2) h ∈ C([0, 1], [0,∞)) and h(t) ≡ 0 on no subinterval of (0, 1);
(A3) α, β, γ, δ ≥ 0, and % := γβ + αγ + αδ > 0.

Then (1.2) has at least one positive solution if either

(i) f0 = 0 and f∞ =∞, or
(ii) f0 =∞ and f∞ = 0,

where

f0 := lim
u→0+

f(u)
u

, f∞ := lim
u→∞

f(u)
u

.

This result has been extended and developed by many authors (see Erbe,
Hu and Wang [2] and Lian, Wong and Yeh [7] for some references).

If α = γ = 1, β = δ = 0, ai = 0 for i = 1, . . . ,m − 2, and bj = 0 for
j = 2, . . . ,m− 2, then (1.1) reduces to the three-point BVP

(1.3)

{
u′′ + h(t)f(u) = 0, 0 < t < 1,

u(0) = 0, u(1) = bu(ξ).

In 1998, Ma [8] obtained the following result for (1.3).

Theorem B ([8, Theorem 1]). Suppose that

(H1) 0 < bξ < 1;
(H2) f ∈ C([0,∞), [0,∞));
(H3) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [ξ, 1] such that h(t0) > 0.
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Then (1.3) has at least one positive solution if either

(i) f0 = 0 and f∞ =∞, or
(ii) f0 =∞ and f∞ = 0.

Theorem B has been extended by Webb [10]. We remark that in the
proof of Theorem B, we rewrite (1.3) as the equivalent integral equation

u(t) = −
t�

0

(t− s)h(s)f(u(s)) ds− bt

1− bξ

ξ�

0

(ξ − s)h(s)f(u(s)) ds(1.4)

+
t

1− bξ

1�

0

(1− s)h(s)f(u(s)) ds

which contains one positive term and two negative terms and is not conve-
nient for studying the existence of positive solutions.

In this paper, we consider the more general m-point BVP (1.1). To deal
with (1.1), we give a new integral equation which is equivalent to (1.1) and
only contains two positive terms. Our main result (see Theorem 3.1 below)
extends and unifies the main results of [2, 3, 7, 8].

By a positive solution of (1.1) we understand a function u(t) which is
positive on (0, 1) and satisfies the differential equation and the boundary
conditions in (1.1).

The main tool of this paper is the following well-known Guo–Krasnosel’-
skĭı fixed point theorem.

Theorem C (see [3]). Let E be a Banach space, and let K ⊂ E be a
cone. Assume Ω1, Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2,
and let

A : K ∩ (Ω2 \Ω1)→ K

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

2. The preliminary lemmas. Set

(2.1) ψ(t) := β + αt, φ(t) := γ + δ − γt, t ∈ [0, 1],

and

∆ :=

∣∣∣∣∣∣∣∣∣∣

−
m−2∑

i=1

aiψ(ξi) %−
m−2∑

i=1

aiφ(ξi)

%−
m−2∑

i=1

biψ(ξi) −
m−2∑

i=1

biφ(ξi)

∣∣∣∣∣∣∣∣∣∣

.
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Lemma 2.1. Let (A3) hold. Assume

(H4) ∆ 6= 0.

Then for y ∈ C[0, 1], the problem

(2.2)





u′′ + y(t) = 0, 0 < t < 1,

αu(0)− βu′(0) =
m−2∑

i=1

aiu(ξi),

γu(1) + δu′(1) =
m−2∑

i=1

biu(ξi)

has a unique solution

(2.3) u(t) =
1�

0

G(t, s)y(s)ds+ A(y)ψ(t) +B(y)φ(t)

where

G(t, s) :=
1
%

{
φ(t)ψ(s), 0 < s < t < 1,
φ(s)ψ(t), 0 < t < s < 1,

(2.4)

A(y) :=
1
∆

∣∣∣∣∣∣∣∣∣∣

m−2∑

i=1

ai

1�

0

G(ξi, s)y(s) ds %−
m−2∑

i=1

aiφ(ξi)

m−2∑

i=1

bi

1�

0

G(ξi, s)y(s) ds −
m−2∑

i=1

biφ(ξi)

∣∣∣∣∣∣∣∣∣∣

(2.5)

B(y) :=
1
∆

∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑

i=1

aiψ(ξi)
m−2∑

i=1

ai

1�

0

G(ξi, s)y(s) ds

%−
m−2∑

i=1

biψ(ξi)
m−2∑

i=1

bi

1�

0

G(ξi, s)y(s) ds

∣∣∣∣∣∣∣∣∣∣∣

.(2.6)

