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Doubly warped product submanifolds of
(k, ;u)-contact metric manifolds

by SIBEL SULAR and CmHAN OzGUR (Balikesir)

Abstract. We establish sharp inequalities for C-totally real doubly warped prod-
uct submanifolds in (k, u)-contact space forms and in non-Sasakian (x, u)-contact metric
manifolds.

1. Introduction. Let (M, g1) and (M2, g2) be two Riemannian man-
ifolds and fi1, fo differentiable, positive-valued functions on M; and Mo,
respectively. The doubly warped product M = y, My x z Mo is the product
manifold M7 x My equipped with the metric

9= fig + figo.

More explicitly, if w1 : My x My — My and ws : My x My — Ms are canonical
projections, then the metric g is given by
9= (faom)’mig + (f1 o m)*m5g0.

The functions f; and fo are called warping functions. If either f; = 1 or
fo = 1, but not both, then we get a warped product. If both f; = 1 and
f2 =1, then we obtain a Riemannian product manifold. If neither f; nor fo
is constant, then we have a non-trivial doubly warped product [Unl.

For a doubly warped product f,M; x r Ms, let D1 and Dy denote the
distributions obtained from the vectors on M; and Mo, respectively.

Assume that

X f2M1 X flMQ — M

is an isometric immersion of a doubly warped product r,M; X ¢ M3 into a

Riemannian manifold M. We denote by o the second fundamental form of
x and by H; = (1/n;) trace o; the partial mean curvatures, where trace o; is
the trace of o restricted to M; and n; = dim M; (i = 1,2). The immersion
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x is called mized totally geodesic if o(X,Z) = 0 for any vector fields X and
Z tangent to Dy and Ds, respectively.
If , My x p, M> is a doubly warped product, we have
2
VY = VY = 926, (X,V)¥2(n 1)
1
and
VxZ=Z7Z(nf2)X + X(In f1)Z,

for any vector fields X, Y tangent to M, and Z tangent to My, where V*
and V2 are the Levi-Civita connections of the Riemannian metrics g; and
go, respectively. Here, V2(In f3) denotes the gradient of In fo with respect
to the metric go.

If X and Z are unit vector fields, it follows that the sectional curvature
K(X A Z) of the plane section spanned by X and Z is given by

K(XAZ)= jlwkxm X2} 4 }Q{N%Z)fz _22f)

Consequently, we obtain

A Afo
(1.1) ngffl—i—nlff = Z K(e; Nes),
! 7 1<j<mi<s<n
for alocal orthonormal frame {e1, ..., €n,,€ny+1,-..,€n}suchthater,..., ey,
are tangent to My and ep,41,...,e, are tangent to M.

In [Ch-2002], B. Y. Chen proved the following result for a warped product
submanifold of a Riemannian manifold of constant sectional curvature:

THEOREM 1.1. Let x : My Xy My — M(c) be an isometric immersion
of an n-dimensional warped product My X y My into an m-dimensional Rie-

mannian manifold M(c) of constant sectional curvature c. Then

Af  n? 9
where n; = dim M;, n = ny + ne, and A is the Laplacian operator of M.
FEquality holds in identically if and only if x is a mixed totally geodesic
immersiton and n1Hy = noHy, where H;, i = 1,2, are the partial mean
curvature vectors.

In [MM], K. Matsumoto and I. Mihai studied warped product submani-
folds in Sasakian space forms. In [Mi-2004] and [Mi-2005], A. Mihai consid-
ered warped product submanifolds in complex space forms and quaternion
space forms, respectively. Recently, in [MAEM], C. Murathan, K. Arslan,
R. Ezentag and I. Mihai studied warped product submanifolds in Kenmotsu
space forms. Later, B. Y. Chen and F. Dillen extended inequality (1.2 to
multiply warped product submanifolds in arbitrary Riemannian manifolds
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[ChD1i|. Recently, in [Tri], M. M. Tripathi established basic inequalities for
C-totally real warped product submanifolds of (k, u)-contact space forms
and non-Sasakian (k, u)-contact metric manifolds.

