Completeness of the inner kth Reiffen pseudometric

by Paweł Zapałowski (Kraków)

Abstract. We give an example of a Zalcman-type domain in \mathbb{C} which is complete with respect to the integrated form of the (k+1)st Reiffen pseudometric, but not complete with respect to the kth one.

0. Introduction. In 1989 M. Klimek introduced for any domain in \mathbb{C}^n an extremal plurisubharmonic function that generalized Green's function of one complex variable. Using that function he defined a biholomorphically invariant pseudodistance and studied its basic properties. For details we refer the readers to [K]. Later, S. Kobayashi started to study the similar inner pseudodistance (A_D) , which is the integrated form of the Azukawa pseudometric A_D (see [Ko] for details). It turns out that in some cases the Azukawa pseudometric may be approximated by the kth Reiffen pseudometrics $\gamma_D^{(k)}$. In 1995 S. Nivoche (see [Ni]) showed that $\lim_{k\to\infty} \gamma_D^{(k)} = A_D$ outside some pluripolar set for strictly hyperconvex domains D in \mathbb{C}^n . It seems that the study of properties of the integrated form Λ_D of the Azukawa pseudodistance is more complicated than dealing with $\int \gamma_D^{(k)}$; one of the reasons is that in the definition of A_D we use a subfamily of plurisubharmonic functions while when defining $\gamma_D^{(k)}$ we may use only a subfamily of holomorphic functions. Therefore, in view of S. Nivoche's result it is convenient to begin with the study of $\gamma_D^{(k)}$. For the definitions and basic properties of all pseudometrics and pseudodistances mentioned above, we refer the readers to [Ja-Pf].

The aim of the paper is to show that there exists a bounded domain Din \mathbb{C} which distinguishes completeness of the integrated forms of the *k*th and (k+1)st Reiffen pseudometric, i.e. D is $\int \gamma_D^{(k+1)}$ -complete but not $\int \gamma_D^{(k)}$ complete. Our example is a Zalcman-type domain (see definitions below).

²⁰⁰⁰ Mathematics Subject Classification: Primary 32F45.

Key words and phrases: completeness, kth Carathéodory–Reiffen pseudometric, inner kth Carathéodory–Reiffen pseudometric.

We also show that for any Zalcman-type domain that distinguishes completeness as above, the relevant pseudometric $\gamma_D^{(k)}$ has to satisfy a special growth condition.

1. Definitions and main results. Let *E* denote the unit disc in \mathbb{C} and let $D \subset \mathbb{C}$ be an arbitrary domain. For $k \in \mathbb{N}$ we define

$$\gamma_D^{(k)}(z;X) = \sup\left\{ \left| \frac{1}{k!} f^{(k)}(z)X \right|^{1/k} : f \in \mathcal{O}(D,E), \operatorname{ord}_z f \ge k \right\},\$$

where $\operatorname{ord}_z f$ denotes the order of the zero of f at z. We call $\gamma_D^{(k)}$ the kth Reiffen pseudometric.

For a piecewise \mathcal{C}^1 -curve $\alpha : [0,1] \to D$ (we write $\alpha \in \mathcal{C}^1_p([0,1],D)$) put

$$L_{\gamma_{D}^{(k)}}(\alpha) := \int_{0}^{1} \gamma_{D}^{(k)}(\alpha(t); \alpha'(t)) \, dt.$$

Define

$$\begin{split} & \int \gamma_D^{(k)}(z,w) \\ & := \inf \{ L_{\gamma_D^{(k)}}(\alpha) : \alpha \in \mathcal{C}_{\mathbf{p}}^1([0,1],D), \ \alpha(0) = z, \ \alpha(1) = w \}, \quad z,w \in D. \end{split}$$

We call $\int \gamma_D^{(k)}$ the integrated form of $\gamma_D^{(k)}$.

Now we recall some properties of pseudodistances we will use in what follows (see [Ja-Pf] for details). Observe that

(1)
$$c_D \le c_D^i = \int \gamma_D^{(1)} \le \int \gamma_D^{(k)}, \quad k \in \mathbb{N},$$

where c_D (resp. c_D^i) denotes the Carathéodory (resp. inner Carathéodory) pseudodistance on D. We will also use the fact that if $E_* := E \setminus \{0\}$, then

$$(2) c_{E_*} = c_E|_{E_* \times E_*}$$

It should be pointed out that all pseudodistances we are interested in are contractive, i.e.

$$d_D(w,z) \ge d_G(f(w), f(z)), \quad w, z \in D, \ f \in \mathcal{O}(D,G),$$

where $d = c$ or $d = \int \gamma^{(k)}$.

