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Implicit difference schemes for mixed problems related to
parabolic functional differential equations

by MILENA NETKA (Gdansk)

Abstract. Solutions of initial boundary value problems for parabolic functional dif-
ferential equations are approximated by solutions of implicit difference schemes. The ex-
istence and uniqueness of approximate solutions is proved. The proof of the stability is
based on a comparison technique with nonlinear estimates of the Perron type for given
operators. It is shown that the new methods are considerably better than the explicit
difference schemes. Numerical examples are presented.

1. Introduction. For any metric spaces X and Y we denote by C'(X,Y)
the class of all continuous functions defined on X and taking values in Y.
We will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Write

Eo = [—bo,O] X [_ba b]7 E= [O,G] X [_bv b]?
where a > 0, by € Ry, Ry = (0,00) and b = (b1,...,by), bj > 0 for
i =1,...,n. Suppose that ¢y : £ — R and ¢ = (¢1,...,¢,) : E — R"™ are
given functions. Write p(t,z) = (¢o(t, z), ¢(t,z)) for (¢,x) € E. We assume
that 0 < ¢g(t,z) <t for (t,x) € E and —b < ¢(t,z) < b for (t,x) € E. For
(t,z) € [0,a] x [—b,b] we define

Dlt,z] = {(r,y) e R"™: 7 <0, (t+ 7,2 +y) € EyU E}.

It is clear that D[t, x] = [-bo—t, 0] x[—b—z, b—z]. For a function z : EgUE —
R and a point (¢, z) € [0,a] x [~b,b] we define a function z(; ) : D[t,z] — R
as follows:

Z(t,x) (7—7 y) = Z(t + 7,7+ y)? (7—7 y) € D[tv :L']
Then 2, is the restriction of z to the set (Eo U E) N ([~bo,?] x R") and

this restriction is shifted to the set D[t,z]. Write I = [~by — a,0] and B =
I x [—2b,2b]. Then DIt,z] C B for (t,z) € [0,a] x [=b,b]. Let M,y be the
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class of all n x n symmetric matrices with real entries. Put = = F x R x
C(B,R) x R™ x M,,», and suppose that F': = — R is a given function. We
consider the functional differential equation

(1.1) Orz(t,x) = F(t,m, 2(t, ), 2p(,2), O 2(t, T), Ozz2(t, 7))

where 0pz = (0p,2, -+ +,01,2), Opez = [Or;z;2)i,j=1,..n- Now we formulate

initial boundary conditions for (1.1). Write
S; = {ZE S [*b,b] Ty = bl}, SnJri = {ZE S [*b,b] Ty = *bi}, 1=1,...,n,

and

i—1 n+i—1
F=5, Q@ =s\US;, @ =8\ U S i=1...n
j=1 j=1
Set
WE =[0,a) x Qf, QE; =[0,a]xQ;, i=1,...,n,
and

n
E = J(OE UE)).
i=1
Suppose that G,7,¥ : OgF — R, ¥ : Ey — R are given functions. The
following initial boundary conditions are associated with (L.1):

(1.2) z(t,x) =¢(t,x) on Ey,
(1.3) B(t,z)z(t,z) +y(t, )0, 2(t,x) = ¥(t,x) on dES, i=1,...,n,
(1.4) B(t,x)z(t,x) —y(t, )0z 2(t,x) =¥(t,x) on ok, , i=1,...,n.

We are interested in establishing a method of numerical approximation
of solutions to f by means of solutions of an associated implicit
difference schemes and in estimating the difference between the exact and
approximate solutions.

Difference schemes for parabolic functional differential equations are ob-
tained by replacing partial derivatives with difference operators. Moreover,
because solutions of difference equations are defined on the mesh and equa-
tion ([1.1)) contains the functional variable z,; ;) which is an element of the
space C'(D]p(t, x)],R), some interpolating operators are needed. This leads
to difference functional problems which satisfy consistency conditions on
classical solutions of original problems. The main question in these consider-
ations is to find sufficient conditions for the stability of difference functional
schemes.

There are the following motivations for the construction of implicit differ-
ence schemes related to f. Two types of assumptions are needed in
theorems on the stability of explicit difference schemes generated by f
. The first type conditions concern regularity of F'. It is assumed that
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(i) the function F' of the variables (¢,z,p,w,q,$), ¢ = (q1,---,qn), S =
[Sij]Zj:17 is of class C! with respect to (g, s) and the functions

aqF = (aqu, .- 'aaan)a 0, F = [a 'F]i,jzl,...,m

Sij
are bounded.
(ii) F satisfies global estimates of the Perron type with respect to (p, w).

The second type conditions concern the mesh. It is required that difference
schemes corresponding to (|1.1)) satisfy the condition

1 S
15) 1—2heS =08, F(P)+h 19, F(P)|>0, Pec&,
i#i

where hy and (hq,...,hy,) are steps of the mesh with respect to ¢ and
(z1,...,zy), respectively. Note that if equation ((1.1) has the form

Oz(t,x) = Z@xixiz(t,x) + f(t,z, 2(t, ), 2p(t,0), Ox2(t, T))
i=1
where f: E x R x C(B,R) x R" — R then condition (1.5 has the form

"1
1—2hozﬁ>0.
i=1 't

It is clear that strong assumptions on relations between hg and (hq, ..., hy)
are required in .

The aim of the paper is to show that there are difference schemes for
f such that assumption can be omitted in the theorem on the
convergence of the difference method.