In [Ol], A. Olteanu established the following general inequality for arbi-
trary isometric immersions of doubly warped product manifolds in arbitrary
Riemannian manifolds:

THEOREM 1.2. Let x be an isometric immersion of an n-dimensional
doubly warped product M = g, My X f, Mo into an arbitrary m-dimensional

Riemannian manifold M. Then

n241f1 . Az f
fi f2

where n; = dim M;, n = ny+na, 4A; is the Laplacian operator of M;, i = 1,2,

%d max K (p) denotes the mazimum of the sectional curvature function of

2 ~
(1.3) < %HHHQ + ninsmax K,

M restricted to 2-plane sections of the tangent space T,M of M at each
point p in M. Moreover, equality holds in (1.3)) identically if and only if the
following two statements hold:

(1) = is a mized totally geodesic immersion satisfying niH; = noHa,
where H;, i = 1,2, are the partial mean curvature vectors of M;,

(2) at each point p = (p1,p2) € M, the sectional curvature function K of
M satisfies K (u,v) = max K(p) for each unit vector u € Tp, My and each
unit vector v € Ty, Ms.

Motivated by the studies of the above authors, we prove similar inequali-
ties for C-totally real doubly warped product submanifolds of (k, u)-contact
space forms and non-Sasakian (k, u1)-contact metric manifolds.

The paper is organized as follows: In Section [2| we give a brief introduc-
tion to submanifolds, (k, )-contact metric manifolds, (k, u)-contact space
forms and non-Sasakian (k, u)-contact metric manifolds. In Section (3| we
prove basic inequalities for (k,p)-contact space forms and non-Sasakian
(K, p)-contact metric manifolds. In Section |4} as applications we prove that
if the functions f; and f> are harmonic then M = y,M; X f M> does not
admit minimal immersions under certain conditions.

2. Preliminaries. Let M be an m-dimensional Riemannian manifold
and p € M. Denote by K(m) or K(u,v) the sectional curvature of M asso-
ciated with a plane section 7 C T, M, where {u,v} is an orthonormal basis
of . For any n-dimensional subspace L C T,M, 2 < n < m, its scalar
curvature 7(L) is given by

T(L): Z K(ei/\ej),

1<i<j<n
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where {eq,...,e,} is any orthonormal basis of L [Ch-2000]. If L = T,M,
then 7(L) is just the scalar curvature 7(p) of M at p.

For an n-dimensional submanifold M in a Riemannian m-manifold M
we denote by V and V the Levi-Civita connections of M and M respectively.
The Gauss and Weingarten formulas are

VxY =VxY +0(X,Y) and VyN =—AxX + V%Y,
respectively, for vector fields X, Y tangent to M, and N normal to M, where
o denotes the second fundamental form, V+ the normal connection and A
the shape operator of M [Ch-1973].

Denote by R and R the Riemannian curvature tensors of M and M,
respectively. Then the equation of Gauss is given by
R(X,Y,Z,W) = R(X,Y, Z,W)
90 (Y, Z),0(X,W)) — g(o(X, Z),0(Y,W)),
for all vector fields X, Y, Z, W tangent to M [Ch-1973].

For any orthonormal basis {e1,...,e,} of T,M, the mean curvature vec-

tor is given by
n

Hp) =~ oleses),

i=1

where n = dim M. The submanifold M is totally geodesic in Mifo = 0,
and minimal if H = 0.
We write

ol = g(o(ei,ej),er), 4,7€{l,...,n},re{n+1,...,m},

for the coefficients of the second fundamental form o with respect toeq, ..., ey,
€n+tly---5Em, and set
n
loll> = Y g(o(eire;), o(eie))).
i,j=1
Let M be a local n-dimensional Riemannian manifold and {ey,...,e,}

be a local orthonormal frame on M. For a differentiable function f on M,
the Laplacian Af of f is given by

Af = {(Vee))f — ejejf}.
j=1

We will need the following Chen’s Lemma:

LEmMA 2.1 ([Ch-1993]). Let n > 2 and ai,...,an,b be real numbers

such that .
(Zai>2 =(n— 1)(2@? —l—b).
i=1

=1
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Then 2a1a9 > b, with equality holding if and only if
a1 +ag =a3 ="+ = ap.

