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Asymptotic properties of third order functional dynamic
equations on time scales

by I. Kubiaczyk (Poznań) and S. H. Saker (Riyadh and Mansoura)

Abstract. The purpose of this paper is to study the asymptotic properties of non-
oscillatory solutions of the third order nonlinear functional dynamic equation

[p(t)[(r(t)x∆(t))∆]γ ]∆ + q(t)f(x(τ(t))) = 0, t ≥ t0,
on a time scale T, where γ > 0 is a quotient of odd positive integers, and p, q, r and τ are
positive right-dense continuous functions defined on T. We classify the nonoscillatory solu-
tions into certain classes Ci, i = 0, 1, 2, 3, according to the sign of the ∆-quasi-derivatives
and obtain sufficient conditions in order that Ci = ∅. Also, we establish some sufficient
conditions which ensure the property A of the solutions. Our results are new for third
order dynamic equations and involve and improve some results previously obtained for
differential and difference equations. Some examples are worked out to demonstrate the
main results.

1. Introduction. The study of dynamic equations on time scales, which
goes back to its founder Stefan Hilger [22], is an area of mathematics that
has recently received a lot of attention. It has been created in order to
unify the study of differential and difference equations. Many results con-
cerning differential equations carry over quite easily to corresponding results
for difference equations, while other results seem to be completely different
from their continuous counterparts. The study of dynamic equations on time
scales reveals such discrepancies, and helps avoid proving results twice, once
for differential equations and once again for difference equations. The gen-
eral idea is to prove a result for a dynamic equation where the domain of
the unknown function is a so-called time scale T, which may be an arbitrary
closed subset of the reals. This way results not only related to the set of real
numbers or set of integers but also pertaining to more general time scales
are obtained.

The three most popular examples of calculus on time scales are differ-
ential calculus, difference calculus, and quantum calculus, i.e., when T = R,

2010 Mathematics Subject Classification: 34K11, 39A10, 39A99.
Key words and phrases: nonoscillation, third order dynamic equations, time scales.

DOI: 10.4064/ap100-3-1 [203] c© Instytut Matematyczny PAN, 2011



204 I. Kubiaczyk and S. H. Saker

T = N and T = qN0 = {qt : t ∈ N0} where q > 1. Dynamic equations on time
scales have an enormous potential for applications, e.g. in population dy-
namics, where they may be used to model the growth of insect populations
that grow continuously while in season, die out in winter, while their eggs
are incubating or dormant, and then hatch in a new season, giving rise to a
nonoverlapping population (see [6]). The two books [6] and [7] on the sub-
ject of time scales, i.e., measure chains, by Bohner and Peterson summarize
and organize much of time scales calculus.

For completeness, we recall the following concepts related to the notion
of time scales. A time scale T is an arbitrary nonempty closed subset of
the real numbers R. We assume throughout that T has the topology that it
inherits from the standard topology on R. The forward jump operator and
the backward jump operator are defined by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where sup ∅ = inf T. A point t ∈ T is said to be left-dense if ρ(t) = t and
t > inf T, right-dense if σ(t) = t, left-scattered if ρ(t) < t, and right-scattered
if σ(t) > t. A function g : T → R is said to be right-dense continuous
(rd-continuous) provided g is continuous at right-dense points, while at left-
dense points, left hand limits exist and are finite. The set of all rd-continuous
functions is denoted by Crd(T). The graininess function µ for a time scale T
is defined by µ(t) := σ(t)− t, and for any function f : T → R the notation
fσ(t) stands for f(σ(t)).

Definition 1.1. Fix t ∈ T and let x : T → R. Define x∆(t) to be
the number (if it exists) with the property that given any ε > 0 there is a
neighborhood U of t with

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.
In this case, we say x∆(t) is the (delta) derivative of x at t and that x is
(delta) differentiable at t.

We will frequently use the results in the following theorem which is due
to Hilger [22].

Theorem 1.2. Assume that g : T→ R and let t ∈ T.

(i) If g is differentiable at t, then g is continuous at t.
(ii) If g is continuous at t and t is right-scattered, then g is differentiable

at t with

g∆(t) =
g(σ(t))− g(t)

µ(t)
.

(iii) If g is differentiable and t is right-dense, then

g∆(t) = lim
s→t

g(t)− g(s)
t− s

.
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(iv) If g is differentiable at t, then g(σ(t)) = g(t) + µ(t)g∆(t).

In this paper, we will refer to the (delta) integral which we can define as
follows:

Definition 1.3. If G∆(t) = g(t), then the Cauchy (delta) integral of g
is defined by

t�

a

g(s)∆s := G(t)−G(a).

It can be shown (see [6]) that if g ∈ Crd(T), then the Cauchy integral
G(t) :=

	t
t0
g(s)∆s exists for t0 ∈ T, and satisfies G∆(t) = g(t) for all t ∈ T.