In recent years, a number of papers concerning numerical methods for
parabolic equations have been published. Difference approximations of non-
linear equations with initial boundary conditions of the Dirichlet type were
considered in [2], [I8]. The results and methods presented in the above pa-
pers were extended in [4], [9], [16], [I7] to functional differential problems.
Numerical treatment of functional differential equations with initial bound-
ary conditions of the Neumann type can be found in [7], [I0]. In those papers
explicit difference schemes were considered. A comparison technique is used
in the investigations of the stability of nonlinear difference functional prob-
lems. Various monotone iterative methods and finite difference schemes for
computing of numerical solutions of reaction diffusion equations with time
delay were studied in [13], [14], [19].

Implicit difference schemes for parabolic functional differential equations
were first treated in [6], [8] (see also [I1]). Nonlinear equations with initial
boundary conditions of the Dirichlet type and mixed problems of the Neu-
mann type were considered.
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In this paper we start the investigation of implicit difference methods for
the first mixed problem related to nonlinear parabolic functional differential
equations. Our results are new also in the case of differential equations
without functional dependence. The paper is a continuation of [4], [6], [§],
[12], [16] and it generalizes some results of those papers.

There are the following differences between known theorems and our
results.

1. Difference schemes for parabolic equations with initial boundary con-
ditions of the Neumann type have the following property. Besides mesh
points ("), (™) € R*" satisfying the condition (t),2(™) € E some ad-
ditional mesh points are needed. More precisely, an approximate solution
must be defined at some points (¢, z(™) such that (t(),z(™) ¢ E (see
[7], [8]). In this approach, the error of an implicit difference scheme is esti-
mated by C+/||h||, where C' > 0. We show that under natural assumptions
on given functions and on the mesh the error of implicit difference schemes
is estimated by C/||h]|.

2. It is usually assumed that the function F' of the variables (¢, z, p, w,
q, s) satisfies nonlinear estimates of the Perron type with respect to (p,w)
and the assumption is global. Our conditions are more general. We prove
that solutions of difference schemes are bounded uniformly with respect to h
and we find estimates of classical solutions to f. Then we assume
the local Perron type condition for F' with respect to (p,w). It is clear
that there are differential equations with deviated variables and differential
integral equations such that local estimates with respect to (p, w) hold and
global conditions required in [4], [7]-[9], [L6] are not satisfied.

Differential equations with deviated variables and differential integral
problems are particular cases of f. Existence results for parabolic
functional differential problems were discussed in [I], [5], [I5]. Information
on applications of functional differential equations can be found in [20].

2. Implicit difference schemes. A function z : Eg U E — R will be
called of class C, if z is continuous on Ey U E, the partial derivatives 0z,
022 = (0,25 -+, 02, 2); Oxz2 = [Op,a;2)ij=1,...n €xist on E and the functions
0¢2, 042, Opez are continuous on E. We consider solutions of f of
class C,. We will say that a function F' : = — R satisfies condition (V') if
for all (t,z,p,w,q,s) € = and w € C(B,R) such that w(r,y) = w(r,y) for
(t,y) € D[p(t,z)] we have F(t,z,p,w,q,s) = F(t,z,p,w,q,s). Condition
(V) for F' means that the value of F' at (¢t,z,p,w,q,s) € = depends on
(t,x,p,q,s) and on the restriction of w to the set D[p(t,z)] only. Suppose
that z € C(Ey U E,R) and that F satisfies condition (V'). Then the values
F(t,2,p, 2p(t,2), 4, 8) exist for (t,2,p,q,5) € B X R X R™ X M.
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For x e R", U € M, x, where U = [uijmjzl we write

n n
Izl =3 Jzil,  Ulloo = max{z g 1< < n}
i=1 j=1
For any sets X and Y we denote by F(X,Y) the class of all functions
defined on X and taking values in Y. Let N and Z be the sets of natural
numbers and integers, respectively. We define a mesh in R in the following
way. Let h = (hg,h), h = (h1,...,hy), stand for steps of the mesh. For
(r,m) € Z'*" m = (my,...,my), we define nodal points as follows:

t(r) = ThO, «T(m) = (m1h17 . ,mnhn) = (:L‘gml), e ,:L‘%m"))

Let us denote by H the set of all h for which there exist (My,...,M,) =
M € Z"™ and My € Z such that M;h; = b; for i = 1,...,n, Mohg = by. Let
K € N be defined by the relations Khg < a < (K + 1)ho. For h € H we put

Ry = {0, 2™) : (r,m) € 217}
and
Eon=FEoNR™, E,=ENR, B,=BnR™,
QWEL, = 0B NR™, QB = dE NR™,
Dy[r,m] = D[t"), 2™ N Ry,
Zh = En x Rx C(B,R) x R" X M xn.

Difference operators are defined in the following way. Let e; € R™ be the
canonical unit vectors. Write J = {(i,7) : i,7 = 1,...,n, i # j}. Suppose
that we have defined sets J4,J_ C J such that Jy UJ_ =J, J.NJ_ = 0.
We assume that (i,7) € J4 if (j,4) € J4. In particular, it may happen that
Jy = 0 or J_ = (). Relations between the sets J;, J_ and equation (I.1])
are given in Section 3.