Proof. Since ψ and φ are two linearly independent solutions of the equa-
tion u′′ = 0, we know that any solution of u′′(t) = y(t) can be represented
as

(2.7) u(t) =
1�

0

G(t, s)y(s) ds+ Aψ(t) +Bφ(t)

where G is as in (2.4).
It is easy to check that the function defined by (2.7) is a solution of (2.2)

if A and B are defined by (2.5) and (2.6), respectively.
Now we show that the function defined by (2.7) is a solution of (2.2)

only if A and B are as in (2.5) and (2.6), respectively.
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Let u as in (2.7) be a solution of (2.2). Then

u(t) =
t�

0

1
%
ψ(s)φ(t)y(s) ds+

1�

t

1
%
φ(s)ψ(t)y(s) ds+ Aψ(t) +Bφ(t),

u′(t) = φ′(t)
t�

0

1
%
ψ(s)y(s) ds+ ψ′(t)

1�

t

1
%
φ(s)y(s) ds+ Aψ′(t) +Bφ′(t),

u′′(t) = φ′′(t)
t�

0

1
%
ψ(s)y(s) ds+ φ′(t)

1
%
ψ(t)y(t)

+ ψ′′(t)
1�

t

1
%
φ(s)y(s) ds− ψ′(t)1

%
φ(t)y(t) + Aψ′′(t) +Bφ′′(t),

so that

(2.8) u′′(t) =
1
%

[ψ(t)φ′(t)− φ(t)ψ′(t)]y(t) = −y(t).

Since

u(0) = β

1�

0

1
%
φ(s)y(s) ds+ Aβ +B(γ + δ),

u′(0) = α

1�

0

1
%
φ(s)y(s) ds+ Aα+B(−γ),

we have

(2.9) B(γα+ δα+ γβ) =
m−2∑

i=1

ai

[1�

0

G(ξi, s)y(s) ds+Aψ(ξi) +Bφ(ξi)
]
.

Since

u(1) = δ

1�

0

1
%
ψ(s)y(s) ds+ A(α+ β) +Bδ,

u′(1) = −γ
1�

0

1
%
ψ(s)y(s) ds+ Aα+B(−γ),

we have

(2.10) A(γα+ δα+ γβ) =
m−2∑

i=1

bi

[1�

0

G(ξi, s)y(s) ds+ Aψ(ξi) +Bφ(ξi)
]
.

From (2.9) and (2.10), we get



[
−
m−2∑

i=1

aiψ(ξi)
]
A+

[
%−

m−2∑

i=1

aiφ(ξi)
]
B =

m−2∑

i=1

ai

1�

0

G(ξi, s)y(s) ds,

[
%−

m−2∑

i=1

biψ(ξi)
]
A−

[m−2∑

i=1

biφ(ξi)
]
B =

m−2∑

i=1

bi

1�

0

G(ξi, s)y(s) ds,
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which implies A and B satisfy (2.5) and (2.6), respectively. This completes
the proof of the lemma.

In the following, we will make the following assumption:

(H5) ∆ < 0, %−
m−2∑

i=1

aiφ(ξi) > 0, %−
m−2∑

i=1

biψ(ξi) > 0.

It is easy to see that if α = γ = 1, β = δ = 0, ai = 0 for i = 1, . . . ,m − 2,
b1 > 0 and bj = 0 for j = 2, . . . ,m− 2, then (H5) reduces to

0 < b1ξ1 < 1,

which is a key condition in [8, Theorem 1].

Lemma 2.2. Let (A3) and (H5) hold. Then for y ∈ C[0, 1] with y ≥ 0,
the unique solution u of the problem (2.2) satisfies

u(t) ≥ 0, t ∈ [0, 1].

Proof. This is an immediate consequence of the facts that G ≥ 0 on
[0, 1]× [0, 1] and A(y) ≥ 0, B(y) ≥ 0.

We note that if (H5) does not hold, then y ∈ C[0, 1] with y ≥ 0 does not
imply that the unique solution u of (2.2) is positive. We can see this from
the following result:

Lemma 2.3 ([8, Lemma 3]). Let bξ > 1. If y ∈ C[0, 1] and y ≥ 0, then
(1.3) has no positive solution.

Lemma 2.4. Let (A3) and (H5) hold. Let σ ∈ (0, 1/2) be a constant.
Then for y ∈ C[0, 1] with y ≥ 0, the unique solution u of the problem (2.2)
satisfies

min{u(t) | t ∈ [σ, 1− σ]} ≥ Γ‖u‖
where ‖u‖ = max{u(t) | t ∈ [0, 1]} and

(2.11) Γ := min{φ(1− σ)/φ(0), ψ(σ)/ψ(1)}.