It is well known that every domain $D \subset \mathbb{C}$ biholomorphic to a bounded domain is c-hyperbolic (i.e. c_D is a distance). Hence, using (1), we find that $\int \gamma_D^{(k)}$ is also a distance for any bounded domain D.

We use a special notion of completeness. Let us recall the relevant defi-

nitions. Let D be a bounded domain in \mathbb{C} . We say that D is $\int \gamma_D^{(k)}$ -complete if any $\int \gamma_D^{(k)}$ -Cauchy sequence $(z_n)_{n \in \mathbb{N}} \subset D$ converges to a point $z_0 \in D$ with respect to the natural topology in D, i.e. $|z_n - z_0| \to 0 \text{ as } n \to \infty.$

We call a domain $D \int \gamma_D^{(k)}$ -finitely compact if all $\int \gamma_D^{(k)}$ -balls in D are relatively compact (with respect to the natural topology in D).

Since $\int \gamma_D^{(k)}$ is an inner distance (cf. [Ja-Pf, Proposition 4.3.2]) for any $k \in \mathbb{N}$, it turns out that these different notions are equivalent (see [Ja-Pf, Theorem 7.3.2]).

Before we present our main result we need the following definition. Let $B(a,r) := \{z \in \mathbb{C} : |z-a| < r\}$. For all sequences $(a_n), (r_n) \subset \mathbb{R}_{>0}$ such that $a_n \to 0, \ 2r_n < a_n, \ \overline{B}(a_n, r_n) \subset E_*$ for $n \in \mathbb{N}$ and $\overline{B}(a_n, r_n) \cap \overline{B}(a_m, r_m) = \emptyset$ whenever $n \neq m$, we define

(3)
$$D := E_* \setminus \bigcup_{n=1}^{\infty} \overline{B}(a_n, r_n).$$

We call such a domain a Zalcman-type domain.

Our main result is the following

THEOREM 1. For any $k \in \mathbb{N}$ there exists a Zalcman-type domain D_k which is $\int \gamma_{D_k}^{(k+1)}$ -complete, but not $\int \gamma_{D_k}^{(k)}$ -complete.

As we will see in the proof of Theorem 1, $\gamma_D^{(k)}$ satisfies some special growth conditions. The following result shows how carefully we must choose the appropriate domain.

THEOREM 2. Let $D \subset \mathbb{C}$ be a bounded domain, $d_D(z) := \inf_{w \in \partial D} |z - w|$, $k, l \in \mathbb{N}$, and let $0 \leq \alpha < 1$ be such that $\gamma_D^{(k)}(z; 1) \leq c(d_D(z))^{-\alpha}$, $z \in D$, for some positive constant c. Then

 $\gamma_D^{(k+l)}(z;1) \le c'(d_D(z))^{-\alpha'}, \quad z \in D,$

for some positive constants c' and $\alpha' < 1$.

Since such growth gives us noncompleteness of the Zalcman-type domain D, we get

COROLLARY 3. If for a Zalcman-type domain D there exist positive constants c and $\alpha < 1$ such that

$$\limsup_{0 > z \to 0} \gamma_D^{(k)}(z; 1) < c|z|^{-\alpha},$$

then D is $\int \gamma_D^{(l)}$ -noncomplete for any $l \ge k$.

Therefore, to get Theorem 1 it is natural that we are interested in the domains for which $\int \gamma_D^{(k)}$ has growth tempered as follows:

$$\gamma_D^{(k)}(z;1) \le \frac{c}{d_D(z)(-\log d_D(z))^{\alpha}}, \quad \alpha > 1,$$

for $z \in D$ such that $d_D(z) < 1$.

2. Proof of Theorem 1. In the proof of Theorem 1 we will use the following lemmas. We present their proofs at the end of this section.

