Completeness of the inner k th Reiffen pseudometric

by Pawee ZapaŁowski (Kraków)

Abstract

We give an example of a Zalcman-type domain in \mathbb{C} which is complete with respect to the integrated form of the $(k+1)$ st Reiffen pseudometric, but not complete with respect to the k th one.

0. Introduction. In 1989 M . Klimek introduced for any domain in \mathbb{C}^{n} an extremal plurisubharmonic function that generalized Green's function of one complex variable. Using that function he defined a biholomorphically invariant pseudodistance and studied its basic properties. For details we refer the readers to [Kl]. Later, S. Kobayashi started to study the similar inner pseudodistance $\int A_{D}$, which is the integrated form of the Azukawa pseudometric A_{D} (see [Ko] for details). It turns out that in some cases the Azukawa pseudometric may be approximated by the k th Reiffen pseudometrics $\gamma_{D}^{(k)}$. In 1995 S . Nivoche (see $[\mathrm{Ni}])$ showed that $\lim _{k \rightarrow \infty} \gamma_{D}^{(k)}=A_{D}$ outside some pluripolar set for strictly hyperconvex domains D in \mathbb{C}^{n}. It seems that the study of properties of the integrated form $\int A_{D}$ of the Azukawa pseudodistance is more complicated than dealing with $\int \gamma_{D}^{(k)}$; one of the reasons is that in the definition of A_{D} we use a subfamily of plurisubharmonic functions while when defining $\gamma_{D}^{(k)}$ we may use only a subfamily of holomorphic functions. Therefore, in view of S. Nivoche's result it is convenient to begin with the study of $\int \gamma_{D}^{(k)}$. For the definitions and basic properties of all pseudometrics and pseudodistances mentioned above, we refer the readers to [Ja-Pf].

The aim of the paper is to show that there exists a bounded domain D in \mathbb{C} which distinguishes completeness of the integrated forms of the k th and $(k+1)$ st Reiffen pseudometric, i.e. D is $\int \gamma_{D}^{(k+1)}$-complete but not $\int \gamma_{D}^{(k)}$ complete. Our example is a Zalcman-type domain (see definitions below).

[^0]We also show that for any Zalcman-type domain that distinguishes completeness as above, the relevant pseudometric $\gamma_{D}^{(k)}$ has to satisfy a special growth condition.

1. Definitions and main results. Let E denote the unit disc in \mathbb{C} and let $D \subset \mathbb{C}$ be an arbitrary domain. For $k \in \mathbb{N}$ we define

$$
\gamma_{D}^{(k)}(z ; X)=\sup \left\{\left|\frac{1}{k!} f^{(k)}(z) X\right|^{1 / k}: f \in \mathcal{O}(D, E), \operatorname{ord}_{z} f \geq k\right\}
$$

where $\operatorname{ord}_{z} f$ denotes the order of the zero of f at z. We call $\gamma_{D}^{(k)}$ the k th Reiffen pseudometric.

For a piecewise \mathcal{C}^{1}-curve $\alpha:[0,1] \rightarrow D$ (we write $\left.\alpha \in \mathcal{C}_{\mathrm{p}}^{1}([0,1], D)\right)$ put

$$
L_{\gamma_{D}^{(k)}}(\alpha):=\int_{0}^{1} \gamma_{D}^{(k)}\left(\alpha(t) ; \alpha^{\prime}(t)\right) d t
$$

Define

$$
\begin{aligned}
& \int \gamma_{D}^{(k)}(z, w) \\
& \quad:=\inf \left\{L_{\gamma_{D}^{(k)}}(\alpha): \alpha \in \mathcal{C}_{\mathrm{p}}^{1}([0,1], D), \alpha(0)=z, \alpha(1)=w\right\}, \quad z, w \in D
\end{aligned}
$$

We call $\int \gamma_{D}^{(k)}$ the integrated form of $\gamma_{D}^{(k)}$.
Now we recall some properties of pseudodistances we will use in what follows (see [Ja-Pf] for details). Observe that

$$
\begin{equation*}
c_{D} \leq c_{D}^{i}=\int \gamma_{D}^{(1)} \leq \int \gamma_{D}^{(k)}, \quad k \in \mathbb{N} \tag{1}
\end{equation*}
$$

where c_{D} (resp. c_{D}^{i}) denotes the Carathéodory (resp. inner Carathéodory) pseudodistance on D. We will also use the fact that if $E_{*}:=E \backslash\{0\}$, then

$$
\begin{equation*}
c_{E_{*}}=\left.c_{E}\right|_{E_{*} \times E_{*}} \tag{2}
\end{equation*}
$$

It should be pointed out that all pseudodistances we are interested in are contractive, i.e.

$$
d_{D}(w, z) \geq d_{G}(f(w), f(z)), \quad w, z \in D, f \in \mathcal{O}(D, G)
$$

where $d=c$ or $d=\int \gamma^{(k)}$.
It is well known that every domain $D \subset \mathbb{C}$ biholomorphic to a bounded domain is c-hyperbolic (i.e. c_{D} is a distance). Hence, using (1), we find that $\int \gamma_{D}^{(k)}$ is also a distance for any bounded domain D.