Given z € F(EgnUFEp, R) and (r,m) € Z1*" 0 <r < K—1, —(M—-1) <
m< M —1, where M —1=(M; —1,..., M, — 1), write

1
(r,m) _ = 1 (r+1,m) _ _(r,m)

doz h [z FARGR
1

5;{-2(7’,771) _ E[z(r,m+ei) o z(r,m)]’

5720 = Lpem) _tmeen) g1,
hi

and 62" = (5,200 5,2(7™)) where
85;2(m) = %[5?2(7"’"‘) + 51»_2(7"”")], i=1,...,n.
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The difference operator 62 = [0i5]7 =1 is defined in the following way:

07 2m) = §He v fori=1,...,n
and

5§f>z<“m> = 1[5.+5fz<’”7m> +6; 6727 for (4,5) € J-,

5

@) rm) — [5+5+ (rm) 4 576720 for (4, ) € Ty

Solutions of dlfference functional equations are elements of the space
F(FonU ER, R). Since equation 1’ contains the functional variable Zo(t,7)
which is an element of the space C'(D]g(t,z)],R), we need an interpolat-
ing operator Ty, : F(Eon U En,R) — C(Ey U E,R). We adopt additional
assumptions on T}, in Section 3. Set

Fh[z](“m) — F(t(?")’gg(m),Z(hm)7 (ThZ)w(r,m),6Z(T+1’m),5(2)2(r+1’m))
and Ap[2]"™ = (A 2] AL [2] ™) where
AL = (A0, A [0,
A )M = (A )M Ay 2] )

and
AL = g R rm) 4y rmls e m)on 9By,
A}:'i[z](rfm) — /B(Tvm)z('r’m) _ W(T’m)é;rz(r’m) on aOEl:.i’

wherei=1,...,n.
Given ¥y, : OgEn — R and ¢y, @ Egn — R, we consider the difference
functional equation

(2.1) 502" = Fy[z]m™)

with the initial boundary conditions

(2.2) 20— ™ on By,

(2.3) Ap[2]™) = @™ on 9y,

Note that the values z(”'l mH+A) where A = (Ag,...,\n), A € {—1,0,1}

fori = 1,...,n and || < 2 appear in the expressions 52(T+1’m) and

62z (TH m) Then | is an implicit difference scheme for f.
If we put z ’”H and Thz) (ri1.m instead of z("™) and (Thz)w(r,m)

in the definition of Fy[z] then we obtain the following implicit difference
method:

(2.4) 50z("’m) = F(t(r), x(m), Z(r+1m) ,(Thz)¢<r+1,m> , 5z(r+1’m), 5(2)2(”'1’7”)).

We do not discuss implicit difference schemes (2.4), (2.2)), (2.3]) in this pa-
per. The papers [13], [14], [I9] contain results on almost linear parabolic
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equations with a delay time variable and implicit difference equation of the

form (2.4]).

3. Solutions of difference functional problems. We give sufficient
conditions for the existence and uniqueness of a solution to (2.1)—(2.3]).

AssumpTION H,[F|. The function F' : = — R of the variables (¢, z, p, w
q,8)s = (q1,---+qn); 8 = [s45]} j—1, satisfies condition (V) and
1) F is continuous, the derivatives
0gF = (04, F,...,04,F), OsF =

[
exist and the functions 9, F' : & — R", 0sF : & — Mp,x, are contin-
uous and bounded,
2) the matrix 0,F is symmetric and

s, Flitj=1

] )=

(3.1) Z o F(P)AA; >0 for Pe Z, A= (A1,...,\y) ER",
i,j=1
(3.2) 0s,; F(P) >0 for (i,5) € Jy, 0, F(P) <0 for (i,5) € J_,
where P € =
3) the steps of the mesh satisfy the conditions

1 - .
(3:3) —5 105 F(P)| + 83“F( ) — Z \as” P)| >0, i=1,...,n,
7j=1

J#i
where P € =.

REMARK 3.1. We have assumed that for each (7, j) € J, the function
gij(P) = sign@SUF( ), PeZ,
is constant. Relations (3.2]) can be considered as definitions of the sets J;
and J_. For the symmetric matrix 0sF" the following condition is satisfied:
(j.1) € Jo if (i,5) € T4

REMARK 3.2. Suppose that there is ¢ > 0 such that

ds,, F(P) — Z|S” (P)|>¢é PeZ,i=1,...,n
7j=1

J#i
Then condition (3.1)) is satisfied (see [I8]) and there is €9 > 0 such that
inequalities (3.3) hold for ||h|| < ep and for hy = -+ = hy,.

For z € C(EyUE,R) and u € F(Epp U En,R) we define the seminorms
llz|ls = max{|z(7,z)| : (1,2) € (Ep U E) N ([~bo,t] x R™)},
|u)lny = max{|u®™|: (D, M) e (Egn U En) N ([=bo, ] x R™)},
for0<t<agand 0 <r < K.
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THEOREM 3.3. Suppose that Assumption H,[F] is satisfied and vy :
Eon — R, ¥, : OgFn — R, 8 : OgFbn — (0,+OO), v : OpEn — Ry. Then
there is exactly one solution uy : Egn U By, — R of problem (2.1)—(2.3)).