For a more general definition of the delta integral see [6], [7].
In the last few years, there has been increasing interest in obtaining

sufficient conditions for the qualitative properties of solutions of different
classes of dynamic equations on time scales (see [1–3, 8, 9, 29–35] and the
references cited therein). To the best of our knowledge, there are few papers
which have dealt with various types of third order dynamic equations on
time scales (see [14, 16–18, 26, 37]). In this paper, we are concerned with
the asymptotic properties of nonoscillatory solutions and with the property
A (defined below) of the third order nonlinear functional dynamic equation

(1.1) (p(t)[(r(t)(x(t))∆)∆]γ)∆ + q(t)f(x(τ(t))) = 0,

on an arbitrary time scale T, where p, q and r are positive real-valued
rd-continuous functions defined on T, τ : T→ T, limt→∞ τ(t) = ∞ and
f ∈ C(R,R), uf(u) > 0 for u 6= 0. Throughout this paper, we assume that

∞�

t0

1
p1/γ(t)

∆t =∞,
∞�

t0

1
r(t)

∆t =∞,(1.2)

or
∞�

t0

1
p1/γ(t)

∆t <∞,
∞�

t0

1
r(t)

∆t <∞.(1.3)

Equation (1.1) is called a delay dynamic equation if τ(t) < t, and an advanced
dynamic equation if τ(t) > t. For (1.1), we define the ∆-quasi-derivatives of
a solution x(t) by

x[0] = x, x[1] = r(x[0])∆, x[2] = p((x[1])∆)γ , x[3] = (x[2])∆.

We say that equation (1.1) has the property A if any proper solution x(t)
is either oscillatory or satisfies |x[i](t)| ↓ 0 as t → ∞ for i = 0, 1, 2. The
solutions of (1.1) are called of Kneser type if the ∆-quasi-derivatives satisfy
x[i](t)x[i+1](t) < 0 for i = 0, 1, 2 for all sufficiently large t. Originally, the
property A was introduced for differential systems and equations; for more
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details we refer the reader to the book [24]. As a special case of (1.1), Erbe,
Peterson and Saker [18] considered the third order linear dynamic equation

(1.4) x∆∆∆(t) + q(t)x(t) = 0,

on an arbitrary time scale T, where q(t) is a positive real-valued rd-continu-
ous function on T, and proved that if x(t) is a solution of (1.4) and

I(q) =
∞�

t0

q(s)∆s =∞,

then (1.4) has the property A, i.e., every solution x(t) of (1.4) is oscillatory
or satisfies

lim
t→∞

x(t) = lim
t→∞

x∆(t) = lim
t→∞

x∆∆(t) = 0.

One of our aims in this paper is to extend this result and establish some
sufficient conditions for (1.1) to have the property A.

Since we are interested in the oscillatory and asymptotic behavior of so-
lutions near infinity, we assume that sup T = ∞, and define the time scale
interval [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. By a solution of (1.1), we mean
a function x[0] ∈ Crd([t0,∞),R) such that x[1], x[2] ∈ Crd([t0,∞),R) satisfy-
ing (1.1) for all t ≥ t0, where Crd is the space of rd-continuous functions.
A solution of (1.1) is said to be proper if it is defined on the interval [t0,∞)
and is nontrivial in any neighborhood of infinity. So the solutions vanishing
in some neighborhood of infinity will be excluded from our considerations
and we are interested only in the asymptotic behavior of proper solutions.
A proper solution x(t) of (1.1) is said to be oscillatory if it is neither eventu-
ally positive nor eventually negative; otherwise it is nonoscillatory. Equation
(1.1) is said to be oscillatory if there exists at least one oscillatory solution,
and nonoscillatory if all solutions are nonoscillatory.

In the following, we recall some results on third order dynamic equations
on time scales that motivate our study. Morelli and Peterson [26] considered
the third order dynamic equation

(1.5) x∆∆∆(t) + p(t)(xσ)∆ + q(t)xσ = 0,

studied the asymptotic behavior of solutions, and established some suffi-
cient conditions for existence of nonoscillatory solutions. Erbe, Peterson and
Saker [16] initiated the study of oscillation of third order nonlinear dynamic
equations and considered the equation

(1.6) (c(t)((a(t)x∆(t))∆))∆ + q(t)f(x(t)) = 0, t ≥ t0,

where a(t), c(t) and q(t) are positive real-valued rd-continuous functions
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which satisfy

(1.7)
∞�

t0

1
c(t)

∆t =∞,
∞�

t0

1
a(t)

∆t =∞,

and f ∈ C(R,R) satisfies uf(u) > 0 and f(u)/u ≥ K > 0, for u 6= 0.
Erbe, Peterson and Saker [17] extended the results in [16] and studied the
oscillation of third order nonlinear dynamic equations of the form

(1.8) [c(t)[(a(t)x∆(t))∆]γ ]∆ + f(t, x(t)) = 0, t ≥ t0,
on a time scale T, where a(t) > 0, c(t) > 0 are rd-continuous on T, γ ≥ 1 is
a quotient of odd integers, and there exists a positive rd-continuous function
q such that |f(t, u)| ≥ q(t)|uγ | and uf(t, u) > 0, u 6= 0, and

(1.9)
∞�

t0

(
1
c(t)

)1/γ

∆t =∞,
∞�

t0

1
a(t)

∆t =∞.

They applied the Riccati transformation technique and established some
sufficient conditions which guarantee that each solution x(t) is oscillatory
or satisfies limt→∞ x(t) = 0. Yu and Wang in [37] studied the oscillation of
a third order dynamic equation of the form

(1.10)
(

1
a2(t)

((
1

a1(t)
(x∆(t))α1

)∆)α2
)∆

+ q(t)f(x(t)) = 0,

where f ∈ C(R,R), uf(u) > 0 and f(u)/u ≥ K > 0, for u 6= 0, or f ′(u) >
C > 0, αi is a quotient of odd positive integers, i = 1, 2, and a1(t), a2(t)
and q(t) are positive rd-continuous functions satisfying

(1.11)
∞�

t0

q(t)∆t =∞,
∞�

t0

(ai(t))αi∆t =∞ for i = 1, 2.