Proof. We see from (2.4) and (2.3) that

0 ≤ G(t, s) ≤ G(s, s), t ∈ [0, 1],

which implies

(2.12) u(t) ≤
1�

0

G(s, s)y(s) ds+ A(y)ψ(t) +B(y)φ(t), t ∈ [0, 1].
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Applying (2.4), we find that for t ∈ [σ, 1− σ],

G(t, s)
G(s, s)

=
{
φ(t)/φ(s), 0 ≤ s ≤ t ≤ 1,
ψ(t)/ψ(s), 0 ≤ t ≤ s ≤ 1,

(2.13)

≥
{
φ(1− σ)/φ(0), 0 ≤ s ≤ t ≤ 1− σ,
ψ(σ)/ψ(1), σ ≤ t ≤ s ≤ 1,

≥ Γ,
where Γ is an in (2.11). Thus for t ∈ [σ, 1− σ],

u(t) =
1�

0

G(t, s)
G(s, s)

G(s, s)y(s) ds+ A(y)ψ(t) +B(y)φ(t)

≥ Γ
1�

0

G(s, s)y(s) ds+A(y)ψ(t) +B(y)φ(t)

≥ Γ
[ 1�

0

G(s, s)y(s) ds+ A(y)ψ(t) +B(y)φ(t)
]
≥ Γ‖u‖.

3. The main result. The main result of the paper is the following

Theorem 3.1. Let (H2), (A3) and (H5) hold. Assume that

(H6) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [0, 1] such that h(t0) > 0.

Then (1.1) has at least one positive solution if either

(i) f0 = 0 and f∞ =∞, or
(ii) f0 =∞ and f0 = 0.

Remark 3.2. Condition (H6) is weaker than (H3).

Remark 3.3. Theorem 3.1 extends [3, Theorem 1] and [8, Theorem 1].

Proof of Theorem 3.1. Since h ∈ C[0, 1], we may assume that t0 ∈ (0, 1)
in (H6). Take σ ∈ (0, 1/2) > 0 such that t0 ∈ (σ, 1−σ) and let Γ be defined
by (2.11).

Superlinear case. Suppose then that f0 = 0 and f∞ = ∞. We wish to
show the existence of a positive solution of (1.1). Now (1.1) has a solution
u = u(t) if and only if u solves the operator equation

u(t) =
1�

0

G(t, s)h(s)f(u(s)) ds+ A(h(·)f(u(·)))ψ(t)(3.1)

+B(h(·)f(u(·)))φ(t)

:= (Tu)(t)

where φ and ψ, G, A and B are defined by (2.1), (2.4), (2.5) and (2.6),
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respectively. Clearly

(3.2) |A(h(·)f(u(·)))|

≤ 1
−∆

∣∣∣∣∣∣∣∣∣∣

m−2∑

i=1

ai

1�

0

G(ξi, s)h(s) ds %−
m−2∑

i=1

aiφ(ξi)

m−2∑

i=1

bi

1�

0

G(ξi, s)h(s) ds −
m−2∑

i=1

biφ(ξi)

∣∣∣∣∣∣∣∣∣∣

‖f(u)‖

:= Ã‖f(u)‖
and

(3.3) |B(h(·)f(u(·)))|

≤ 1
−∆

∣∣∣∣∣∣∣∣∣∣

−
m−2∑

i=1

aiψ(ξi)
m−2∑

i=1

ai

1�

0

G(ξi, s)h(s) ds

%−
m−2∑

i=1

biψ(ξi)
m−2∑

i=1

bi

1�

0

G(ξi, s)h(s) ds

∣∣∣∣∣∣∣∣∣∣

‖f(u)‖

:= B̃‖f(u)‖.
Define

(3.4) K = {u ∈ C[0, 1] | u ≥ 0, min{u(t) | t ∈ [σ, 1− σ]} ≥ Γ‖u‖}.
It is obvious that K is a cone in C[0, 1]. Moreover, by Lemmas 2.2 and 2.4,
TK ⊂ K. It is also easy to check that T : K → K is completely continuous.

Now since f0 = 0, we may choose H1 > 0 so that f(u) ≤ εu for 0 < u
< H1, where ε > 0 satisfies

(3.5) ε
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)
≤ 1.

Thus, if u ∈ K and |u|0 = H1, then from (3.1)–(3.5) and the fact that
G(t, s) ≤ G(s, s) and 0 ≤ ψ(t) ≤ ψ(1), we have

Tu(t) =
1�

0

G(t, s)h(s)f(u(s)) ds(3.6)

+ A(h(·)f(u(·)))ψ(t) +B(h(·)f(u(·)))φ(t)

≤
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)
‖f(u)‖

≤ ε
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)
‖u‖ ≤ ‖u‖.
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Now if we let

(3.7) Ω1 = {u ∈ C[0, 1] | ‖u‖ < H1},
then (3.6) shows that ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1.