LEMMA 4. If D is a Zalcman-type domain, then for every $k \in \mathbb{N}$ there exists a positive constant $c_1 = c_1(k)$ such that for every $f \in \mathcal{O}(D, E)$ we have

$$|f^{(k)}(z)| \le c_1 + c_1 \sum_{n=1}^{\infty} \frac{r_n}{(a_n - z)^{k+1}}, \quad z \in [-1/2, 0).$$

LEMMA 5. For every $k \in \mathbb{N}$ there exists a Zalcman-type domain D_k such that

(a)
$$\limsup_{0>z\to 0} \int \gamma_{D_k}^{(k)}(-1/2,z) < \infty,$$

(b)
$$\lim_{z \to 0} \int \gamma_{D_k}^{(k+1)}(w, z) = \infty, \quad w \in D_k.$$

Proof of Theorem 1. We fix $k \in \mathbb{N}$ and take D_k as in Lemma 5. The $\int \gamma_{D_k}^{(k)}$ -noncompleteness of D_k is a direct consequence of (a).

Now we will prove that D_k is $\int \gamma_{D_k}^{(k+1)}$ -complete. To do this we show that

$$\lim_{z \to z_0} \int \gamma_{D_k}^{(k+1)}(w, z) = \infty, \quad z_0 \in \partial D_k, \ w \in D_k.$$

We fix $w \in D_k$. There are three possibilities.

 1° If $z_0 = 0$ then, using (b), we are done.

2° If $|z_0| = 1$ then, using (1) and the contractivity of $\int \gamma^{(k+1)}$, we get

$$\lim_{z \to z_0} \int \gamma_{D_k}^{(k+1)}(w, z) \ge \lim_{z \to z_0} \int \gamma_E^{(k+1)}(w, z) = \lim_{z \to z_0} c_E(w, z) = \infty.$$

3° If $z_0 \in \partial B(a_n, r_n)$ then, using (1), contractivity of the Carathéodory pseudodistance and (2), we get

$$\lim_{z \to z_0} \int \gamma_{D_k}^{(k+1)}(w, z) \ge \lim_{z \to z_0} c_{D_k}(w, z) \ge \lim_{z \to z_0} c_{\mathbb{C} \setminus \overline{B}(a_n, r_n)}(w, z)$$
$$= \lim_{z \to z_0} c_{E_*} \left(\frac{r_n}{w - a_n}, \frac{r_n}{z - a_n} \right)$$
$$= \lim_{z \to z_0} c_E \left(\frac{r_n}{w - a_n}, \frac{r_n}{z - a_n} \right) = \infty,$$

since $|r_n/(z-a_n)| \to 1$ as $z \to z_0$.

We are left with the proofs of Lemmas 4 and 5.

Proof of Lemma 4. Let D be as in (3). We define

$$D_{(s)} := E \setminus \left(\overline{B}(a_{(s)}, r_{(s)}) \cup \bigcup_{n=1}^{s} \overline{B}(a_n, r_n)\right), \quad s \in \mathbb{N},$$

280

where the numbers $a_{(s)}, r_{(s)} > 0$ are chosen so that $0 \in B(a_{(s)}, r_{(s)})$, $\overline{B}(a_n, r_n) \subset B(a_{(s)}, r_{(s)})$ for n > s and $\overline{B}(a_{(s)}, r_{(s)}) \cap \overline{B}(a_s, r_s) = \emptyset$. Obviously, $D_{(s)}$ is an (s + 2)-connected domain and $D_{(s)} \subset D$. Observe that for $\varepsilon > 0$ small enough

$$D_{(s)}^{(\varepsilon)} := (1-\varepsilon)E \setminus \left(\overline{B}(a_{(s)}, r_{(s)} + \varepsilon) \cup \bigcup_{n=1}^{s} \overline{B}(a_n, r_n + \varepsilon)\right) \subset \subset D_{(s)}$$

is also an (s+2)-connected domain. Then the Cauchy integral formula for $D_{(s)}^{(\varepsilon)}$ gives us