They applied the Riccati technique of [16] and established some sufficient
conditions which guarantee that each solution x(t) of (1.10) is oscillatory
or satisfies limt→∞ x(t) = 0. Erbe, Hassan and Peterson [14] studied the
oscillation of the nonlinear functional dynamic equation

(1.12) [c(t)[(a(t)x∆(t))∆]γ ]∆ + f(t, x(τ(t))) = 0, t ≥ t0,
and established several sufficient conditions which ensure that each solution
x(t) is oscillatory or limt→∞ x(t) = 0. They assumed that γ is a quotient
of odd positive integers, f ∈ C(T× R,R) and satisfies uf(t, u) > 0 and
f(u)/uγ ≥ p(t) for u 6= 0, τ is defined on T and satisfies limt→∞ τ(t) = ∞,
and a and c are positive rd-continuous functions on T and satisfy (1.2)
or (1.3).

The dynamic equation (1.1) in its general form includes linear and non-
linear third order differential and difference equations, and depends on the
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time scale T. When T = R, we have σ(t) = t, µ(t) = 0, x∆(t) = x′(t) and
(1.1) becomes the third order nonlinear functional differential equation

(1.13) (p(t)((r(t)x′(t))′)γ)′ + q(t)f(x(τ(t))) = 0, t ∈ [t0,∞).

Oscillation and asymptotic properties of some special case of (1.13), when
γ = 1 and τ(t) = t, have been investigated by many authors (see [4, 5,
10–13, 21, 24, 25, 28] and the references therein). Most of the results in the
above mentioned papers concern the third order differential equation (1.13)
or some special cases under the assumption

(1.14)
∞�

t0

q(s) ds =∞,

which does not hold when q(t) = α/tγ for γ > 1. In this paper, we give a
new condition (see Theorem 2.8, Examples 2.13, 2.14) different from (1.14),
which can be applied when q(t) = α/t3. So the results in this paper when
T = R partially improve known results for third order differential equations.

When T = N, we have σ(t) = t+1, µ(t) = 1, x∆(t) = ∆x(t) = x(t+1)−
x(t). In this case, (1.1) becomes the third order difference equation

(1.15) ∆(p(n) (∆(r(n)∆x(n)))γ) + q(n)f(x(τ(n))) = 0, n ∈ [n0,∞)N.

Oscillation and asymptotic properties of some special case of (1.15), when
γ = 1 and τ(n) = n, have been investigated by several authors (see [27, 36,
19, 20] and the references therein).

If T = hN0, h > 0, then σ(t) = t + h, µ(t) = h, x∆(t) = ∆hx(t) :=
(x(t + h) − x(t))/h. In this case, (1.1) becomes the third order difference
equation with step size h,

(1.16) ∆h(p(t) (∆h(r(t)∆hx(t)))γ) + q(t)f(x(τ(t))) = 0, t ∈ [0,∞)hN0 ,

If T = qN0 = {t : t = qk, k ∈ N0, q > 1}, then σ(t) = pt, µ(t) = (q − 1)t,
x∆(t) = Dqx(t) := (x(q t)−x(t))/(p−1)t (where Dq is the so-called quantum
derivative which has important applications in quantum mechanics [23]). In
this case (1.1) becomes the third order q-difference equation

(1.17) Dq(p(t) (Dq(r(t)Dqx(t)))γ) + q(t)f(x(τ(t))) = 0, t ∈ [t0,∞)T.

Also, many other time scales can be considered, for example, T = N2
0 =

{t = n2 : n ∈ N0}, where σ(t) = (
√
t + 1)2 and µ(t) = 1 + 2

√
t, x∆(t) =

(x((
√
t+ 1)2)− x(t))/(1 + 2

√
t), and T = Tn = {Hn : n ∈ N0} where {Hn}

is the so-called sequence of harmonic numbers defined by

H0 = 0, Hn =
n∑
k=1

1
k
, n ∈ N0.

Here σ(Hn) = Hn+1, µ(Hn) = 1/(n+ 1), x∆(Hn) = (n+ 1)∆nx(Hn).
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Our aim in this paper is to study the asymptotic properties of nonoscil-
latory solutions of (1.1). We classify the nonoscillatory solutions into classes
Ci for i = 0, 1, 2, 3 according to the sign of the ∆-quasi-derivatives and
establish some sufficient conditions which ensure that Ci = ∅. We also es-
tablish some sufficient conditions which ensure that the equation (1.1) has
the property A, which means that every solution x(t) of (1.1) is oscillatory
or satisfies limt→∞ x

[0](t) = limt→∞ x
[1](t) = limt→∞ x

[2](t) = 0. Our results
are new for third order dynamic equations and include and improve some re-
sults previously obtained for differential and difference equations (1.13) and
(1.15). For (1.16) and (1.17) the results are essentially new. Some examples
are worked out to demonstrate the main results.

2. Main results. In this section, first we classify the nonoscillatory
solutions into classes Ci for i = 0, 1, 2, 3. Second, we study the asymptotic
properties of nonoscillatory solutions of (1.1) and establish some sufficient
condition for (1.1) to have the property A. We note that if x(t) is a solution
of (1.1) then z = −x is also a solution of (1.1), since uf(u) > 0 for u 6= 0.
Thus, when considering nonoscillatory solutions of (1.1) we can restrict our
attention to positive ones. We start with the following lemma which gives
the sign of the ∆-quasi-derivatives of x(t) of (1.1).