A (2m+1)-dimensional Riemannian manifold M is said to be an almost
contact metric manifold [Bl-2002] if there exist on M a (1, 1)-tensor field ¢,
a vector field £, a 1-form 7 and a Riemannian metric g satisfying

pP=—I+ne¢ nE=1 ¢=0, nop=0,

9(@X, oY) = g(X,Y) =n(X)n(Y), n(X)=g(X,8),
for any vector fields X,Y on M. An almost contact metric manifold is a
contact metric manifold if

g(Xv (pY) = dn(Xa Y)a

for all X,Y on M.
A contact metric manifold is a Sasakian manifold if the Riemannian
curvature tensor R of M satisfies

R(X,Y)E =n(Y)X —n(X)Y,

for all vector fields X,Y on M. .
In a contact metric manifold M, a (1, 1)-tensor field h is given by

1
h=-L
5 Lew

where L¢ is the Lie derivative in the characteristic direction §. Moreover h
is symmetric and satisfies
hé =0, he+ph=0,
VE=—p—h, trace(h) = trace(ph) = 0,
where V is the Levi-Civita connection.
The tangent sphere bundle of a flat Riemannian manifold admits a con-
tact metric structure satisfying R(X,Y)¢ = 0 [B1-2002]. The (k, u)-nullity

condition on a contact metric manifold is considered as a generalization of
both R(X,Y){ = 0 and the Sasakian case. The (k, u)-nullity distribution

N(k,p) [BKP] of a contact metric manifold M is defined by
N(k,p) :p— Np(k,p) ={Z € T,M | R(X,Y)Z
for all X, Y € TM where (x, 1) € R? and I is the identity map. If £ belongs
to the (k, u)-nullity distribution N(k, ) then the contact metric manifold
M is called a (k, p)-contact metric manifold. In particular the condition
R(X,Y)§ = s(n(Y)X —n(X)Y) 4+ u(n(Y)hX — n(X)hY)

holds on a (k, 1)-contact metric manifold.
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On a (k, )-contact metric manifold we have
= (k—1)¢? and k<1.

For a (k, t)-contact metric manifold, the conditions to be a Sasakian mani-
fold, k = 1, and h = 0 are all equivalent. When x < 1, the non-zero eigenval-
ues of h are A = F/1 — k each with multiplicity m. The eigenspace relative
to the eigenvalue 0 is span{{}. Also, for k # 1, the subbundle D = ker(n)
can be decomposed into the eigenspace distributions D4 and D_ relative to
the eigenvalues A and —\, respectively. These distributions are orthogonal
to each other and have dimension m [Bl-2002].

For a unit vector field X orthogonal to £ in an almost contact metric
manifold, the sectional curvature K (X, pX) is called a p-sectional curvature.
On a (2m+1)-dimensional (m > 3), (k, 1)-contact metric manifold M, if the
p-sectional curvature at p € M is independent of the y-section at p, then
it is constant [Koul. If the (k, )-contact metric manifold M has constant
¢-sectional curvature ¢, then it is said to be a (k, u)-contact space form
and denoted by M (¢). The Riemannian curvature tensor of a (k, j1)-contact
space form M (c) is given by

21) RX,Y,zw)= "3

{9(Y, 2)g(X, W) — g(X, Z)g(Y, W)}

+ %{29()@ Y )g(0Z, W) + g(X,02)g(Y, W) — (Y, 0Z)g(0X, W)}

+ #M(X)U(Z)Q(Y, W) —n(Y)n(Z)g(X, W)

+9(X, Z)n(Y)n(W) — g(Y, Z)n(X)n(W)}

+ S o(hY, 2)g(hX, W) — g(hX, Z)g(hY, W)

+ g(phX, Z)g(phY, W) — g(phY, Z)g(phX, W)}
+ 9(eY,0Z)g(hX, W) — g(0 X, 0Z)g(hY, W)

+ g(hX, Z)g(@*Y, W) — g(hY, Z)g(©* X, W)

+ p{n(Y)n(2)g(hX, W) —n(X)n(Z)g(hY,W)

+ g(hY, Z)n(X)n(W) — g(hX, Z)n(Y )n(W)},

for all vector fields X,Y, Z, W on M(c) [Kou]. If k = 1 then a (k, u)-contact
space form M(c) becomes a Sasakian space form and the equation 1}
reduces to

Rx,v,z,w) = <3

{9(Y, 2)g(X, W) — g(X, Z)g(Y, W)}

c—1
+ T{29(X’ ©Y)g(pZ, W)
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+9(X, pZ)g(pY, W) — g(Y,0Z)g(p X, W)
+n(X)n(Z)g(Y, W) —n(Y)n(Z)g(X, W)
+9(X, Z)n(Y)n(W) — g(Y, Z)n(X )n(W)}.