Proof. Suppose that 0 < r < K is fixed and that the solution uy to
problem (2.1)—(2.3) is given on the set (Egpn U Ey) N ([—bo, 1] x R™). We

prove that the values ug H’m), —M < m < M, exist and that they are

unique. It is sufficient to show that there exists exactly one solution of the
system of equations

(3.4)

S(rHlm) _ uglr,m)JrhOF(t(r),m(m)?ug’,m)y (Thtth) ) §2rtlm) 52 (r+1m)y
where —(M —1) <m < M — 1, and

(3.5) At = gt on gy By,

There is Ay, € R, such that

(3.6) Ah>2hoz 88“F ho(z);]hh 0,,,F(P)], PeZ.
Z’J

Write
hw{mm) (rsm)
BT )y ) )
where 7 € R, and
Gy " la, 8] = F(ED, 0™, u™, (Thun) g 10, 9)

where ¢ € R", s € M,,x,. The difference problem (3.4), (3.5) is equivalent
to the system

G(r,m) [7_] _

)

T, 1=1,...,n,

(3.7)
Z(r+1,m) _ A [Ahz(rJrl,m) + uﬁ”ym) + hogl(lr,m) [5Z(r+1,m)? 5(2)Z(r+1,m)ﬂ7
where —(M —1) <m < M — 1 and
(33) Lr1m) — G )] on gyEy,

Z(r+1,m) _ Gngrl m)[ (r+1,m+ei)] on aOE}:.iv

where i = 1,...,n. Set Xy, = {z(™ : =M < m < M}. For x € F(Xpn,R) we
write x(™ = x(z(™) and

Sx™ = (0™, 8ax ™), 6PN = (8 M,

where 0;, 0;;, 1 <4 < n, are defined in Section 2. The norm in the space
F(Xn,R) is defined by

Il = max{|x"™] : 20" € Xp}.
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Set

(
(™ = GETH’m) [x("*)] on QE, ,, i=1,...,n}.
Let W,.1, be an operator defined on Yj, in the following way:

1
_1—|-Ah

Wr.h[X] (m) [AhX(m) + ug’m) + hoggvm) [5X(T+1,m)’ 5(2)X(r+1,m)]]’

where —(M — 1) <m < M —1 and
)= G WLk ™) on BB,

G(r+17m) [Wr.h[X] (m+e¢)] on a()E}:_Z-,

7

(3.9) W™
(3.10) Wi [x]™)

where i = 1,...,n. It follows that W, : Yo — Yn. It is clear that problem

(13.7), (3.8) is equivalent to the equation
(3.11) X = Wenlx]-
Now we prove that for x, x € Yn we have

o S

Suppose that —(M — 1) <m < M — 1. Set

(3.12) IWen[X] = Wen[X]lx, <

P[Tv X >—d(7’7m) = (t(r)v x(m)7 Ug’m)a (Thuh)<p(7‘7m)a
(1= )65 £ 7oy ™, (1 — 7)6@5m) 4 r5@ )

and

2 i1
i=1 hz
A 1
—1(r 0 r,m
Sit Do X0 = 532 0 F (Plr x X)) dr
vo
h 1 n 1 1
0 r,m S1(r,m
+ 13 ) s F(PLr X X7 ™) dr = Do 5=} 105, F(PLT X, X] ™) dr,
i 0 j=1 "0
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y_ o
2,

Si— [, x]m 8y F (P, x, X]"™™) dr

O e =

1 n 1
h =1(r,m 1 ,m
+h—2§as F(P[r,x,x]" ))dT—hthh V105, F(Plr,x, x]"™)] dr,
0 7j=1 Jo
JFi
where i =1,...,n and
h 1
S\rym 0 —1(rm ..

SZ][XaX](7 ) = - 'SasijF(P[T)X7X](7 ))dT7 (27]) € J

2hih; )

By using the Hadamard mean value theorem for the difference
gl(lﬁm) [5X(m)7 5(2)X(m)] _ g]gﬁm) [5X(m)’ 5(2)X(m)]

we get

[Wen D™ = Won[X1™] (1 + An) = (An + Solx, X1™™) (x — 1) ™
+ 3 Sia b X 0= ) 3785 I X0 (x — x) )
=1 —
+ Y Sube ] =0t 4 (- )]
(i.)€ s
= > Sube XM [(x = ) mreTe) 4 (x — ) troete)].
(i,5)eJ—
We conclude from (3.1)), (3.2]) and (3.6) that
Ap + Sl 1™ >0, Sip [, XIT™ >0, Si o)™ >0, i=1,...,n
Sl XI"™ =0 for (i,5) € Ty, Sijlx,x]"™ <0 for (4,4) € J-

and

N+ S5 [ Al ””)JrZS Do XM 42> 1850 X ™] = 0,

' (ij)ed
Thus we get
(3.13)
W~ W0 < B g, for ~(M 1) Sm < M1
Suppose that ("1, z(M)) € 9y Fy,. It follows from (3.9)), (3.10) that
(r;m)
~

Wen[X]"™ = Wen[X]"™) = (W] — Wp [0}

ha 3§ ()
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for (t0+D, 2(M) € gy B}, and

(rym)

(m) _ c1(m) v (me;) _ S1(mte;)
WTAh[X] WTh[X] - hlﬁ(’r’m) + f}/("'vm) {WTh[X} WTh[X] }
for (1), x(m) € Gy E;, ., where i = 1,...,n. The result is

A
(3.14) 1Wrn [ = Wen W™ < ——lIx = X,

- 14+ Ah
for (tU+1), (™) € 9yFy. Relations (3.13) and (3.14) imply (3.12). The
Banach fixed point theorem implies that there exists exactly one solution
(r+1,m) .
to 1} It follows that the values wy , =M < m < M, exist and

that they are unique. Since uy is given on Eyp, the proof is completed by
induction.