We use a special notion of completeness. Let us recall the relevant definitions. Let D be a bounded domain in \mathbb{C}.

We say that D is $\int \gamma_{D}^{(k)}$-complete if any $\int \gamma_{D}^{(k)}$-Cauchy sequence $\left(z_{n}\right)_{n \in \mathbb{N}} \subset D$ converges to a point $z_{0} \in D$ with respect to the natural topology in D, i.e. $\left|z_{n}-z_{0}\right| \rightarrow 0$ as $n \rightarrow \infty$.

We call a domain $D \int \gamma_{D}^{(k)}$-finitely compact if all $\int \gamma_{D}^{(k)}$-balls in D are relatively compact (with respect to the natural topology in D).

Since $\int \gamma_{D}^{(k)}$ is an inner distance (cf. [Ja-Pf, Proposition 4.3.2]) for any $k \in \mathbb{N}$, it turns out that these different notions are equivalent (see [Ja-Pf, Theorem 7.3.2]).

Before we present our main result we need the following definition. Let $B(a, r):=\{z \in \mathbb{C}:|z-a|<r\}$. For all sequences $\left(a_{n}\right),\left(r_{n}\right) \subset \mathbb{R}_{>0}$ such that $a_{n} \rightarrow 0,2 r_{n}<a_{n}, \bar{B}\left(a_{n}, r_{n}\right) \subset E_{*}$ for $n \in \mathbb{N}$ and $\bar{B}\left(a_{n}, r_{n}\right) \cap \bar{B}\left(a_{m}, r_{m}\right)=\emptyset$ whenever $n \neq m$, we define

$$
\begin{equation*}
D:=E_{*} \backslash \bigcup_{n=1}^{\infty} \bar{B}\left(a_{n}, r_{n}\right) \tag{3}
\end{equation*}
$$

We call such a domain a Zalcman-type domain.
Our main result is the following
Theorem 1. For any $k \in \mathbb{N}$ there exists a Zalcman-type domain D_{k} which is $\int \gamma_{D_{k}}^{(k+1)}$-complete, but not $\int \gamma_{D_{k}}^{(k)}$-complete.

As we will see in the proof of Theorem $1, \gamma_{D}^{(k)}$ satisfies some special growth conditions. The following result shows how carefully we must choose the appropriate domain.

Theorem 2. Let $D \subset \mathbb{C}$ be a bounded domain, $d_{D}(z):=\inf _{w \in \partial D}|z-w|$, $k, l \in \mathbb{N}$, and let $0 \leq \alpha<1$ be such that $\gamma_{D}^{(k)}(z ; 1) \leq c\left(d_{D}(z)\right)^{-\alpha}, z \in D$, for some positive constant c. Then

$$
\gamma_{D}^{(k+l)}(z ; 1) \leq c^{\prime}\left(d_{D}(z)\right)^{-\alpha^{\prime}}, \quad z \in D
$$

for some positive constants c^{\prime} and $\alpha^{\prime}<1$.
Since such growth gives us noncompleteness of the Zalcman-type domain D, we get

Corollary 3. If for a Zalcman-type domain D there exist positive constants c and $\alpha<1$ such that

$$
\limsup _{0>z \rightarrow 0} \gamma_{D}^{(k)}(z ; 1)<c|z|^{-\alpha}
$$

then D is $\int \gamma_{D}^{(l)}$-noncomplete for any $l \geq k$.
Therefore, to get Theorem 1 it is natural that we are interested in the domains for which $\int \gamma_{D}^{(k)}$ has growth tempered as follows:

$$
\gamma_{D}^{(k)}(z ; 1) \leq \frac{c}{d_{D}(z)\left(-\log d_{D}(z)\right)^{\alpha}}, \quad \alpha>1
$$

for $z \in D$ such that $d_{D}(z)<1$.
2. Proof of Theorem 1. In the proof of Theorem 1 we will use the following lemmas. We present their proofs at the end of this section.

Lemma 4. If D is a Zalcman-type domain, then for every $k \in \mathbb{N}$ there exists a positive constant $c_{1}=c_{1}(k)$ such that for every $f \in \mathcal{O}(D, E)$ we have

$$
\left|f^{(k)}(z)\right| \leq c_{1}+c_{1} \sum_{n=1}^{\infty} \frac{r_{n}}{\left(a_{n}-z\right)^{k+1}}, \quad z \in[-1 / 2,0)
$$

Lemma 5. For every $k \in \mathbb{N}$ there exists a Zalcman-type domain D_{k} such that

$$
\begin{equation*}
\limsup _{0>z \rightarrow 0} \int \gamma_{D_{k}}^{(k)}(-1 / 2, z)<\infty \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{z \rightarrow 0} \int \gamma_{D_{k}}^{(k+1)}(w, z)=\infty, \quad w \in D_{k} \tag{b}
\end{equation*}
$$

Proof of Theorem 1. We fix $k \in \mathbb{N}$ and take D_{k} as in Lemma 5. The $\int \gamma_{D_{k}}^{(k)}$-noncompleteness of D_{k} is a direct consequence of (a).