The Riemannian curvature tensor R of a non-Sasakian (K, pv)-contact metric
manifold M is given by

22 REY.Z20) = (15 ) {00 29X, W) - 40X, Z)g(v. W)

- g{2g(X7 ©Y)g(9Z, W)+ g(X, 0Z2)g(pY, W) — g(Y,0Z)g(pX, W)}
+ Q(K Z)g(hX, W) - g(X, Z)g(hY, W)
- g(}/a W)g(th Z) + g(X, W)g(hY7 Z)

+ 11__%2 {g(hY, Z)g(hX,W) — g(hX, Z)g(hY, W)}

+ Rl— W2 ohY, Z2)g(ohX, W) — g(phX, Z)g(ohY, W)}
+n(X)n(W){(k — 1+ p/2)9(Y, Z) — (1 — 1)g(hY, Z)}

= (X)) {(k =14+ p/2)g(Y, W) — (u— 1)g(hY, W)}
+n(Y)n(Z){(k =14+ p/2)g(X, W) — (n — 1)g(hX, W)}
—n(Y)n(W){(k =1+ p/2)9(X, Z) — (p— 1)g(hX, Z)},

for all vector fields X, Y, Z, W on M (IBo-1999], [Bo-2000]). A 3-dimensional
non-Sasakian (k, u)-contact metric manifold has constant y-sectional cur-
vature, but this is not true for higher dimensions. A non-Sasakian (k, u)-
contact metric manifold has constant ¢-sectional curvature c if and only if
uw=r+1 [Koul.

3. Main results. A submanifold M normal to { in a contact metric
manifold M is said to be a C-totally real submanifold [YK]. It follows that
¢ maps any tangent space of M into the normal space, that is, ¢(T,M) C
TPJ-M for any p € M.

For a C-totally real submanifold in a contact metric manifold, it is easy
to see that

9(AeX,Y) = —g(VxE,Y) = g(pX + phX,Y),

which means that A¢ = (ph)T, the tangent component of ph.

In this section, we consider inequalities for C-totally real doubly warped
product submanifolds of (x, u)-contact space forms and non-Sasakian (k, p1)-
contact metric manifolds.
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Now, we begin with the following theorem:

THEOREM 3.1. Let M = ¢, My X y, M3 be an n-dimensional C-totally real
doubly warped product submanifold of a (2m+ 1)-dimensional (k, p)-contact

space form M(c). Then
- Ah - Ay f2
fi f2

2
n ning
< H 2
4 I 4

1
+ Z{(t]rauce(hT))2 - (trace(h@1 ))? — (trace(h‘T;\@))2
— (trace(Ag))2 (trace(AﬂM ))2 + (trace(AﬂMZ))2
— IR + Ik, 12+ A, 112
+ [ Al - HA§|MIH - HAglMQH |

where n; = dim M;, n = n1 + no and 4; is the Laplacian of M;, i = 1,2.
Equality holds in (3.1) identically if and only if M is mized totally geodesic
and ni1Hy = noHs, where H;, © = 1,2, are the partial mean curvature vec-
tors.

(3.1)

(c+3)+ng trace(hﬁul) +ny trace(ha@)

Proof. We choose a local orthonormal frame {ey,...,en,,€n141,---,€n}
such that ey, ..., ey, are tangent to My, ey, +1, ..., €, are tangent to My and
en+1 is parallel to the mean curvature vector H.

From the equation of Gauss, we have

27(p) = n*|H|*(p) — llol*(p) + 27(T,M), p € M,

where ||o||? is the squared norm of the second fundamental form o of M in
M and T(T, M) is the scalar curvature of the subspace T,M in M.
We set

2
n ~
(3.2) §=21— ?HHH? — 27(T,M).
The equation (3.2)) can be written as follows:
(3.3) n?|H|* =205+ [lo]?).