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{|\zeta|=1-\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d\zeta - \frac{k!}{2\pi i} \int_{|\zeta-a_{(s)}|=r_{(s)}+\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d\zeta$$
$$-\sum_{n=1}^{s} \frac{k!}{2\pi i} \int_{|\zeta-a_n|=r_n+\varepsilon} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d\zeta, \quad z \in D_{(s)}^{(\varepsilon)},$$

for every $f \in \mathcal{O}(D, E)$. Then for $z \in [-1/2, a_{(s)} - r_{(s)} - \varepsilon - \sqrt[2(k+1)]{r_{(s)} + \varepsilon})$ we have

$$\begin{split} |f^{(k)}(z)| &\leq \frac{k!}{2\pi} \int_{0}^{2\pi} \frac{1-\varepsilon}{|(1-\varepsilon)e^{it}-z|^{k+1}} dt \\ &+ \frac{k!}{2\pi} \int_{0}^{2\pi} \frac{r_{(s)}+\varepsilon}{|(r_{(s)}+\varepsilon)e^{it}+a_{(s)}-z|^{k+1}} dt \\ &+ \sum_{n=1}^{s} \frac{k!}{2\pi} \int_{0}^{2\pi} \frac{r_n+\varepsilon}{|(r_n+\varepsilon)e^{it}+a_n-z|^{k+1}} dt \\ &\leq k! \frac{1-\varepsilon}{(1/2-\varepsilon)^{k+1}} + k! \frac{r_{(s)}+\varepsilon}{(2^{(k+1)}\sqrt{r_{(s)}+\varepsilon})^{k+1}} \\ &+ k! \sum_{n=1}^{s} \frac{r_n+\varepsilon}{\left(\frac{1}{2}(a_n-z-\varepsilon)\right)^{k+1}}, \end{split}$$

since $a_n - z - \varepsilon > a_n > 2r_n$. Letting $\varepsilon \to 0$ we get

$$|f^{(k)}(z)| \le k! 2^{k+1} + k! \sqrt{r_{(s)}} + k! 2^{k+1} \sum_{n=1}^{s} \frac{r_n}{(a_n - z)^{k+1}}$$

for $z \in [-1/2, a_{(s)} - r_{(s)} - \frac{2(k+1)}{r_{(s)}})$. Now since s is an arbitrary nature

Now, since s is an arbitrary natural number, we may let $s \to \infty$ to get

$$|f^{(k)}(z)| \le k! 2^{k+1} + k! 2^{k+1} \sum_{n=1}^{\infty} \frac{r_n}{(a_n - z)^{k+1}}, \quad z \in [-1/2, 0),$$

since $a_{(s)}$ and $r_{(s)}$ tend to 0 as $s \to \infty$.

Proof of Lemma 5. We fix $k \in \mathbb{N}$ and define

(4)
$$D_k := E_* \setminus \bigcup_{n=4}^{\infty} \overline{B}(a_n, r_{k,n}),$$

where $a_n := 2^{-n}$, $r_{k,n} := 2^{-n}n^{-k-1}$. It is easy to check that (4) is a Zalcman-type domain, since $a_{n+1} + r_{k,n+1} < a_n - r_{k,n}$ and $2r_{k,n} < a_n$ for all $k \in \mathbb{N}$, $n \geq 4$.

(a) It is sufficient to show that

(5)
$$\gamma_{D_k}^{(k)}(z;1) \le \frac{c_2}{-z(-\log(-z))^{(k+1)/k}}, \quad z \in [-1/2,0),$$

for some absolute constant $c_2 = c_2(k) > 0$. Indeed, using (5), it is easy to get

$$\limsup_{0>z\to 0} \int \gamma_{D_k}^{(k)}(-1/2, z) \le \int_{-1/2}^0 \gamma_{D_k}^{(k)}(z; 1) \, dz < \infty,$$

and the proof of (a) is finished.

We will get (5) if we prove that

(6)
$$|f^{(k)}(z)| \le \frac{c_3}{(-z)^k (-\log(-z))^{k+1}}, \quad z \in [-1/2, 0), \ f \in \mathcal{O}(D_k, E),$$

where $c_3 = c_3(k)$ is a positive constant.