Now we will prove that D_{k} is $\int \gamma_{D_{k}}^{(k+1)}$-complete. To do this we show that

$$
\lim _{z \rightarrow z_{0}} \int \gamma_{D_{k}}^{(k+1)}(w, z)=\infty, \quad z_{0} \in \partial D_{k}, w \in D_{k}
$$

We fix $w \in D_{k}$. There are three possibilities.
1° If $z_{0}=0$ then, using (b), we are done.
2° If $\left|z_{0}\right|=1$ then, using (1) and the contractivity of $\int \gamma^{(k+1)}$, we get

$$
\lim _{z \rightarrow z_{0}} \int \gamma_{D_{k}}^{(k+1)}(w, z) \geq \lim _{z \rightarrow z_{0}} \int \gamma_{E}^{(k+1)}(w, z)=\lim _{z \rightarrow z_{0}} c_{E}(w, z)=\infty
$$

3° If $z_{0} \in \partial B\left(a_{n}, r_{n}\right)$ then, using (1), contractivity of the Carathéodory pseudodistance and (2), we get

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \int \gamma_{D_{k}}^{(k+1)}(w, z) & \geq \lim _{z \rightarrow z_{0}} c_{D_{k}}(w, z) \geq \lim _{z \rightarrow z_{0}} c_{\mathbb{C} \backslash \bar{B}\left(a_{n}, r_{n}\right)}(w, z) \\
& =\lim _{z \rightarrow z_{0}} c_{E_{*}}\left(\frac{r_{n}}{w-a_{n}}, \frac{r_{n}}{z-a_{n}}\right) \\
& =\lim _{z \rightarrow z_{0}} c_{E}\left(\frac{r_{n}}{w-a_{n}}, \frac{r_{n}}{z-a_{n}}\right)=\infty
\end{aligned}
$$

since $\left|r_{n} /\left(z-a_{n}\right)\right| \rightarrow 1$ as $z \rightarrow z_{0}$.
We are left with the proofs of Lemmas 4 and 5.
Proof of Lemma 4. Let D be as in (3). We define

$$
D_{(s)}:=E \backslash\left(\bar{B}\left(a_{(s)}, r_{(s)}\right) \cup \bigcup_{n=1}^{s} \bar{B}\left(a_{n}, r_{n}\right)\right), \quad s \in \mathbb{N}
$$

where the numbers $a_{(s)}, r_{(s)}>0$ are chosen so that $0 \in B\left(a_{(s)}, r_{(s)}\right)$, $\bar{B}\left(a_{n}, r_{n}\right) \subset B\left(a_{(s)}, r_{(s)}\right)$ for $n>s$ and $\bar{B}\left(a_{(s)}, r_{(s)}\right) \cap \bar{B}\left(a_{s}, r_{s}\right)=\emptyset$. Obviously, $D_{(s)}$ is an $(s+2)$-connected domain and $D_{(s)} \subset D$. Observe that for $\varepsilon>0$ small enough

$$
D_{(s)}^{(\varepsilon)}:=(1-\varepsilon) E \backslash\left(\bar{B}\left(a_{(s)}, r_{(s)}+\varepsilon\right) \cup \bigcup_{n=1}^{s} \bar{B}\left(a_{n}, r_{n}+\varepsilon\right)\right) \subset \subset D_{(s)}
$$

is also an $(s+2)$-connected domain. Then the Cauchy integral formula for $D_{(s)}^{(\varepsilon)}$ gives us

$$
\begin{aligned}
f^{(k)}(z)= & \frac{k!}{2 \pi i} \int_{|\zeta|=1-\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d \zeta-\frac{k!}{2 \pi i} \int_{\left|\zeta-a_{(s)}\right|=r_{(s)}+\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d \zeta \\
& -\sum_{n=1}^{s} \frac{k!}{2 \pi i} \int_{\left|\zeta-a_{n}\right|=r_{n}+\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d \zeta, \quad z \in D_{(s)}^{(\varepsilon)}
\end{aligned}
$$

for every $f \in \mathcal{O}(D, E)$. Then for $z \in\left[-1 / 2, a_{(s)}-r_{(s)}-\varepsilon-\sqrt[2(k+1)]{r_{(s)}+\varepsilon}\right)$ we have