Further, since f∞ = ∞, there exists Ĥ2 > 0 such that f(u) ≥ %0u for
u ≥ Ĥ2, where %0 > 0 is chosen so that

(3.8) %0γ

1−σ�

σ

G(t0, s)h(s) ds ≥ 1.

Let H2 = max{2H1, Ĥ2/Γ} and Ω2 = {u ∈ C[0, 1] | ‖u‖ < H2}. Then
u ∈ K and ‖u‖ = H2 implies

min
σ≤t≤1−σ

u(t) ≥ Γ‖u‖ ≥ Ĥ2,

and so

Tu(t0) =
1�

0

G(t0, s)h(s)f(u(s)) ds(3.9)

+ A(h(·)f(u(·)))ψ(t) +B(h(·)f(u(·)))φ(t)

≥
1�

0

G(t0, s)h(s)f(u(s)) ds ≥
1−σ�

σ

G(t0, s)h(s)%0u(s) ds

≥ %0Γ

1−σ�

σ

G(t0, s)h(s) ds ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2. Therefore, by the first part of Theo-
rem C, T has a fixed point u in K ∩ (Ω2 \ Ω1) such that H1 ≤ ‖u‖ ≤ H2.
This completes the superlinear part of the theorem.

Sublinear case. Suppose next that f0 =∞ and f∞ = 0. We first choose
H3 > 0 such that f(y) ≥My for 0 < y < H3, where

(3.10) MΓ

1−σ�

σ

G(t0, s)h(s) ds ≥ 1.

By using the method to get (3.9), we obtain

Tu(t0) ≥
1�

0

G(t0, s)h(s)f(u(s)) ds(3.11)

≥
1−σ�

σ

G(t0, s)h(s)Mu(s) ds ≥MΓ

1−σ�

σ

G(t0, s)h(s) ds ‖u‖.
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Thus, if we let Ω3 = {u ∈ C[0, 1] | ‖u‖ < H3} then

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω3.

Now, since f∞ = 0, there exists Ĥ4 > 0 so that f(u) ≤ λu for u ≥ Ĥ4,
where λ > 0 satisfies

(3.12) λ
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)
≤ 1.

We consider two cases:
Case 1. Suppose f is bounded, say f(y) ≤ N for all y ∈ [0,∞). In this

case choose

H4 = max
{

2H3, N
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)}

so that for u ∈ K with ‖u‖ = H4 we have

Tu(t) =
1�

0

G(t, s)h(s)f(u(s)) ds+A(h(·)f(u(·)))ψ(t) +B(h(·)f(u(·)))φ(t)

≤
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖φ‖
)
N ≤ H4

and therefore ‖Tu‖ ≤ ‖u‖.
Case 2. If f is unbounded, then we know from (A1) that there exists

H4 > max{2H3, Ĥ4/Γ} such that

f(y) ≤ f(H4) for 0 < y ≤ H4.

Then for u ∈ K and ‖u‖ = H4, we have

Tu(t) =
1�

0

G(t, s)h(s)f(u(s)) ds+A(h(·)f(u(·)))ψ(t) +B(h(·)f(u(·)))φ(t)

≤
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖ψ‖
)
‖f(u)‖

≤ λ
(1�

0

G(s, s)h(s) ds+ Ã‖ψ‖+ B̃‖ψ‖
)
‖u‖ ≤ H4.

Therefore, in either case we may put

Ω4 = {u ∈ C[0, 1] | ‖u‖ < H4},
and for u ∈ K∩∂Ω4 we have ‖Tu‖ ≤ ‖u‖. By the second part of Theorem C,
it follows that BVP (1.1) has a positive solution. Thus, we have completed
the proof of Theorem 3.1.



m-point boundary value problems 275

Remark 3.4. Erbe, Hu and Wang [2] and Lian, Wong and Yeh [7] stud-
ied the existence of multiple positive solutions of the two-point boundary
value problem 




u′′ + g(t, u) = 0, 0 < t < 1,

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0.

It is easy to see from the proof of Theorem 3.1 that we can apply Lemmas 2.2
and 2.4 to establish the corresponding multiplicity results under condition
(H5) for the m-point boundary value problem





u′′ + g(t, u) = 0, 0 < t < 1,

αu(0)− βu′(0) =
m−2∑

i=1

aiu(ξi),

γu(1) + δu′(1) =
m−2∑

i=1

biu(ξi),

and extend the multiplicity results of [2, 7] without any difficulties.
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