Now we will prove (6). Let $z \in [-1/2, 0)$. Then there exist unique $m \in \mathbb{N}$ and $b \in (1, 2]$ such that $z = -b/2^m$. Observe that

$$\sum_{n=4}^{\infty} \frac{r_{k,n}}{(a_n-z)^{k+1}} \le \sum_{n=4}^{m} \frac{r_{k,n}}{a_n^{k+1}} + \sum_{n=m}^{\infty} \frac{r_{k,n}}{(-z)^{k+1}}.$$

Now we estimate both series. For the first one we have

(7)
$$\sum_{n=4}^{m} \frac{r_{k,n}}{a_n^{k+1}} = \sum_{n=4}^{m} \frac{2^{nk}}{n^{k+1}} \le \frac{2^{mk}}{m^{k+1}} \sum_{n=0}^{\infty} \left(\frac{8}{9}\right)^n = 9 \frac{2^{mk}}{m^{k+1}},$$

while the second series is estimated as follows:

(8)
$$\sum_{n=m}^{\infty} \frac{r_{k,n}}{(-z)^{k+1}} = \sum_{n=m}^{\infty} \frac{2^{m(k+1)}}{2^n n^{k+1} b^{k+1}} \le \frac{2^{m(k+1)}}{2^m m^{k+1}} \sum_{n=0}^{\infty} \frac{1}{2^n} \le 2 \frac{2^{mk}}{m^{k+1}}.$$

Using the estimates (7) and (8) we get

$$\sum_{n=4}^{\infty} \frac{r_{k,n}}{(a_n-z)^{k+1}} \le \frac{11 \cdot 2^k (\log 2)^{k+1} 2^{mk}}{b^k (\log (2^m/b))^{k+1}} = \frac{c_4}{(-z)^k (-\log (-z))^{k+1}},$$

where $c_4 = c_4(k) := 11 \cdot 2^k (\log 2)^{k+1}$. Using Lemma 4, we obtain

282

$$|f^{(k)}(z)| \le c_1 \left(1 + \frac{c_4}{(-z)^k (-\log(-z))^{k+1}} \right) \le \frac{2c_1 c_4}{(-z)^k (-\log(-z))^{k+1}},$$

which gives us (6) with the constant $c_3 := 2c_1c_4$.

(b) We show that

(9)
$$\gamma_{D_k}^{(k+1)}(z;1) \ge \frac{c_5}{|z|\log(1/|z|)}, \quad |z| < 1/4,$$

for some absolute constant $c_5 = c_5(k) > 0$.

Assume for a while that (9) holds. We fix $w \in D_k$. Then for any |z| < 1/4and for any curve $\alpha \in \mathcal{C}_p^1([0,1], D_k)$ such that $\alpha(0) = z$, $\alpha(1) = w$ we have

(10)
$$\int_{0}^{1} \gamma_{D_{k}}^{(k+1)}(\alpha(t); \alpha'(t)) dt \geq \int_{0}^{t_{\alpha}} \frac{c_{5}|\alpha'(t)| dt}{|\alpha(t)|\log(1/|\alpha(t)|)},$$

where $t_{\alpha} := \min\{t \in [0, 1] : |\alpha(t)| = 1/4\}$; if $|\alpha(t)| < 1/4$ for $t \in [0, 1]$, then $t_{\alpha} := 1$. Observe that, since

$$\frac{\partial}{\partial t}|\alpha(t)| = \frac{\alpha'(t)\overline{\alpha(t)} + \overline{\alpha'(t)}\alpha(t)}{2|\alpha(t)|} = \frac{\operatorname{Re}(\alpha'(t)\overline{\alpha(t)})}{|\alpha(t)|} \le |\alpha'(t)|,$$

the following estimate holds (if $t_{\alpha} = 1$ then, in what follows, instead of 1/4 we write |w|):

$$\int_{0}^{t_{\alpha}} \frac{|\alpha'(t)| \, dt}{|\alpha(t)| \log(1/|\alpha(t)|)} \ge \int_{|z|}^{1/4} \frac{dx}{x \log(1/x)} = \log \log \frac{1}{|z|} - \log \log 4.$$

Taking the infimum over all such curves α , using (10) and the estimate above, we obtain

$$\int \gamma_{D_k}^{(k+1)}(w,z) \ge c_5 \bigg(\log \log \frac{1}{|z|} - \log \log 4 \bigg).$$

Hence, if we let $z \to 0$, we obtain (b).

It remains to prove (9). According to the definition of $\gamma_{D_k}^{(k+1)}$ we will get (9) if we prove that for every |z| < 1/4 there exists a function $f_z \in \mathcal{O}(D_k, E)$ such that $f_z(z) = f'_z(z) = \ldots = f_z^{(k)}(z) = 0$ and

(11)
$$|f_z^{(k+1)}(z)| \ge \frac{c_6}{(|z|\log(1/|z|))^{k+1}},$$

with some absolute constant $c_6 = c_6(k) > 0$.