$$
\begin{aligned}
\left|f^{(k)}(z)\right| \leq & \frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{1-\varepsilon}{\left|(1-\varepsilon) e^{i t}-z\right|^{k+1}} d t \\
& +\frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{r_{(s)}+\varepsilon}{\left|\left(r_{(s)}+\varepsilon\right) e^{i t}+a_{(s)}-z\right|^{k+1}} d t \\
& +\sum_{n=1}^{s} \frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{r_{n}+\varepsilon}{\left|\left(r_{n}+\varepsilon\right) e^{i t}+a_{n}-z\right|^{k+1}} d t \\
\leq & k!\frac{1-\varepsilon}{(1 / 2-\varepsilon)^{k+1}}+k!\frac{r_{(s)}+\varepsilon}{\left(\sqrt[2(k+1)]{r_{(s)}+\varepsilon}\right)^{k+1}} \\
& +k!\sum_{n=1}^{s} \frac{r_{n}+\varepsilon}{\left(\frac{1}{2}\left(a_{n}-z-\varepsilon\right)\right)^{k+1}},
\end{aligned}
$$

since $a_{n}-z-\varepsilon>a_{n}>2 r_{n}$. Letting $\varepsilon \rightarrow 0$ we get

$$
\left|f^{(k)}(z)\right| \leq k!2^{k+1}+k!\sqrt{r_{(s)}}+k!2^{k+1} \sum_{n=1}^{s} \frac{r_{n}}{\left(a_{n}-z\right)^{k+1}}
$$

for $z \in\left[-1 / 2, a_{(s)}-r_{(s)}-2(k+1) / r_{(s)}\right)$.
Now, since s is an arbitrary natural number, we may let $s \rightarrow \infty$ to get

$$
\left|f^{(k)}(z)\right| \leq k!2^{k+1}+k!2^{k+1} \sum_{n=1}^{\infty} \frac{r_{n}}{\left(a_{n}-z\right)^{k+1}}, \quad z \in[-1 / 2,0)
$$

since $a_{(s)}$ and $r_{(s)}$ tend to 0 as $s \rightarrow \infty$.

Proof of Lemma 5. We fix $k \in \mathbb{N}$ and define

$$
\begin{equation*}
D_{k}:=E_{*} \backslash \bigcup_{n=4}^{\infty} \bar{B}\left(a_{n}, r_{k, n}\right) \tag{4}
\end{equation*}
$$

where $a_{n}:=2^{-n}, r_{k, n}:=2^{-n} n^{-k-1}$. It is easy to check that (4) is a Zalcman-type domain, since $a_{n+1}+r_{k, n+1}<a_{n}-r_{k, n}$ and $2 r_{k, n}<a_{n}$ for all $k \in \mathbb{N}, n \geq 4$.
(a) It is sufficient to show that

$$
\begin{equation*}
\gamma_{D_{k}}^{(k)}(z ; 1) \leq \frac{c_{2}}{-z(-\log (-z))^{(k+1) / k}}, \quad z \in[-1 / 2,0) \tag{5}
\end{equation*}
$$

for some absolute constant $c_{2}=c_{2}(k)>0$. Indeed, using (5), it is easy to get

$$
\limsup _{0>z \rightarrow 0} \int \gamma_{D_{k}}^{(k)}(-1 / 2, z) \leq \int_{-1 / 2}^{0} \gamma_{D_{k}}^{(k)}(z ; 1) d z<\infty
$$

and the proof of (a) is finished.
We will get (5) if we prove that

$$
\begin{equation*}
\left|f^{(k)}(z)\right| \leq \frac{c_{3}}{(-z)^{k}(-\log (-z))^{k+1}}, \quad z \in[-1 / 2,0), f \in \mathcal{O}\left(D_{k}, E\right) \tag{6}
\end{equation*}
$$

where $c_{3}=c_{3}(k)$ is a positive constant.
Now we will prove (6). Let $z \in[-1 / 2,0)$. Then there exist unique $m \in \mathbb{N}$ and $b \in(1,2]$ such that $z=-b / 2^{m}$. Observe that

$$
\sum_{n=4}^{\infty} \frac{r_{k, n}}{\left(a_{n}-z\right)^{k+1}} \leq \sum_{n=4}^{m} \frac{r_{k, n}}{a_{n}^{k+1}}+\sum_{n=m}^{\infty} \frac{r_{k, n}}{(-z)^{k+1}}
$$