4. Estimates of solutions. Now we give estimates of solutions to ((1.1))—
and f.

AssuMPTION H[F, o¢]. Suppose that Assumption H,[F] is satisfied and

1) the function og : [0,a] x Ry — R4 is continuous, nondecreasing with

respect to both variables, and for each € Ry there exists on [0, a
the maximal solution of the Cauchy problem

(4.1) W(t) = oo(t,w(t), w(t)=mn,
2) the estimate
(4.2) |F'(t, 2, p, w, 0n, Opn)| < o0(t, max{[p], [lw]5})

is satisfied for (t,z) € E,p € R,w € C(B,R), where 0,, = (0,...,0) €
R™ and O[n} € M, «, is the zero matrix,

3) the functions 8 : O E — (0,00), v : OE — R4 are continuous and
the constant B > 0 is such that B(t,x) > B on yE,

4) the following initial boundary estimates are satisfied:

(4.3) [(t,z)| <fon Ey and |¥(t,x)] < Bw(t,7) on &F,

(44) ™ < qon Eon and [9"| < Bw(t®™), ) on o,
where w(+,7) is a maximal solution to problem (4.1)) with n =7,

5) there is ¢y > 0 such that h; < cohg for i =1,...,n.

LEMMA 4.1. Suppose that Assumption H[F,oq] is satisfied and v is a
solution of problem (1.1)—(1.4) and v is of class Cx. Then
(45) [0(t,2)| <w(t,7)  on B.

Proof. For € > 0 we denote by w(+,7,¢) the right hand maximal solution
of the Cauchy problem

(4.6) W) = oo(t,w(t) +e,  w(0)=i+e.
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There exists € > 0 such that for 0 < ¢ < ¢ the solution w(-,7,¢) is defined
on [0,a] and lim._ow(t,7,e) =w(t,7) uniformly on [0, a]. Write {(t)=|v||s,
t € [0, a]. We prove that

(4.7) C(t) <w(t,n,e) forte0,al

Suppose for contradiction that assertion (4.7)) fails to be true. Then the set
Yy ={tel0,a]:((t) > w(t,7,¢e)} is not empty. If we put ¢ = min X, from
condition 4) it is clear that ¢ > 0 and there exists & € [—b, b] such that

w(t,7,e) = ((t) = |o(t, 7)].

There are two possibilities: either (i) v(f, z) = w(f, n,€) or (ii) v(f,i) =
—w(t,7,¢). Let us consider the first case. We conclude from conditions 3)
and 4) of Assumption H[F, 0q] that (£,%) ¢ doE. Hence (t,%) € E \ O E.
We have
(4.8) D_((t) > W' (t,7,¢).
Set
A(t, x)

(t7 xz, 'U(t, .’IZ’), Ugo(t,z)a aﬂiv(t7 .’13)7 aa:xv(t7 LL’))—F(t, xz, U(t, $), ULp(t,x)a Ona O[H})J

B(t,l‘) :F(t,l‘,v(t,l‘) On>0[n])

It follows from Hadamard’s mean value theorem that

A(t,x)

y Vo(t,) s

1
0, F(P[r,v]) dT Oy, v(t, x) + Z S si; (PIr, v]) dT Oz, v(t, ),

1
4,7=10

3

O e =

=1

where P[T, v], 0 <71 <1, are intermediate points defined by the theorem.
Since & € (—b,b), we have 0,v(t, ) = 0 and

(4.9) Z O, 0(£,8)AA; <0 for A € R™.
i,j=1
We have
D_((h) < oli, 7) = A, 7) + B, 7)
From conditions 1), 2) of Assumption H[F, 0¢] and from (4.9) we conclude
that
D_((t) < oo(t,w(t, 7€) < W'(L,7,¢),

which contradicts (4.8)). The case v(t,%) = —w(t,7,¢) can be treated in a
similar way. Hence X is empty and inequality (4.5) is proved on FE. This
completes the proof.
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AssumpTION H[T},]. The operator Tt, : F(EonUEn, R) — C(EgUE,R)
satisfies the conditions:

1) for z,Z € F(Epn U En,R) we have
[Tulz] = TulZ]llyn < Iz = Zpr,  0<7r <K,
2) if z: Eg UE — R is of class C? then there is v, : H — R such that
| Thlzn] — 2]t < 7«(h), 0 <t < a, llliirb'y*(h) =0

where zp, is the restriction of z to the set Fyyp U Ep,
3) if O € F(EgnUER,R) is given by Oy (t,z) = 0 for (¢t,x) € Egn, U En
then Ty, [On](t,z) = 0 for (t,x) € Ey U E.

REMARK 4.2. The operator T}, given in [3, Chapter V], is such that for
each z : EgU E — R of class C? there is C' € R, such that

Izh = Taznlle < C[h[?,  0<t<a,

(see [3, Theorem 5.27, p. 159]) and conditions 1), 3) of Assumption H|[T}]
are satisfied.

LEMMA 4.3. Suppose that Assumptions H[Ty,|, H[F, 00| are satisfied and
vn 18 a solution of problem (2.1)—(2.3)). Then

(4.10) "™ < w(t, i) on Eyn U By

Proof. For € > 0 we denote by w(+,7,¢) the right hand maximal solution
of the Cauchy problem . There exists € > 0 such that for 0 < & < € the
solution w(+, 7, €) is defined on [0, a] and lim._,g w(t, 7, &) = w(t,7) uniformly
on [0, a]. Write

eg) = max{|v§f’m)] (D 2y e Byp UE, i<r}, 0<r<K.
We now prove that
(4.11) e < w(t™, i)
where 0 < r < K. From (4.4) we deduce that (4.11)) is true for » = 0.
Assuming that 5(]) w(tW) f,e) for 0 < j < r we will prove l} for
r+1. There ex1sts (t®, 2(m) € By, such that 5(r+1) = |vy, (@ m)|. Ifi<r+1
then \U \ <egy () ~ w(t™), 77 ¢) and consequently 5( I ) < w(ttr+ ).