Now we will construct such a function. Let |z| < 1/4. Then there exist unique $m \in \mathbb{N}$, $b \in (1, 2]$ and $\theta \in [0, 2\pi)$ such that $z = be^{i\theta}/2^m$. Observe that $m \geq 3$. We define

$$\widetilde{f}_z(\lambda) := \sum_{j=0}^k \alpha_{b,\theta}^j (2^{-m-j-1} - \lambda)^{-1} + 2^{m+1} \beta_{b,\theta}, \quad \lambda \in D_k,$$

where $\alpha_{b,\theta}^0 := 1$ and $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k, \beta_{b,\theta} \in \mathbb{C}$ are constants, depending only on *b* and θ (and not on *m*), taken to satisfy the condition $\tilde{f}_z(z) = \ldots = \tilde{f}_z^{(k)}(z) = 0$. Clearly, \tilde{f}_z is a holomorphic function in D_k .

In Lemma 6 below we show that the definition of \tilde{f}_z is correct (i.e. that the numbers $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k, \beta_{b,\theta}$ exist), but first observe that

(12)
$$\left[(2^{-m-j-1} - \lambda)^{-1} \right]^{(l)} = l! (2^{-m-j-1} - \lambda)^{-l-1}.$$

LEMMA 6. For every $z = be^{i\theta}/2^m$, where $b \in [1,2]$, $\theta \in [0,2\pi]$ and $m \geq 3$, the numbers $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k, \beta_{b,\theta}$ as above exist and their moduli can be estimated from above by a positive constant α which is independent of b and θ . Moreover,

$$B_{k,b,\theta} := \sum_{j=0}^{k} \left(\frac{2^{j}}{1 - 2^{j+1} b e^{i\theta}} \right)^{k+2} \alpha_{b,\theta}^{j} \neq 0.$$

In particular, $B_k := \min\{|B_{k,b,\theta}| : b \in [1,2], \theta \in [0,2\pi]\} > 0.$

Later we will give the proof of Lemma 6. Using (12) we obtain

$$|\tilde{f}_{z}^{(k+1)}(z)| = \left| \sum_{j=0}^{k} \alpha_{b,\theta}^{j}(k+1)! \left(\frac{1}{2^{m+j+1}} - \frac{be^{i\theta}}{2^{m}} \right)^{-(k+2)} \right|$$
$$\geq \left| \sum_{j=0}^{k} \alpha_{b,\theta}^{j} \left(\frac{2^{m+j+1}}{1-2^{j+1}be^{i\theta}} \right)^{k+2} \right|$$
$$= 2^{(m+1)(k+2)} |B_{k,b,\theta}| \ge c_{7} 2^{m(k+2)},$$

where c_7 is a positive constant depending only on k.

Now, with the help of Lemma 6, we estimate the supremum of the function \tilde{f}_z on D_k :

$$\begin{split} \|\widetilde{f}_{z}\|_{D_{k}} &\leq \sum_{j=0}^{k} \frac{|\alpha_{b,\theta}^{j}|}{r_{k,m+j+1}} + 2^{m+1} |\beta_{b,\theta}| \\ &\leq \frac{\alpha(k+2)}{r_{k,m+k+1}} = \alpha(k+2) 2^{m+k+1} (m+k+1)^{k+1} \\ &\leq c_{8} 2^{m} (m-1)^{k+1}, \end{split}$$

where $c_8 > 0$ depends only on k.

Observe that for $f_z := \tilde{f}_z / \|\tilde{f}_z\|_{D_k} \in \mathcal{O}(D_k, E)$ we obtain (11), because

$$|f_z^{(k+1)}(z)| \ge \frac{c_7 2^{m(k+1)}}{c_8(m-1)^{k+1}} \ge \frac{c_7 (\log 2)^{k+1} 2^{m(k+1)}}{c_8 b^{k+1} (\log(2^m/b))^{k+1}} = \frac{c_6}{(|z| \log(1/|z|))^{k+1}}.$$

Thus the proof of Lemma 5 is complete. \blacksquare

We are left with the proof of Lemma 6.