Now we estimate both series. For the first one we have

$$
\begin{equation*}
\sum_{n=4}^{m} \frac{r_{k, n}}{a_{n}^{k+1}}=\sum_{n=4}^{m} \frac{2^{n k}}{n^{k+1}} \leq \frac{2^{m k}}{m^{k+1}} \sum_{n=0}^{\infty}\left(\frac{8}{9}\right)^{n}=9 \frac{2^{m k}}{m^{k+1}} \tag{7}
\end{equation*}
$$

while the second series is estimated as follows:

$$
\begin{equation*}
\sum_{n=m}^{\infty} \frac{r_{k, n}}{(-z)^{k+1}}=\sum_{n=m}^{\infty} \frac{2^{m(k+1)}}{2^{n} n^{k+1} b^{k+1}} \leq \frac{2^{m(k+1)}}{2^{m} m^{k+1}} \sum_{n=0}^{\infty} \frac{1}{2^{n}} \leq 2 \frac{2^{m k}}{m^{k+1}} \tag{8}
\end{equation*}
$$

Using the estimates (7) and (8) we get

$$
\sum_{n=4}^{\infty} \frac{r_{k, n}}{\left(a_{n}-z\right)^{k+1}} \leq \frac{11 \cdot 2^{k}(\log 2)^{k+1} 2^{m k}}{b^{k}\left(\log \left(2^{m} / b\right)\right)^{k+1}}=\frac{c_{4}}{(-z)^{k}(-\log (-z))^{k+1}}
$$

where $c_{4}=c_{4}(k):=11 \cdot 2^{k}(\log 2)^{k+1}$. Using Lemma 4, we obtain

$$
\left|f^{(k)}(z)\right| \leq c_{1}\left(1+\frac{c_{4}}{(-z)^{k}(-\log (-z))^{k+1}}\right) \leq \frac{2 c_{1} c_{4}}{(-z)^{k}(-\log (-z))^{k+1}}
$$

which gives us (6) with the constant $c_{3}:=2 c_{1} c_{4}$.
(b) We show that

$$
\begin{equation*}
\gamma_{D_{k}}^{(k+1)}(z ; 1) \geq \frac{c_{5}}{|z| \log (1 /|z|)}, \quad|z|<1 / 4 \tag{9}
\end{equation*}
$$

for some absolute constant $c_{5}=c_{5}(k)>0$.
Assume for a while that (9) holds. We fix $w \in D_{k}$. Then for any $|z|<1 / 4$ and for any curve $\alpha \in \mathcal{C}_{p}^{1}\left([0,1], D_{k}\right)$ such that $\alpha(0)=z, \alpha(1)=w$ we have

$$
\begin{equation*}
\int_{0}^{1} \gamma_{D_{k}}^{(k+1)}\left(\alpha(t) ; \alpha^{\prime}(t)\right) d t \geq \int_{0}^{t_{\alpha}} \frac{c_{5}\left|\alpha^{\prime}(t)\right| d t}{|\alpha(t)| \log (1 /|\alpha(t)|)} \tag{10}
\end{equation*}
$$

where $t_{\alpha}:=\min \{t \in[0,1]:|\alpha(t)|=1 / 4\}$; if $|\alpha(t)|<1 / 4$ for $t \in[0,1]$, then $t_{\alpha}:=1$. Observe that, since

$$
\frac{\partial}{\partial t}|\alpha(t)|=\frac{\alpha^{\prime}(t) \overline{\alpha(t)}+\overline{\alpha^{\prime}(t)} \alpha(t)}{2|\alpha(t)|}=\frac{\operatorname{Re}\left(\alpha^{\prime}(t) \overline{\alpha(t)}\right)}{|\alpha(t)|} \leq\left|\alpha^{\prime}(t)\right|
$$

the following estimate holds (if $t_{\alpha}=1$ then, in what follows, instead of $1 / 4$ we write $|w|)$:

$$
\int_{0}^{t_{\alpha}} \frac{\left|\alpha^{\prime}(t)\right| d t}{|\alpha(t)| \log (1 /|\alpha(t)|)} \geq \int_{|z|}^{1 / 4} \frac{d x}{x \log (1 / x)}=\log \log \frac{1}{|z|}-\log \log 4
$$

Taking the infimum over all such curves α, using (10) and the estimate above, we obtain

$$
\int \gamma_{D_{k}}^{(k+1)}(w, z) \geq c_{5}\left(\log \log \frac{1}{|z|}-\log \log 4\right)
$$

Hence, if we let $z \rightarrow 0$, we obtain (b).
It remains to prove (9). According to the definition of $\gamma_{D_{k}}^{(k+1)}$ we will get (9) if we prove that for every $|z|<1 / 4$ there exists a function $f_{z} \in \mathcal{O}\left(D_{k}, E\right)$ such that $f_{z}(z)=f_{z}^{\prime}(z)=\ldots=f_{z}^{(k)}(z)=0$ and

$$
\begin{equation*}
\left|f_{z}^{(k+1)}(z)\right| \geq \frac{c_{6}}{(|z| \log (1 /|z|))^{k+1}} \tag{11}
\end{equation*}
$$

with some absolute constant $c_{6}=c_{6}(k)>0$.
Now we will construct such a function. Let $|z|<1 / 4$. Then there exist unique $m \in \mathbb{N}, b \in(1,2]$ and $\theta \in[0,2 \pi)$ such that $z=b e^{i \theta} / 2^{m}$. Observe that $m \geq 3$. We define