Lemma 2.1. Assume that:

(h1) p, q, r and τ are positive rd-continuous functions defined on T,
τ : T→ T, limt→∞ τ(t) =∞,

(h2) f ∈ C(R,R) and uf(u) > 0.

If x(t) is a nonoscillatory solution of (1.1), then there exists T > t0 such
that x[i](t) 6= 0 for i = 0, 1, 2 and t ≥ T.

Proof. Without loss of generality, we may assume that x(t) > 0 and
pick t1 > t0 so that x(τ(t)) > 0 for t > t1. Then from (1.1), we see that
x[3](t) = −q(t)f(x(τ(t))) < 0 for t ≥ t1 and there exists t2 > t1 such that
x[2](t) is decreasing and either positive or negative for t ≥ t2. Thus, x[1] is
either increasing or decreasing for t ≥ t2, and so there exists T > t2 such
that x[1](t) is either positive or negative for t ≥ T .

In view of Lemma 2.1, all nonoscillatory solutions of (1.1) belong to the
following classes:

C0 = {x : ∃T such that x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ T},
C1 = {x : ∃T such that x(t)x[1](t) > 0, x(t)x[2](t) < 0 for t ≥ T},
C2 = {x : ∃T such that x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ T},
C3 = {x : ∃T such that x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ T}.
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In the following theorems, we classify the nonoscillatory solutions of (1.1)
into Ci for i = 0, 1, 2, 3 according to the sign of their ∆-quasi-derivatives,
and some sufficient conditions ensuring that Ci = ∅ are given.

In this section, the following notation will be used:

I(u) :=
∞�

t0

u(s)∆s,

I(u, v) :=
∞�

t0

u(t)
t�

t0

v(s)∆s∆t,

where u and v are positive rd-continuous functions. Now, we begin to classify
the nonoscillatory solutions and start by the following theorem which gives
a condition ensuring that C3 = ∅.

Theorem 2.2. Assume that (h1)–(h2) hold. If

(2.1) I(1/r, 1/p1/γ) =∞,
then the class C3 is empty.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that the solution x(t) is positive and pick t1 > t0 so
that x(t) > 0 and x(τ(t)) > 0 for t > t1. To prove that C3 is empty, we
prove that the case x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ T is impossible.
Assume for the sake of contradiction that there exists T > t1 such that
x[2](t) < 0 and x[1](t) < 0 for t ≥ T. Denote a0 = x[2](T ) < 0. Since x[2]

is decreasing, we have p(t)((x[1](t))∆)γ < a0 for t ≥ T. This implies that
(x[1](t))∆ < a

1/γ
0 (p(s))−1/γ . Integrating from T to t, we get

x[1](t) < x[1](T ) + a
1/γ
0

t�

T

1
p1/γ(s)

∆s.

Now, since x[1](T ) < 0, we see after integrating again from T to t that

x(t) < x(T ) + a
1/γ
0

t�

T

1
r(s)

s�

T

1
p1/γ(u)

∆u∆s.

Letting t → ∞, by (2.1) we get limt→∞ x(t) = −∞, which contradicts the
fact that x(t) > 0.

The following theorem gives conditions ensuring that C1 = ∅.

Theorem 2.3. Assume that (h1)–(h2) hold. If

(2.2) I(1/r) <∞, I(1/r, 1/p1/γ) =∞,
then the class C1 is empty.



Third order functional dynamic equations 211

Proof. Assume that C1 is nonempty and let x ∈ C1 be a nonoscillatory
solution of (1.1). Without loss of generality we may assume that there exists
t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, x[1](t) > 0, x[2](t) < 0, and x[3](t) < 0
for t ≥ t1. Since x[3] < 0, x[2] is decreasing and x[2](t) < x[2](t1) = c1 < 0 for
t ≥ t1. This leads to (x[1](t))∆ < c

1/γ
1 p1/γ(t). Integrating from t1 to t yields

x[1](t) < c2 + c
1/γ
1

t�

t1

1
p1/γ(s)

∆s,

where c2 = x[1](t1) > 0. Therefore,

(x[0](t))∆ < c2r
−1(t) + c

1/γ
1

1
r(t)

t�

t1

1
p1/γ(s)

∆s.

This leads to

x[0](t) < x[0](t1) + c2

t�

t1

1
r(s)

∆s+ c
1/γ
1

t�

t1

1
r(s)

s�

t1

1
p1/γ(θ)

∆θ∆s.

Letting t→∞, we deduce by (2.2) that x[0](t)→ −∞, contrary to x(t) > 0
for large t.

The following theorem gives conditions ensuring that C2 = ∅.

Theorem 2.4. Assume that (h1)–(h2) hold. Then C2 is empty if any
one of the following conditions holds:

I(q) =∞, lim inf
|u|→∞

|f(u)| > 0,(2.3)

f ′(u) ≥ 0 for u ∈ R and
∞�

t0

q(t)f
(
c4

τ(t)�

T

1
r(s)

∆s
)

∆t =∞,(2.4)

for all c4 > 0 and T ≥ t0.