For the chosen local orthonormal frame, the relation (3.3]) takes the form

(Zo.nJrl) _2[5+Z n1y2 Z ntly2 +2§1 zn: }
itj r=n+2 ij=1

If we put a1 = ofj"!, ag = Y1, 00 and ag = Y7, L, op"", then the

above equation reduces to
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3 3 2m+1 n

2
(a) =2+ Xate X @i 3 S
=1 =1 1<i#j<n r=n+2 1,j=1
n+1_n+l1 n+1l_n+l1
- Z 955 Okk T Z Tss Ttt }
2<j#k<ni n1+1<s#t<n

Hence, a1, as and ag satisfy the assumption of Chen’s Lemma (for n = 3),
which implies that

with
2m+1 n

3
b=6+> ai+ > @)+ DY Y (o
=1

1<i#j<n r=n+2 4,j=1
_ n+l _n+1 n+1 n+1
E 05 Ok E Oy O .
2<j#k<n ni+1<sAt<n

Then we get 2a1a9 > b, with equality holding a; + a2 = az. Equivalently

1 1 1_n+1
34) > ofeptt e > ontopt
1<j<k<ny n1+1<s<t<n
6 2m+1 n
n+1
S LT DI
1<a<B<n 2,272 g
Equality holds if and only if
Zo_n—i-l Z O,n—&-l'
t=n1+1
By making use of the Gauss equation again, we have
A Az fo
3.5 + ni
(3.5) N f2
=7 Z K(ej Neg) — Z K(es Aet)
1<j<k<ni n1+1<s<t<n

2m—+1

=7—7D1) - Y > (0foh — (05)?)

r=n+1 1<j<k<n;
2m—+1

—7(Dg) — Z Z (0550t — (Ugt)Z)-

r=n+1 ni1+1<s<t<n

In view of the equations (|1.1)), (3.4) and (3.5) we obtain
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A1f1 A2f2
no
fi
<7-7(TM) Z Z K(es Aey)
1<s<ni ni1+1<t<n
2m+1 n

(3.6)

4 n+1
SR NICUEED b oy
1<j<t<n r n+2 a,0=1
2m—+1 2m—+1
+ Z Z ((ng)Q — 0}i0%kk) + Z Z ((05)* — ols0t)
r=n+2 1<j<k<n; r=n+2 n;+1<s<t<n
. 2m+1 n1
e+ XY Reaw-5- 3 30 Y G
1<s<n; n1+1<t<n r=n+1 j=1 t=n1+1
2m—+1 ni 2m+1 n
—*Z(Zm) 2> (> )
r=n+2 j=1 r n+2 t=n1+1
Applying (3.2) in (3.6) we get
Ay fy Az f
3.7 ng +m
(3.7) bil f2
2
’,’L ~ ~
< Z||H||2 —F(TM) + Y Klesne)
1<s<ni; ni1+1<t<n
2m—+1 niy n 1 2m+1 ni 2 1 2m+1 n 9
2
XY Y@ () 5 (X )
r=n+1 j=1t=n1+1 r=n+2 j=1 r=n+2 t=ni;+1

On the other hand, from 1D we can write the sectional curvature of M (c)
as follows:

. c+3
(3.8) K(e; Nej) = T + g(h'e;,e;) + g(hlej, ej)

+ §{g(hT6i, ei)g(hej, ej) — g(hle;, e5)?

— g(Agei, ei)g(Agej, ) + g(Ages, e5)?}
(see equation (4.3) in [Tti]). Then, using (3.8) in (3.7), we obtain the in-

equality (3.1). m
Taking h = 0 in (3.1]), we obtain the following corollary:
COROLLARY 3.2 ([Oll). Let M = f,My x s My be an n-dimensional

C-totally real doubly warped product submanifold of a Sasakian space form
M(c). Then
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Arfy Aofy _n? o mang
n9 7 + nq 7 < 4||H|| + 1
where n; = dim M;, n = ny + ng and 4A; is the Laplacian of M;, i = 1,2.
Equality holds in identically if and only if M is mized totally geodesic
and n1Hy = noHs, where H;, 1 = 1,2, are the partial mean curvature vec-
tors.

(3.9)

(c+3),

Similarly, we establish a sharp inequality for C-totally real doubly warped
product submanifolds of non-Sasakian (k, u)-contact metric manifolds in the
following theorem:

THEOREM 3.3. Let M = ¢, My X g, M be an n-dimensional C-totally real
doubly warped product submanifold of a (2m + 1)-dimensional non-Sasakian

(K, p)-contact metric manifold M. Then

A A
Lf1 tn 2.f2

" bil " Ja

2
ning 1%
< H|? 1-=
< P+ = ( 2)
_|_

na trace(h‘T )+ n1 trace(hah)

(3.10)

+ = L1- M/ {(trace(h1))? — (trace(thMl))Q - (trace(hlj;MQ))Q}

21—
- % ,il__'u/2{(trace(A5))2 — (trace(Agwl))2 — (trace(AﬂMg))Q}

11— M/2 T2 2 T 12
2 g UL [ Bl PP

u/ 2
5 2 A ~ A, I~ 14g, 17},
where n; = dim M;, n = ny + ny and 4A; is the Laplacian of M;, i = 1,2.
Equality holds in (3.10)) identically if and only if M = g, My X y, My is mized
totally geodesic and nyHy = naHy, where H;, 1 = 1,2, are the partial mean
curvature vectors.