$$
\widetilde{f}_{z}(\lambda):=\sum_{j=0}^{k} \alpha_{b, \theta}^{j}\left(2^{-m-j-1}-\lambda\right)^{-1}+2^{m+1} \beta_{b, \theta}, \quad \lambda \in D_{k}
$$

where $\alpha_{b, \theta}^{0}:=1$ and $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}, \beta_{b, \theta} \in \mathbb{C}$ are constants, depending only on b and θ (and not on m), taken to satisfy the condition $\tilde{f}_{z}(z)=\ldots=$ $\widetilde{f}_{z}^{(k)}(z)=0$. Clearly, \widetilde{f}_{z} is a holomorphic function in D_{k}.

In Lemma 6 below we show that the definition of \widetilde{f}_{z} is correct (i.e. that the numbers $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}, \beta_{b, \theta}$ exist), but first observe that

$$
\begin{equation*}
\left[\left(2^{-m-j-1}-\lambda\right)^{-1}\right]^{(l)}=l!\left(2^{-m-j-1}-\lambda\right)^{-l-1} \tag{12}
\end{equation*}
$$

Lemma 6. For every $z=b e^{i \theta} / 2^{m}$, where $b \in[1,2], \theta \in[0,2 \pi]$ and $m \geq 3$, the numbers $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}, \beta_{b, \theta}$ as above exist and their moduli can be estimated from above by a positive constant α which is independent of b and θ. Moreover,

$$
B_{k, b, \theta}:=\sum_{j=0}^{k}\left(\frac{2^{j}}{1-2^{j+1} b e^{i \theta}}\right)^{k+2} \alpha_{b, \theta}^{j} \neq 0
$$

In particular, $B_{k}:=\min \left\{\left|B_{k, b, \theta}\right|: b \in[1,2], \theta \in[0,2 \pi]\right\}>0$.
Later we will give the proof of Lemma 6. Using (12) we obtain

$$
\begin{aligned}
\left|\widetilde{f}_{z}^{(k+1)}(z)\right| & =\left|\sum_{j=0}^{k} \alpha_{b, \theta}^{j}(k+1)!\left(\frac{1}{2^{m+j+1}}-\frac{b e^{i \theta}}{2^{m}}\right)^{-(k+2)}\right| \\
& \geq\left|\sum_{j=0}^{k} \alpha_{b, \theta}^{j}\left(\frac{2^{m+j+1}}{1-2^{j+1} b e^{i \theta}}\right)^{k+2}\right| \\
& =2^{(m+1)(k+2)}\left|B_{k, b, \theta}\right| \geq c_{7} 2^{m(k+2)}
\end{aligned}
$$

where c_{7} is a positive constant depending only on k.
Now, with the help of Lemma 6, we estimate the supremum of the function \widetilde{f}_{z} on D_{k} :

$$
\begin{aligned}
\left\|\widetilde{f}_{z}\right\|_{D_{k}} & \leq \sum_{j=0}^{k} \frac{\left|\alpha_{b, \theta}^{j}\right|}{r_{k, m+j+1}}+2^{m+1}\left|\beta_{b, \theta}\right| \\
& \leq \frac{\alpha(k+2)}{r_{k, m+k+1}}=\alpha(k+2) 2^{m+k+1}(m+k+1)^{k+1} \\
& \leq c_{8} 2^{m}(m-1)^{k+1}
\end{aligned}
$$

where $c_{8}>0$ depends only on k.
Observe that for $f_{z}:=\tilde{f}_{z} /\left\|\tilde{f}_{z}\right\|_{D_{k}} \in \mathcal{O}\left(D_{k}, E\right)$ we obtain (11), because

$$
\left|f_{z}^{(k+1)}(z)\right| \geq \frac{c_{7} 2^{m(k+1)}}{c_{8}(m-1)^{k+1}} \geq \frac{c_{7}(\log 2)^{k+1} 2^{m(k+1)}}{c_{8} b^{k+1}\left(\log \left(2^{m} / b\right)\right)^{k+1}}=\frac{c_{6}}{(|z| \log (1 /|z|))^{k+1}}
$$

Thus the proof of Lemma 5 is complete.

We are left with the proof of Lemma 6.
Proof of Lemma 6. First we will construct $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}$. We show that the system of k equations

$$
\begin{equation*}
\widetilde{f}_{z}^{\prime}(z)=\ldots=\widetilde{f}_{z}^{(k)}(z)=0 \tag{13}
\end{equation*}
$$

in k unknowns $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}$ always has a solution, i.e. its determinant is not zero.