Proof. Assume that C2 is nonempty and let x ∈ C2 be a nonoscillatory
solution of (1.1). We may assume that there exists t1 ≥ t0 such that x(t) > 0
and x(τ(t)) > 0, x[1](t) > 0, x[2](t) > 0, and x[3](t) < 0 for t ≥ t1. First,
we consider the case when (2.3) holds. Since x is increasing for t ≥ t0, we
have limt→∞ x(t) = c ∈ R ∪ {∞}, and since limt→∞ τ(t) = ∞, we can
assume that limt→∞ x(τ(t)) = c ∈ R ∪ {∞}. In view of this, (2.3) and the
conditions imposed on f , there exists a positive constant K > 0 such that
f(x(τ(t))) ≥ K for t ≥ t1. By integrating (1.1) from t1 to t, we have

x
[2]

(t) = x[2](t0)−
t�

t0

q(s)f(x(s))∆s ≤ x[2](t0)−Kxγ(t0)
t�

t0

q(s)∆s.
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This together with x[2](t) > 0 for t ≥ t0 leads to
∞�

t0

q(s)∆s ≤ x[2](t0)
K

,

which contradicts I(q) =∞.
Next, we consider (2.4). Since x[2](t) > 0, we see that (x[1](t))∆ > 0, and

so x[1] is increasing for t ≥ t0. So x[1](t) > x[1](t1) = c4 > 0. This gives

x∆(t) ≥ c4r
−1(t) for t ≥ t1.

Also since limt→∞ τ(t) = ∞, we can choose t > t2 sufficiently large such
that τ(t) > t2 for t ≥ t2. Then by integrating x∆(t) ≥ c4r

−1(t) from t2 to
τ(t), we get

x(τ(t)) ≥ c4

τ(t)�

t1

r−1(s)∆s.

Since f is nondecreasing, we have

f(x(τ(s))) ≥ f
(
c4

τ(s)�

t1

r−1(u)∆u
)
.

Again integrating (1.1) from t2 to t, we have

0 < x[2](t2)−
t�

t2

q(s)f(x(τ(s)))∆s

≤ x[2](t2)−
t�

t2

q(s)f
(
c4

τ(s)�

t2

1
r(u)

∆u
)

∆s.

This implies that

∞�

t2

q(t)f
(
c4

τ(t)�

t2

1
r(s)

∆s
)

∆t ≤ x[2](t2),

which is a contradiction. The proof is complete.

Theorem 2.5. Assume that (h1)–(h2) hold and

(2.5) I(1/p1/γ) = I(1/r) =∞.

Then every nonoscillatory solution x(t) of (1.1) is in C0 ∪ C2.

Proof. We may assume that x(t) is eventually positive and pick t1 ≥ t0
such that x(t) > 0 and x(τ(t)) > 0 for t ≥ t1. Then from Lemma 2.1, x[0],
x[1] and x[2] are monotone and eventually of one sign. So to complete the
proof, we show that only the following two cases are possible:
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(I) x[0](t) > 0, x[1](t) > 0, x [2](t) > 0, for t ≥ t1 sufficiently large,
(II) x[0](t) > 0, x[1](t) < 0, x[2](t) > 0, for t ≥ t1 sufficiently large.

From (1.1) and (h2) we see that x[3](t) ≤ 0 for t ≥ t1. We claim that
there is t2 ≥ t1 such that x[2](t) > 0 for t ≥ t2. Suppose to the contrary
that x[2](t) ≤ 0 for t ≥ t2. Since x[2] is decreasing, there exists a negative
constant C and t3 ≥ t2 such that x[2](t) ≤ C for t ≥ t3. Consequently,

x[1](t) ≤ x[1](t3) + C1/γ
t�

t3

1
p1/γ(s)

∆s.

Letting t → ∞, we obtain x[1](t) → −∞ by (2.5). Thus, there is t4 ≥ t3
such that r(t)(x[0](t))∆ ≤ r(t4)(x[0](t4))∆ < 0 for t ≥ t4. This implies after
integrating from t4 to t that

x[0](t)− x[0](t4) ≤ r(t4)(x[0](t4))∆
t�

t3

1
r(s)

∆s,

which implies that x[0](t) → −∞ as t → ∞ by (2.5), which contradicts the
fact that x[0](t) > 0. Therefore x[2] > 0. The proof is complete.

For equation (1.4), the only admissible classes of nonoscillatory solutions
are C0 and C2. For equation (1.6) when (1.7) holds, the only admissible
classes of nonoscillatory solutions are also C0 and C2. Also for equation (1.8),
if (1.9) holds then the only admissible classes of nonoscillatory solutions are
C0 and C2.

In the following theorems, we study the asymptotic properties of non-
oscillatory solutions and establish some sufficient conditions for equation
(1.1) to have the property A.

Theorem 2.6. Assume that (h1)–(h2) and (2.5) hold. Let x(t) be a
nonoscillatory solution of (1.1) belonging to C2. Then:

(i) limt→∞ x
[0](t) =∞.

(ii) If limt→∞ x
[2](t) 6= 0, then limt→∞ x

[1](t) =∞.
Proof. Because x(t) is a nonoscillatory solution of (1.1) and belongs

to C2, we can assume that there exists T ≥ t0 such that x[0](t) > 0,
x[0](τ(t)) > 0, x[1](t) > 0, x [2](t) > 0 for t ≥ T. (The case when x[0](t) < 0,
x[1](t) < 0, x[2](t) < 0 for t ≥ T ∗ > t0 may be proved by using similar
arguments.)