Proof. We choose a local orthonormal frame {ej,...,en,,€n41,---s€n}
such that ey, ..., ey, are tangent to M, en,+1,- .., €, are tangent to My and
en+1 is parallel to the mean curvature vector H. Then from equation ([2.2))
we have

(3.11) K(ez/\ej) (1—,u/2)—|—g(h eiei) + g(h'ej, ;)

— /2
+ L T e g (e ) — alhTer.c;)?)

1—
u/

4+ 8 {9(Ace;, e)g(Acej, e5) — g(Aces, e)?}

1-—
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(see equation (4.9) in [Tri]). Similar to the proof of Theorem we obtain

(3.7). Then making use of (3.11]) in (3.7) we obtain (3.10). =

4. Applications. As applications, we derive certain obstructions to the
existence of minimal C-totally real doubly warped product submanifolds in
(K, u)-contact space forms, in non-Sasakian (k, ut)-contact metric manifolds
and in Sasakian space forms.

COROLLARY 4.1. Let M = y, My x y, Ma be a C-totally real doubly warped
product manifold. If the warping functions fi and fo are harmonic, then M
admits no minimal immersion into a (K, p)-contact space form M(c) with

(4.1) 0> "2

(c+3)+no trace(h‘TMl) +ny trace(hﬁlz)

1
+ Z{(trace(hT))2 — (trace(thMl))2 - (tl"a(:e(thM2))2
— (trace(Ag))? + trace((Ag|,,, ))? + trace((A€|M2))2
— AT+ Ry, 12+ A0 P 4 L Ael® = 1Ag,, 1P = [l A, 17}

Proof. Suppose that fi and fy are harmonic, and M admits a minimal
C-totally real immersion into a (k, u)-contact space form M(c). Then the
inequality (3.1] . turns into

0< T( c+3) +no trace(h|TM1) +n trace(ha@)

1
+ Z{(trance(hT))2 - (trace(thM1 ))? — (trace(h‘TMQ))2
2 2 2
— (trace(Ag)) (trace(AﬂM )"+ (trace(AaMZ))
o L R W e T
+ 1Al = [ Agpy,, 17 — ||A§|M2 (2
Thus we obtain the inequality (4.1)). =
Similar to Corollary we can give the following corollary:

COROLLARY 4.2. Let M = y, My x y, M2 be a C-totally real doubly warped
product manifold. If the warping functions f1 and fo are harmonic, then
o, My x4 My admits no minimal immersion into a (K, j)-contact metric
manifold M with

0 < 7”L17”LQ

(1 — —) + ng trace(h ) +ny trace(hfb)

% 11 — /2 {(trace(hT)) (trace(h‘M )% — (trace(thMz))Z}
; ~ : _“/i 2 {(trace(A¢))? — (trace(Ag),,, ))? — (trace(4g,, )}
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11— )2

e L e )
1k—p/2
5 SR ACR ~ 1 Ag, I~ 1A, 1)

If h = 0 in Corollary we have the following corollaries:

COROLLARY 4.3 ([Ol]). If the warping functions fi and fo are har-
monic, then ¢, My X r, My admits no minimal C-totally real immersion into

a Sasakian space form M(c) with ¢ < —3.

COROLLARY 4.4 ([Ol]). If the warping functions f1 and fa are eigen-
functions of the Laplacian on M1 and Ma, respectively, with positive eigen-
values, then ¢, My x ¢ My admits no minimal C-totally real immersion into

a Sasakian space form M(c) with ¢ < —3.

COROLLARY 4.5 ([Ol]). If one of the warping functions fi and fs is har-
monic and the other one is an eigenfunction of the Laplacian with a positive
eigenvalue, then g, My X g Mo admits no minimal C-totally real immersion

into a Sasakian space form M(c) with ¢ < —3.
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