Suppose that E(T—H) Uﬁf“ ™) |. There are two possibilities: either sg =

E"H ) or sgﬂ) = (TH m) . Let us consider the first case. We conclude

from conditions 3), 4) of Assumption H[F,oq] that (1), z(M) ¢ 9y Ey,.
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Write
(4.12)  AC™ = PO 20 o™ (Thvn) prm) ol Thm) 5(2),(rrlm)y
_ F(t(T) , x(m) , v}(:’m)’ (Thvh)‘p(r,m) s 07’17 O[n] )7

and ~
B(Tam) — F’(t(r)7 ,fL'(m), U}(1T7m), (ThUh)W(T,m) ; Onv 0[71])

By applying the Hadamard mean value theorem to the difference (4.12) we
conclude that there are

sy, smm st =1, ., and S5, (i,4) € J,

1.+ . —
such that
(L4 ) = o™ 4 B 4+ 30 sl
i=1

Zs(rm (r+1,m—e;) + Z S(rm 'r+1 m+el+eJ) 1(17“-‘1-1,771—61'—6]')]
(4,9)€J+
Z Srm)[ (r+1,m— e,—i—e])_'_ (r+1,m+e;— ej)]].
(i,7)e]-

Moreover we have

st >0, 8U™ >0 fori=1,...,n,

SUM™ >0 for (i,5) € Jy,  ST™ <0 for (i,5) € J-
and

S WELES WP ED o LR
=1

(i,9)eJ

The above relations and Assumption H[F, o¢] imply
g”rl) < 5( 7) +h000( (r)’é.]([:"))

and consequently

8§1T+1) < w(t™, q,e).
The case 55: ) = —vl(fﬂ’m) can be treated in a similar way. Hence the proof

of (4.11)) is complete. From (4.11]), letting € tend to 0, we obtain inequality
(4.10). This proves the lemma.

5. Convergence of implicit difference methods. Write A = w(a, 1),
where w(-,7) is the maximal solution to (4.1) and Kgpr)[d] = {w €
C(B,R) : |w|g < A}. Set

Ea=Ex[-A A x Kogr)[A] X R" X Myxn.
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AssuMPTION H|o]. Assumption H[F, 0] is satisfied and there is a func-
tion o : [0,a] x Ry — R4 such that:

1) o is continuous and it is nondecreasing with respect to both variables,
2) the estimate
(51) ’F(t7 x,p,w,q, 8) - F(ta x,p,w,q, S)| < U(ta max{\p - ﬁ|7 ||w - ’LI_JHB})
is satisfied on =4,

3) o(t,0) =0 for ¢t € [0,a) and function @ = 0 is the maximal solution
of the Cauchy problem

W () = o(t,w(t), w(0)=0.

In the theorems on convergence of difference methods in [4], [6]-[9],
[16], [17], it is assumed that the corresponding functions F' of the variables
(t,z,p,w,q,s) satisfy estimates of the Perron type globally with respect
to (p,w). Note that we have assumed estimate for p € [—A, A] and
w € Keopr)[A] only. It is clear that there are differential equations with
deviated variables and differential integral equations such that the corre-
sponding functions F satisfy condition on =4 but not on =.

THEOREM 5.1. Suppose that Assumptions H[o|, H[T}] are satisfied and

1) un : Egn U En — R is a solution of —,

2) v: EgUE — R is a solution of f and v is of class Cy and
vn 1§ restriction of v to the set Egp U Ey,

3) there is ag : H — Ry such that

™ — ™| < ag(h) on Eon,
’![’}(f’m) —w™m™| < hyag(h)  on Oy En
and limp_o ap(h) = 0.
Then there is o : H — Ry such that
(5.2) |(up — o) ™| < a(h) on Ep and lim a(h) = 0.

—0

Proof. The proof starts with the observation that

11
(SijU(r’m) - % Sgarirjv(t(r)y x(m) + sh;e; + Thj€j> ds dr
00
L1
T3 S S 3xixjv(t(r),x(m) — shie; — Thje;)dsdr  for (i,7) € J4+

00
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and
B
(5,']‘1)(T’m) = 5 S S ﬁmixjv(t(’"),m(m) + shiei — Thjej) dsdr
00
B
+ 3 S S 8%:,3].1)(15(7"), 2™ — shie; + Thjej)dsdr  for (i,j) € J_.
00

It follows from the above relations and from Assumptions H, [F|, H[T},] that
there are Iy, : By — R and ; : H — Ry such that

(5.3) Sov™ = Fifon) "™ + 137™
for —-(M—1)<m<M-1,0<r<K-1and
(527"1)1(17"’7”) = 8,0 + F}(lr’m) on &E;

d‘vff’m) = 8%11(’"’”‘) — F}(lr’m) on E, ,,

)

(5.4)

where i =1,...,n and
™ <yi(h)  on By, limyi(h) =0.
Write z, = v, — up and
et = max{|2"™| : (19, 20) € Egn U B, i <1}, 0<r<K.