(i) As x[1] is positive and increasing, we have x[1](t) > x[1](T ) for t ≥ T.
By integrating from T to t, we obtain

x[0](t) > x[0](T ) + x[1](T )
t�

T

∆s
r(s)

;

as t→∞, assumption (2.5) implies the first assertion.
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(ii) Since x[2](t) = p(t)((x[1](t))γ)∆, integrating from T to t implies that

x[1](t) = x[1](T ) +
t�

T

(
1
p(s)

x[2](s)
)1/γ

∆s.

Taking into account that x[2](t) is positive and decreasing, we get

x[1](t) ≥ x[1](T ) + (x[2](T ))1/γ
t�

T

(
1
p(s)

)1/γ

∆s;

as t→∞, assumption (2.5) implies the second assertion.

Theorem 2.7. Assume that (h1)–(h2) hold and there exists T > t0 such
that

(2.6)
∞�

T

1
r(s)

s�

T

(
1

p(u)

)1/γ

∆u∆s =∞.

Then every nonoscillatory solution x(t) of (1.1) which belongs to C2 satisfies
limt→∞ x

[0](t) =∞.
Proof. Again we can assume that there exists T ≥ t0 such that x[0](t)

> 0, x[0](τ(t)) > 0, x[1](t) > 0, x [2](t) > 0 for t ≥ T. From the definition of
x[1](t), we have

(2.7) x[0](t) = x[0](T ) +
t�

T

x[1](s)∆s
r(s)

>

t�

T

x[1](s)∆s
r(s)

.

Also, since x[2](t) = p(t)((x[1](t))∆)∆γ , we get

(2.8) x[1](t) = x[1](T ) +
t�

T

(
1
p(s)

x[2](s)
)1/γ

∆s >
t�

T

(
1
p(s)

x[2](s)
)1/γ

∆s.

Taking into account that x[2](t) is positive and decreasing, we deduce from
(2.7) and (2.8) that

x[0](t) >
t�

T

1
r(s)

s�

T

(
1

p(u)
x[2](u)

)1/γ

∆u∆s > x[2](T )
t�

T

1
r(s)

s�

T

(
1

p(u)

)1/γ

∆u∆s.

Assumption (2.6) implies that limt→∞ x
[0](t) =∞.

Theorem 2.8. Assume that (h1)–(h2) hold, f(u) ≥ Kuβ for β ≥ 0 and

(h3)
	∞
t0
r−1(t)

	∞
t (p−1(u)

	∞
u q(s)∆s)1/γ∆u∆t =∞.

Then every nonoscillatory solution x(t) of (1.1) which belongs to C0 satisfies
limt→∞ x

[0](t) = 0.

Proof. Because x(t) is a nonoscillatory solution of (1.1) and belongs
to C0, we can assume that there exists T ≥ t0 such that x[0](t) > 0,
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x[0](τ(t)) > 0, x[1](t) < 0, x[2](t) > 0 for t ≥ T. (The case when x[0](t) < 0,
x[1](t) > 0, and x[2](t) < 0 for t ≥ T ∗ > t0 is similar). We integrate (1.1)
from t to ∞, noting that x[2] is positive and decreasing, and obtain

−x[2](t) +
∞�

t

Kq(t)xβ(τ(t))∆t ≤ 0.

So

(2.9) − p(t)((x[1](t))∆)γ +
∞�

t

Kq(t)xβ(τ(t))∆t ≤ 0.

Integrating (2.9) from t to ∞ after dividing by p(t) and using the fact that
x[1](t) < 0, we get

(2.10) r(t)(x[0](t))∆ +K1/γ
∞�

t

(
1

p(u)

∞�

u

q(s)x((τ(s)))β∆s
)1/γ

∆t ≤ 0.

Dividing (2.10) by r(t) and integrating from T to ∞, we have

(2.11)
∞�

T

1
r(t)

∞�

t

(
1

p(u)

∞�

u

q(s)(x(τ(s)))β∆s
)1/γ

∆u∆t ≤ x[0](T )
K1/γ

.

Now since x[0](t) is positive and decreasing for t ≥ T , it follows that

lim
t→∞

x[0](t) =: k ≥ 0.

If we assume that k > 0, then we can assume that xβ(τ(t)) ≥ (k/2)β for
t2 ≥ T. Thus from (2.11), we get

∞�

T

1
r(t)

∞�

t

(
1

p(u)

∞�

u

q(s)∆s
)1/γ

∆u∆t ≤ 2β/γx[0](t1)
K1/γkβ/γ

,

which contradicts (h3). Thus limt→∞ x(t) = 0.

Theorem 2.9. Assume that (h1)–(h3) and (2.5) hold and f(u) ≥ Kuβ

for some β ≥ 0. If there exists T > t0 such that

(2.12) I(q) =
∞�

T

q(s)∆s =∞,

then (1.1) has the property A.

Proof. Assume that (1.1) does not have the property A and let x(t)
be a nonoscillatory solution of (1.1) which may be assumed to be positive
for t ≥ T ≥ t0. Now from Theorem 2.5, since (2.5) holds, there are two
possibilities:

(i) x[1](t) > 0 for t ≥ T ,
(ii) x[1](t) < 0 for t ≥ T.
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Since limt→∞ τ(t) = ∞, we can choose T1 > T such that τ(t) > T for
t > T1. If (i) holds, then x(t) is increasing and then from (h2) we see that
f(x(τ)) ≥ Kxγ(T1). Integrating (1.1) from T to t, we have

x[2](t) = x[2](T )−
t�

T

q(s)f(x(τ(s)))∆s ≤ x[2](T )−Kxβ(T1)
t�

T

q(s)∆s.