Proof of Lemma 6. First we will construct $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k$. We show that the system of k equations

(13)
$$\widetilde{f}'_z(z) = \ldots = \widetilde{f}^{(k)}_z(z) = 0$$

in k unknowns $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k$ always has a solution, i.e. its determinant is not zero.

Observe that, by (12), the system (13) is equivalent to

(14)
$$\sum_{j=0}^{k} l! \left(\frac{2^{m+j+1}}{1-2^{j+1}be^{i\theta}}\right)^{l+1} \alpha_{b,\theta}^{j} = 0, \quad l = 1, \dots, k,$$

which is equivalent to

(15)
$$\sum_{j=1}^{k} \left(\frac{2^{j}}{1 - 2^{j+1} b e^{i\theta}} \right)^{l+1} \alpha_{b,\theta}^{j} = -\left(\frac{1}{1 - 2b e^{i\theta}} \right)^{l+1}, \quad l = 1, \dots, k.$$

To simplify notation put

$$A_{b,\theta}^{j} := \frac{2^{j}}{1 - 2^{j+1} b e^{i\theta}}, \quad j = 0, \dots, k,$$

and observe that all $|A_{b,\theta}^j| \in [1/8, 1]$ and that $A_{b,\theta}^{\mu} \neq A_{b,\theta}^{\nu}$ whenever $\mu \neq \nu$. Now (15) is equivalent to

(16)
$$\sum_{j=1}^{k} (A_{b,\theta}^{j})^{l+1} \alpha_{b,\theta}^{j} = -(A_{b,\theta}^{0})^{l+1}, \quad l = 1, \dots, k,$$

and it is easy to see that

(17)
$$|\det[(A_{b,\theta}^j)^{l+1}]_{j,l=1}^k| = |A_{b,\theta}^1 \dots A_{b,\theta}^k|^2 \prod_{k \ge \mu > \nu \ge 1} |A_{b,\theta}^\mu - A_{b,\theta}^\nu| \ge \varepsilon > 0,$$

where ε is a constant independent of b and θ . Hence the choice of the numbers $\alpha_{b,\theta}^1, \ldots, \alpha_{b,\theta}^k$ is always possible; now we may take

$$\beta_{b,\theta} := -\sum_{j=0}^k A^j_{b,\theta} \alpha^j_{b,\theta}.$$

Now we prove the existence of the constant α . Since

$$|\beta_{b,\theta}| \le \sum_{j=0}^{k} |A_{b,\theta}^{j} \alpha_{b,\theta}^{j}| \le (k+1) \max\{|\alpha_{b,\theta}^{j}| : 0 \le j \le k\},\$$

it is enough to deal with the numbers $\alpha_{b,\theta}^{j}$.

Observe that $|A_{b,\theta}^j|^{l+1} \in [2^{-3(k+1)}, 1]$ for $j = 0, \ldots, k, \ l = 1, \ldots, k, \ b \in [1, 2]$ and $\theta \in [0, 2\pi]$. Since det is a continuous function, it is bounded on compact sets. This observation and (17) give us global upper bounds $\alpha^1, \ldots, \alpha^k$ of $|\alpha_{b,\theta}^1|, \ldots, |\alpha_{b,\theta}^k|$, independent of b and θ . Hence one may take

$$\alpha := (k+1) \max\{|\alpha^j| : 0 \le j \le k\}.$$

It remains to prove that $B_{k,b,\theta} \neq 0$. Observe that this is equivalent to

(18)
$$\sum_{j=1}^{k} (A_{b,\theta}^{j})^{k+2} \alpha_{b,\theta}^{j} \neq -(A_{b,\theta}^{0})^{k+2}$$

Suppose (18) does not hold. Then we obtain the system of k + 1 equations

(19)
$$\sum_{j=1}^{\kappa} (A_{b,\theta}^{j})^{l+1} \alpha_{b,\theta}^{j} = -(A_{b,\theta}^{0})^{l+1}, \quad l = 1, \dots, k+1,$$

which has the only solution $\alpha_{b,\theta}^{j}$, j = 1, ..., k. Now, if we remove from (19) the first equation, we obtain the system of k equations

(20)
$$\sum_{j=1}^{k} (A_{b,\theta}^{j})^{l+1} \alpha_{b,\theta}^{j} = -(A_{b,\theta}^{0})^{l+1}, \quad l = 2, \dots, k+1,$$

which also has the same unique solution $\alpha_{b,\theta}^{j}$, $j = 1, \ldots, k$. But if we compare the solutions of (16) and (20) we get

$$A^0_{b,\theta}/A^j_{b,\theta} = 1, \quad j = 1, \dots, k,$$

which is impossible and, consequently, (18) holds.