(r)

We prove that the function ¢, ° satisfies the recurrent inequality

(5.5) 6§1T+1) < EK) + hoo (¢, €§:)) + hoy(h), 0<r<K-1,

where 4(h) = 1 (h)(1 4 ¢y) + B~ ag(h). Suppose that (t0+D z(M) ¢ Fy,
and —(M — 1) <m < M — 1. Then

(5.6) 2™ = 2™ 1 hg Anfun, vn] "™ 4 ho By [un, vn] ™,

where

Ap[un, vp] "™ =

F, {Uh] (r,m) _ F(t(T) , x(m) , ug’m), (Thuh)w(r,m) , 5U}(1T+1’m)7 (5(2)1)}(1T+1’m)) —f-F}(lT’m)
and

r,m)

B [up, vp¢
(2, ™, (T g G037, 60 ) — Fifun) .

It follows from condition 2) of Assumption H[o] that

(5.7) [Anun, vn] ™| < o (10, ) + 71 (h).

We conclude from the Hadamard mean value theorem that there are

g5m, §irm ST =1,y 85 G,g) €
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such that

ho By [un, vh](r,m) S(r m) (r+1 m) 4 Z S (rm) ( r+1 mte;)

Zs(rm) (r+1,m—e;) + Z S(rm) T+1 m+e,+ej)+zélr+l,mfeifej)]

(i.5)€J+
Z S r,m) r+1 m—e;+e;) Zl(_lr—l-l,m—l—ei—ej)]'
(4,5)€d—
Moreover

Srm >0 8 S0 fori=1,...m,
SU™ >0 for (i,j) € Jy,  SI™ <0 for (i) € I

and
Tm)+ZSZ +Zsrm+2z |S7‘m)‘_0
(i »J)GJ

We conclude from the above relations and from , (5.7) that
(5.8) ) < oD 4 ot >,e§f>)+hm(h).
Suppose that (t7+1D 2(™) € 9y B}t .. Then

(r+1,m) _ 7(r+1’m) Z(r—l—l,m—ei)

h hiﬁ(r+1,m) 4 f},(r+1,m) h

,y(r—i—l,m) (r+1,m)

+ hiﬁ(r—i-l,m)_’_,y(r—i-l,m) it h

h,
i (r+1,m) g (r+lm)
+ hiﬁ(r-f—l,m) 4 ,Y(T-i-l,m) [Lp gph ]

and consequently
r+1,m) r 1
(5:9) |a " < ) + oo (67, 6)) + hoa(h) + cohom (h) + = hoao(h).

In a similar way we prove 1) for (1) z(M) ¢ OoE,, ;. Estimates
(5.8) and (5.9) imply (5.5). Let us consider the Cauchy problem
(5.10) () = o(t,w(t)) +3(h),  w(0) = ag(h).
There is g9 > 0 such that the maximal solution w(-,h) to (5.10) is defined
on [0,a] for 0 < ||h|| < gp and limy_,ow(¢,h) = 0 uniformly on [0,a]. We
conclude from Assumption H[o] that

Wt ) = (", h) + hoo (17, w () R)) + hoj(h), 0<r< K -1.
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This gives
e <wt™ h) for0<r<K.
Thus assertion (5.2) is satisfied with a(h) = w(a, h).

REMARK 5.2. Suppose that all the assumptions of Theorem [5.1] are sat-
isfied and o : [0,a] x Ry x C(I,Ry) — R4 is given by

o(t,p) = Lp on [0,a] x Ry,
where L € R;. Then

|ug7m) — vflr’m)] < a() on Ey

where
(5.11) a(h) = ag(h)el® + @(eLa —1) ifL>0,
(5.12) a(h) = ag(h) + a7(h) if L =0.

We obtain the above estimates by solving problem (5.10) with o(¢,p) = Lp.
We consider problem (2.1)—(2.3)) with 7}, defined in [3].
LEMMA 5.3. Suppose that all assumptions of Theorem are satisfied
with o(t,p) = Lp on [0,a] x Ry, where L € Ry and

1) Yn =1 on Egn and ¥, =¥ on JyEn,
2) the interpolating operator Ty, : Fo(Fon U En,R) — C(Ey U E,R) is
given in [3, Chapter 5],
3) v:EgUE — R is a solution of (1.1)—(1.4) and v is of class C3.
Then there are C1,Cy € Ry such that
(5.13) |(un — vn)"™| < Cil[h| + Co||b|*  on B,

where up, : EgnUFER — R is a solution to (2.1)—(2.3) and vy, is the restriction
of v to the set Egn U Ey,.

_ Proof. Tt follows from Theorem and from condition 3) that there are
Cp, Cy € Ry such that the function I}, defined by 1) lb satisfies the

condition
1™ < Gyl + Ci[|b]>  on By

Then we obtain (5.13) from (5.11)), (5.12).

6. Comments and examples. Let us assume that the solution uy to
problem (2.1)(2.3) is known on the set (EgpUER) N ([—bo, )] x R™). Then
computing the values ug L) for — M < m < M leads to the system 1)
(3.5). We will show that the Newton method is a natural way for computing
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approximate solutions to the above problem. Write

n

k=]]eM+1).
=1

Elements of the space R* will be denoted by y = {y(™} _rr<m<rr. Consider
the operator G : R¥ — R*, G(y) = {Q(m) (y)}—m<m<m, where

g(m) (y) = Un + hOF(t(T)> x(m)7 ug’m)v (Thuh)w(ﬂm) ) 5y(m)’ 5(2)y(m))’
—(M—-1)<m< M -1, and
h;w(r+1m) ,Y(r+1,m)

(m) — (m—e;)
g =4 BOLm) A Lm) | 3ot m) G tm Y
for (t0+D, 2(M) € gy Byt while
r+1,m r+1,m
Gm(y) = hi ) 7L (m+e;)

= By BrLm) LA m) + hy 30 +Lm) _|_,7(r+1,m)y
for (t0+1 z(m)) e Qo Ey, ;, where i = 1,...,n. System (3.4), (3.5) is equiva-

lent to the equation
(6.1) y=G(y)
Let Ej« ) denote the identity matrix in My«x. We approximate the solution
uﬁ“’m), —M <m < M,of 1D with the sequence {y;)}, i) € R¥, defined
by the following Newton method:
Yoy = {ug’m)}—MgmgM,
! —1 .
Yeir1) = Yo — [Brxk — G (W)l [ye) — 9(ye)|  for i > 0.
The next remark states that the Newton sequence {y; } exists.