This implies by (2.12) that limt→∞ x
[2](t) = −∞, which is a contradiction.

If (ii) holds then x(t) is decreasing and there are two cases:

Case 1: limt→∞ x(t) = k > 0. Then x(t) ≥ k for t ≥ T. Integrating (1.1)
three times and following the proof of Theorem 2.8, we get a contradiction
with (h3).

Case 2: limt→∞ x(t) = 0. From the fact that x[0](t) > 0 and x[2](t) > 0
for t ≥ T it follows that x[1](t) is increasing and limt→∞ x

[1](t) = β where
−∞ < β ≤ 0. This implies that x[1](t) ≤ β for all t ≥ T > t0, and hence

x[0](T ) ≥ x[0](t)− β
t�

T

r−1(s)∆s,

which is impossible by (2.5) for β < 0. Therefore limt→∞ x
[1](t) = 0. Now

x[1](t) < 0 and x[3](t) < 0 for t ≥ T imply that x[2] is decreasing and
limt→∞ x

[2](t) = δ where 0 ≤ δ <∞. This implies that

x[1](T ) ≤ x[1](t)− δ1/γ
t�

T

p−1/γ(s)∆s,

which is again impossible by (2.5) for δ > 0, and hence δ = 0.

From the proof of Theorem 2.9, we see that if (2.5) holds then x ∈ C0∪C2,
while if x[1](t) < 0 for t ≥ T , then x ∈ C0 is a solution of Kneser type, and
we immediately get the following results.

Proposition 2.10. Assume that (h1)–(h3) and (2.5) hold. Then every
solution x(t) of Kneser type satisfies limt→∞ x

[i](t) = 0, i = 0, 1, 2.

Theorem 2.11. Assume that (h1)–(h3) and (2.5) hold, and f(u) ≥ Kuβ
for some β ≥ 0. If there exists T > t0 such that

(2.13)
∞�

T

q(s)
(τ(u)�

T

∆u
r(u)

)β
∆s =∞,

then (1.1) has the property A.

Proof. Assume that (1.1) does not have the property A and let x(t) be
a nonoscillatory solution of (1.1) which may be assumed to be positive for
t ≥ T ≥ t0. Now, from Theorem 2.5, there are two possibilities.
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(i) x[1](t) > 0 for t ≥ T ,
(ii) x[1](t) < 0 for t ≥ T.

If x[1](t) > 0 for t ≥ T , then x(t) is increasing. Integrating (1.1) from T
to t, we have

x[2](t) = x[2](T )−
t�

T

q(s)f(x(τ(s)))∆s.

Since f(x(τ(t))) ≥ Kxβ(τ(t))), we have

x[2](t) ≤ x[2](T )−K
t�

T

q(s)xβ(τ(t))∆s.

Since limt→∞ τ(t) = ∞, we can choose T1 > T such that τ(t) > T for
t ≥ T1. So, since x[1](t) ≥ x[1](T ), we get x(τ(t)) ≥ x[1](T )

	τ(t)
T

∆u
r(s) . This

implies that

x[2](t) ≤ x[2](T )−K
(
x[1](T )

)β t�

T

q(s)
(τ(u)�

T

∆u
r(u)

)β
∆s.

This leads by (2.13) to limt→∞ x
[2](t) = −∞, which is a contradiction. The

proof for (ii) is similar to the proof of Theorem 2.9 and hence is omitted.
The proof is complete.

We now give some examples to illustrate the main results.

Example 2.12. Consider the equation

(2.14) x∆∆∆(t) +
α

t3
x(σ(t)) = 0, t ∈ [1,∞)T,

where T is a time scale. Here γ = 1, K = 1, r(t) = p(t) = 1, q(t) = α/t3 and
τ(t) = σ(t) > t. In this case it is clear that the conditions (h1)–(h3) and (2.5)
hold. Then by Theorem 2.8 every solution x(t) of (2.14) which belongs to
C0 satisfies limt→∞ x(t) = 0. In fact, if T = R, α = 6 the equation becomes
the third order differential equation

x
′′′

(t) +
6
t3
x(t) = 0 for t ∈ [1,∞),

and one such solution is x(t) = 1/t.

Example 2.13. Consider the dynamic equation

(2.15) x∆∆∆(t) +
α

t3
x(2t) = 0 for t ∈ [1,∞)T.

Here γ = 1, K = 1, r(t) = p(t) = 1, q(t) = α/t3 and τ(t) = 2t > t.
In this case it is clear that the conditions (h1)–(h3) and (2.5) hold. Then
by Theorem 2.8, every solution x(t) of (2.15) which belongs to C0 satisfies
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limt→∞ x(t) = 0. In fact, T = R and α = 3/8 > 1/4, the equation becomes
the third order advanced differential equation

x′′′(t) +
3

8t3
x(2t) = 0 for t ∈ [1,∞);

by the change of variable θ = 2t the equation is reduced to the third order
differential equation

y′′′(θ) +
24
θ3
y(θ) = 0 for θ ∈ [2,∞),

and one solution is given by y(θ) = 1/θ2.

Example 2.14. Consider the third order dynamic equation

(2.16)
(

1
t3

[
1
t2
x∆(t)

]∆)∆

+ αt2x3(t2) = 0 for t ∈ [1,∞)T.