Now, since $|B_{k,b,\theta}|$ is, with respect to variables (b,θ) , a positive and continuous function on the compact set $[1,2] \times [0,2\pi]$, we conclude that $B_k > 0$ and the proof of Lemma 6 is finished.

3. Proof of Theorem 2. In the proof of Theorem 2 we will use the following lemma.

LEMMA 7. If $D \subset \mathbb{C}$ is a bounded domain, then

$$\frac{\gamma_D^{(k)}(z_0;1)}{(d_D(z_0))^{l/k}} \ge (\gamma_D^{(k+l)}(z_0;1))^{(k+l)/k}, \quad z_0 \in D, \ k, l \in \mathbb{N}.$$

Proof of Lemma 7. Fix $k, l \in \mathbb{N}$ and $z_0 \in D$. Then for $f \in \mathcal{O}(D, E)$ such that $f(z_0) = f'(z_0) = \ldots = f^{(k+l-1)}(z_0) = 0$ we define

$$g(z) := \begin{cases} f(z)/(z-z_0)^l, & z \neq z_0, \\ 0, & z = z_0. \end{cases}$$

Observe that g is a holomorphic function on D. Moreover, using the Taylor expansion of f at z_0 we obtain

$$g(z) = \sum_{j=k+l}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^{j-l}, \quad z \in D.$$

Then

(21)
$$g^{(m)}(z_0) = 0, \quad m = 0, 1, \dots, k-1,$$

and

(22)
$$g^{(k)}(z_0) = \frac{k!}{(k+l)!} f^{(k+l)}(z_0).$$

From the maximum principle we get $||g||_D \leq 1/(d_D(z_0))^l$. Therefore, by (21), $h := (d_D(z_0))^l g \in \mathcal{O}(D, E)$ satisfies the conditions in the definition of the *k*th Reiffen pseudometric. Hence, using (22), we obtain

$$\gamma_D^{(k)}(z_0;1) \ge \sup_h \left(\frac{1}{k!} |h^{(k)}(z_0)|\right)^{1/k} = \left(\frac{(d_D(z_0))^l}{(k+l)!} \sup_f |f^{(k+l)}(z_0)|\right)^{1/k}$$
$$= ((d_D(z_0))^l (\gamma_D^{(k+l)}(z_0;1))^{k+l})^{1/k}$$
$$= (d_D(z_0))^{l/k} (\gamma_D^{(k+l)}(z_0;1))^{(k+l)/k},$$

and the proof of Lemma 7 is complete. \blacksquare

Proof of Theorem 2. From Lemma 7 we get

$$\gamma_D^{(k+l)}(z;1) \le \frac{(\gamma_D^{(k)}(z;1))^{k/(k+l)}}{(d_D(z))^{l/(k+l)}}, \quad z \in D, \ k, l \in \mathbb{N}.$$

Now, if $\gamma_D^{(k)}(z;1) \leq c(d_D(z))^{-\alpha}$ then

$$\gamma_D^{(k+l)}(z;1) \le \frac{c^{k/(k+l)}}{(d_D(z))^{(\alpha k+l)/(k+l)}} = \frac{c'}{(d_D(z))^{\alpha'}}, \quad z \in D, \ k, l \in \mathbb{N},$$

where $c' := c^{k/(k+l)}$ and $\alpha' := (\alpha k + l)/(k+l) < 1$.

Acknowledgements. The ideas of the paper come from fruitful conversations with Professor W. Zwonek. I would like to thank him.

References

- [Ja-Pf] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Expositions Math. 9, de Gruyter, Berlin, 1993.
- [KI] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231–240.
- [Ko] S. Kobayashi, Hyperbolic Complex Spaces, Grundlehren Math. Wiss. 318, Springer, 1998.

[Ni] S. Nivoche, The pluricomplex Green function, capacitative notions and approximation problems in \mathbb{C}^n , Indiana Univ. Math. J. 44 (1995), 489–510.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: zapalows@im.uj.edu.pl

Reçu par la Rédaction le 28.3.2002

(1328)

288