Observe that, by (12), the system (13) is equivalent to

$$
\begin{equation*}
\sum_{j=0}^{k} l!\left(\frac{2^{m+j+1}}{1-2^{j+1} b e^{i \theta}}\right)^{l+1} \alpha_{b, \theta}^{j}=0, \quad l=1, \ldots, k \tag{14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{k}\left(\frac{2^{j}}{1-2^{j+1} b e^{i \theta}}\right)^{l+1} \alpha_{b, \theta}^{j}=-\left(\frac{1}{1-2 b e^{i \theta}}\right)^{l+1}, \quad l=1, \ldots, k \tag{15}
\end{equation*}
$$

To simplify notation put

$$
A_{b, \theta}^{j}:=\frac{2^{j}}{1-2^{j+1} b e^{i \theta}}, \quad j=0, \ldots, k
$$

and observe that all $\left|A_{b, \theta}^{j}\right| \in[1 / 8,1]$ and that $A_{b, \theta}^{\mu} \neq A_{b, \theta}^{\nu}$ whenever $\mu \neq \nu$. Now (15) is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{k}\left(A_{b, \theta}^{j}\right)^{l+1} \alpha_{b, \theta}^{j}=-\left(A_{b, \theta}^{0}\right)^{l+1}, \quad l=1, \ldots, k \tag{16}
\end{equation*}
$$

and it is easy to see that

$$
\begin{equation*}
\left|\operatorname{det}\left[\left(A_{b, \theta}^{j}\right)^{l+1}\right]_{j, l=1}^{k}\right|=\left|A_{b, \theta}^{1} \ldots A_{b, \theta}^{k}\right|^{2} \prod_{k \geq \mu>\nu \geq 1}\left|A_{b, \theta}^{\mu}-A_{b, \theta}^{\nu}\right| \geq \varepsilon>0 \tag{17}
\end{equation*}
$$

where ε is a constant independent of b and θ. Hence the choice of the numbers $\alpha_{b, \theta}^{1}, \ldots, \alpha_{b, \theta}^{k}$ is always possible; now we may take

$$
\beta_{b, \theta}:=-\sum_{j=0}^{k} A_{b, \theta}^{j} \alpha_{b, \theta}^{j} .
$$

Now we prove the existence of the constant α. Since

$$
\left|\beta_{b, \theta}\right| \leq \sum_{j=0}^{k}\left|A_{b, \theta}^{j} \alpha_{b, \theta}^{j}\right| \leq(k+1) \max \left\{\left|\alpha_{b, \theta}^{j}\right|: 0 \leq j \leq k\right\}
$$

it is enough to deal with the numbers $\alpha_{b, \theta}^{j}$.

Observe that $\left|A_{b, \theta}^{j}\right|^{l+1} \in\left[2^{-3(k+1)}, 1\right]$ for $j=0, \ldots, k, l=1, \ldots, k, b \in$ $[1,2]$ and $\theta \in[0,2 \pi]$. Since det is a continuous function, it is bounded on compact sets. This observation and (17) give us global upper bounds $\alpha^{1}, \ldots, \alpha^{k}$ of $\left|\alpha_{b, \theta}^{1}\right|, \ldots,\left|\alpha_{b, \theta}^{k}\right|$, independent of b and θ. Hence one may take

$$
\alpha:=(k+1) \max \left\{\left|\alpha^{j}\right|: 0 \leq j \leq k\right\}
$$

It remains to prove that $B_{k, b, \theta} \neq 0$. Observe that this is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{k}\left(A_{b, \theta}^{j}\right)^{k+2} \alpha_{b, \theta}^{j} \neq-\left(A_{b, \theta}^{0}\right)^{k+2} \tag{18}
\end{equation*}
$$

Suppose (18) does not hold. Then we obtain the system of $k+1$ equations

$$
\begin{equation*}
\sum_{j=1}^{k}\left(A_{b, \theta}^{j}\right)^{l+1} \alpha_{b, \theta}^{j}=-\left(A_{b, \theta}^{0}\right)^{l+1}, \quad l=1, \ldots, k+1 \tag{19}
\end{equation*}
$$

which has the only solution $\alpha_{b, \theta}^{j}, j=1, \ldots, k$. Now, if we remove from (19) the first equation, we obtain the system of k equations

$$
\begin{equation*}
\sum_{j=1}^{k}\left(A_{b, \theta}^{j}\right)^{l+1} \alpha_{b, \theta}^{j}=-\left(A_{b, \theta}^{0}\right)^{l+1}, \quad l=2, \ldots, k+1 \tag{20}
\end{equation*}
$$

which also has the same unique solution $\alpha_{b, \theta}^{j}, j=1, \ldots, k$. But if we compare the solutions of (16) and (20) we get

$$
A_{b, \theta}^{0} / A_{b, \theta}^{j}=1, \quad j=1, \ldots, k
$$

which is impossible and, consequently, (18) holds.
Now, since $\left|B_{k, b, \theta}\right|$ is, with respect to variables (b, θ), a positive and continuous function on the compact set $[1,2] \times[0,2 \pi]$, we conclude that $B_{k}>0$ and the proof of Lemma 6 is finished.
3. Proof of Theorem 2. In the proof of Theorem 2 we will use the following lemma.