Here p(t) = 1/t3, r(t) = 1/t2, γ = 1, K = 1, β = 3 and q(t) = αt2. It is
clear that (h1)–(h2) hold. To apply Theorem 2.9 it remains to prove that
(h3) and (2.5) hold. In this case it is clear that

I(1/r) =
∞�

1

t2∆t =∞, I(1/p) =
∞�

1

t3∆t =∞,

∞�

t0

1
r(t)

∞�

t

(
1

p(u)

∞�

u

q(s)∆s
)1/γ

∆u∆t =
∞�

1

u2
∞�

t

(
u3
∞�

u

αs2∆s
)

∆u∆t =∞.

Then by Theorem 2.9 equation (2.16) has the property A. In fact if T = R
and α = 90, then one solution is x(t) = 1/t2, which satisfies limt→∞ x(t) =
limt→∞ x

[1](t) = limt→∞ x
[2](t) = 0.

Example 2.15. Consider the dynamic equation

(2.17) x∆∆∆(t) +
α

t2
x(t2) = 0 for t ∈ [1,∞)T.

Here γ = 1, K = 1, β = 1, r(t) = p(t) = 1, q(t) = α/t2 and τ(t) = t2 > t. In
this case it is clear that the conditions (h1)–(h3) and (2.5) hold. To apply
Theorem 2.11 it remains to prove that (2.13) holds. In this case it is clear:

∞�

T

q(s)
(τ(u)�

T

∆u
r(u)

)β
∆s =

∞�

1

α

s2
(s2 − 1)∆s =∞.

Then by Theorem 2.11 equation (2.17) has the property A. In fact if T =
R and α = 6, then one solution is x(t) = 1/t, which satisfies limt→∞ x(t) =
limt→∞ x

[1](t) = limt→∞ x
[2](t) = 0.

In the following, we consider the case when (1.3) holds and establish some
sufficient conditions which guarantee that the solution x(t) of (1.1) satisfies
limt→∞ x

[0](t) = 0 and limt→∞ x
[1](t) = 0. Throughout the following we
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assume that (2.1) holds and so by Theorem 2.2, the class C3 is empty.
From the above results, if (1.3) holds and x(t) is a solution of (1.1) then
x0 ∈ C0 ∪ C1 ∪ C2. Throughout the following we define B(t) by

B(t) := q(t)
(g(t)�

T

1
r(s)

∆s
)γ
.

where T > t0 is such that g(t) > T.

Theorem 2.16. Assume that (h1)–(h3), (1.3), (2.3) and (2.5) hold, and
uf(u) > 0, f(u) ≥ Kuγ for some γ > 0. If

(2.18)
∞�

T

[
1
p(s)

s�

T

B(u)∆u
]1/γ

∆s =∞,

then every nonoscillatory solution x(t) of (1.1) satisfies limt→∞ x
[0](t) = 0

and limn→∞ x
[1](t) = 0.

Proof. Without loss of generality, we may assume that x(t) > 0, x(g(t))
> 0 for t ≥ t1 where t1 is large. The proof when x(t) < 0 is similar, since
uf(u) > 0. Since (2.3) is satisfied we know that x ∈ C0 ∪C1 ∪C2. If x ∈ C0,
then we are back in the proof of Theorem 2.8 and infer that limt→∞ x(t) = 0.
If (2.5) holds then C2 is empty. It remains to consider the case when x ∈ C1.
Thus there exists T > t1 such that x[1](t) > 0 and x[2](t) < 0 for t ≥ T.
Now, from the definitions of the ∆-quasi-derivatives,

x∆(t) =
x[1](t)
r(t)

.

Since (x[1](t))∆ < 0, x[1] is decreasing, and by integrating from T to t we
have

(2.19) x(t)− x(T ) =
t�

T

x[1](s)
r(s)

∆s ≥ x[1](t)
t�

T

1
r(s)

∆s.

Hence, there exists T1 > T such that

x(g(t)) ≥ x[1](g(t))
g(t)�

T

1
r(s)

∆s for t ≥ T1.

Substituting in (1.1), we get

(2.20) (p(t)((x[1])∆)γ)∆ +Kq(t)
(g(t)�

T

1
r(s)

∆s
)γ

(x[1](g(t)))γ ≤ 0, t ≥ T1.

Let y(t) = x[1](t) > 0. Then y∆(t) < 0 and y(t) satisfies the inequality

(2.21) (p(t)(y∆(t))γ)∆ +KB(t)yγ(g(t)) ≤ 0, for t ≥ T1.
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Now, since y is decreasing, the limit limn→∞ y(t) = b ≥ 0 exists. We assert
that b = 0. If not, then y(τ(t)) > y(t) > b > 0 for t ≥ T2. Define

u(t) = p(t)(y∆(t))γ).

Then from (2.21) for t ≥ T2, we obtain

u∆(t) = −KB(t)y(g(t)) ≤ −bγKB(t).

Hence for t ≥ T2, we have

u(t) ≤ u(T2)−Kbγ
t�

T2

B(s)∆s < −Kbγ
t�

T2

B(s)∆s.

Since u(T2) = p(T2)y∆(T2) < 0. Integrating again from T2 to t, we have

y(t)− y(T2) ≤ −K1/γb

t�

T2

[
1
p(s)

s�

T2

B(u)∆u
]1/γ

∆s.

By condition (2.18), we get y(t)→ −∞ as t→∞, contrary to the fact that
y(t) > 0 for t ≥ T2. Thus b = 0 and limt→∞ x

[1](t) = 0.
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