Lemma 7. If $D \subset \mathbb{C}$ is a bounded domain, then

$$
\frac{\gamma_{D}^{(k)}\left(z_{0} ; 1\right)}{\left(d_{D}\left(z_{0}\right)\right)^{l / k}} \geq\left(\gamma_{D}^{(k+l)}\left(z_{0} ; 1\right)\right)^{(k+l) / k}, \quad z_{0} \in D, k, l \in \mathbb{N}
$$

Proof of Lemma 7. Fix $k, l \in \mathbb{N}$ and $z_{0} \in D$. Then for $f \in \mathcal{O}(D, E)$ such that $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\ldots=f^{(k+l-1)}\left(z_{0}\right)=0$ we define

$$
g(z):= \begin{cases}f(z) /\left(z-z_{0}\right)^{l}, & z \neq z_{0} \\ 0, & z=z_{0}\end{cases}
$$

Observe that g is a holomorphic function on D. Moreover, using the Taylor expansion of f at z_{0} we obtain

$$
g(z)=\sum_{j=k+l}^{\infty} \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j-l}, \quad z \in D
$$

Then

$$
\begin{equation*}
g^{(m)}\left(z_{0}\right)=0, \quad m=0,1, \ldots, k-1 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{(k)}\left(z_{0}\right)=\frac{k!}{(k+l)!} f^{(k+l)}\left(z_{0}\right) \tag{22}
\end{equation*}
$$

From the maximum principle we get $\|g\|_{D} \leq 1 /\left(d_{D}\left(z_{0}\right)\right)^{l}$. Therefore, by $(21), h:=\left(d_{D}\left(z_{0}\right)\right)^{l} g \in \mathcal{O}(D, E)$ satisfies the conditions in the definition of the k th Reiffen pseudometric. Hence, using (22), we obtain

$$
\begin{aligned}
\gamma_{D}^{(k)}\left(z_{0} ; 1\right) & \geq \sup _{h}\left(\frac{1}{k!}\left|h^{(k)}\left(z_{0}\right)\right|\right)^{1 / k}=\left(\frac{\left(d_{D}\left(z_{0}\right)\right)^{l}}{(k+l)!} \sup _{f}\left|f^{(k+l)}\left(z_{0}\right)\right|\right)^{1 / k} \\
& =\left(\left(d_{D}\left(z_{0}\right)\right)^{l}\left(\gamma_{D}^{(k+l)}\left(z_{0} ; 1\right)\right)^{k+l}\right)^{1 / k} \\
& =\left(d_{D}\left(z_{0}\right)\right)^{l / k}\left(\gamma_{D}^{(k+l)}\left(z_{0} ; 1\right)\right)^{(k+l) / k}
\end{aligned}
$$

and the proof of Lemma 7 is complete.
Proof of Theorem 2. From Lemma 7 we get

$$
\gamma_{D}^{(k+l)}(z ; 1) \leq \frac{\left(\gamma_{D}^{(k)}(z ; 1)\right)^{k /(k+l)}}{\left(d_{D}(z)\right)^{l /(k+l)}}, \quad z \in D, k, l \in \mathbb{N}
$$

Now, if $\gamma_{D}^{(k)}(z ; 1) \leq c\left(d_{D}(z)\right)^{-\alpha}$ then

$$
\gamma_{D}^{(k+l)}(z ; 1) \leq \frac{c^{k /(k+l)}}{\left(d_{D}(z)\right)^{(\alpha k+l) /(k+l)}}=\frac{c^{\prime}}{\left(d_{D}(z)\right)^{\alpha^{\prime}}}, \quad z \in D, k, l \in \mathbb{N}
$$

where $c^{\prime}:=c^{k /(k+l)}$ and $\alpha^{\prime}:=(\alpha k+l) /(k+l)<1$.
Acknowledgements. The ideas of the paper come from fruitful conversations with Professor W. Zwonek. I would like to thank him.

References

[Ja-Pf] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Expositions Math. 9, de Gruyter, Berlin, 1993.
[Kl] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240.
[Ko] S. Kobayashi, Hyperbolic Complex Spaces, Grundlehren Math. Wiss. 318, Springer, 1998.
[Ni] S. Nivoche, The pluricomplex Green function, capacitative notions and approximation problems in \mathbb{C}^{n}, Indiana Univ. Math. J. 44 (1995), 489-510.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: zapalows@im.uj.edu.pl

Reçu par la Rédaction le 28.3.2002

[^0]: 2000 Mathematics Subject Classification: Primary 32F45.
 Key words and phrases: completeness, k th Carathéodory-Reiffen pseudometric, inner k th Carathéodory-Reiffen pseudometric.