REMARK 6.1. Suppose that Assumption H,[F] is satisfied and
1) the solution uy, of (2.1)—(2.3) is given on the set (EonUER)N([—Do, t(r)]
x R™),
9) Th : F(Eon U En, R) — C(EyU B, R), ]
3) the functions 3 : 9E — (0,00), v : doF — R4 are continuous and B
is such that §(t,z) > B on Oy E.
Then the matrix C' = Ejxr — G'(y) is invertible.
Indeed, it follows from Assumption H,[F] that the matrix C' = Fyxj —
Gg'(y), C = [cij]ﬁjzl, satisfies the condition

k
Cii>Z|Cij|a i=1,...,k,
j=1
J#i
and consequently det C' # 0. Thus the Newton sequence for (6.1]) exists.
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It is easy to formulate a Kantorovich type theorem on the convergence
of the Newton method for . In order to formulate such a theorem one
would need the following additional assumption: the functions 9,F, 9,F of
variables (¢, z, p,w, q, s) satisfy the Lipschitz condition with respect to (g, s)
on =y4.

Now we give numerical examples. We begin with a differential integral
equation.

EXAMPLE 6.2. Let n =2, I =[-0.5,0.5], [ =[0,0.5], E =1 x I x1I
and Ey = {0} x I x I. Consider the differential integral equation

1
(6.2)  Oz(t,x,y) = Oppz(t,x,y) — §8xyz(t, z,y) + Oyyz(t, z,y)

T Yy
+y 2t s,y)ds + 2\ 2(t, 2, 8)ds + f(z,y)2(t,2,9) + 9(t, 2,y)
0 0

where
fla,y) = 2wy — 20> = 2%),  g(t,z,y) = > + (' = 1),
and the initial boundary conditions

(63) Z(O,ZL‘,y) =0, ($7y) el xI,

64 0p2(t,0.5,y) + 2(t,0.5,y) = v\ (t,y),  (ty) € I x I,
—0p2(t,—0.5,y) + 2(t, —0.5,y) = ¥\ (t,y),  (ty) € I x I,
65 9y2(t,,0.5) + 2(t,2,0.5) = it 2), (t,x) € 4 x I,
dyz(t,x,—0.5) + 2(t,x,—0.5) = ) (t,2), (tx) eIy x 1,
where
Wi (ty) = (e —1)(1+2y), o7 (ty) = e V(e — 1)(1 - 2),
WSOt 2) = (e — 1)1+ 22), Pt 2) = e (e — 1)(1 — 22).
The solution of f is known to be v(t,z,y) = (e! — 1)e?.

Let us denote by up : En, — R the solution of the implicit difference
problem corresponding to (6.2)—(6.5). Write
(My,M3)

r 1 (r,m) (rym)
(6.6) 82)2 Z lup, " — v, 0 <r <K,
(2M; +1)(2M3 + 1) e G Ma)

where Mihy = 0.5, Mshs = 0.5. The numbers 55:) are the arithmetical
means of the errors. In Table I we give experimental values for Eg) and
ho = ﬁ, hi = hy = 6—14, where (hg, h1,h2) are steps of the mesh with

respect to (¢, x,y), respectively.
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Table I

) 0.125 0.188 0.250 0.312 0.438
e 2096e—04 3.73¢—04 4.16e—04 4.35¢—04 4.25¢— 04

Note that condition (|1.5)) is not satisfied in the above example and the
explicit difference method is not convergent. The average errors of the ex-
plicit difference method exceed 10°.

Now we consider a differential equation with deviated variables.

EXAMPLE 6.3. Let n =2, E =[0,0.5] x [-1,1] x [-1,1] and Ey = {0} x
[—1,1] x [—1,1]. Consider the differential equation with deviated variables
(6.7) Orz(t,x,y) = 205,2(t, x,y) + 20yy2(t, x,y)

— €08 [Ora2(t, @, y) — Oyy2(t, 2, y)]

+ 2(t,0.5(x +y),0.5(x — y))

—dz(t,z,y) + e Y+ 1 —te?
and the initial boundary conditions
(68) z(O,x,y) :07 (:U>y) € [_171] X [_171]7
(6.9) 9p2(t, 1,y) + 2(1,1,y) = 2te ™Y, —d,z(t, —1,y) + 2(t, —1,y) =0,
. Oyz(t,x, 1) + 2(t,x,1) =0, =0yz(t,z,—1) + 2(t,z,—1) = ote™t1,
The solution of (6.7)—(6.9) is known to be v(t, 7, y) = te® Y. Let us denote by
Un : En — R the solution of the implicit difference problem corresponding

to f. Let up : B, — R be a numerical approximation of 4y, which
is obtained by using the Newton method. We have calculated three Newton

iterations. Let sg) be defined by |MD with M1h; =1, Mshg = 1. In Table I1
we give experimental values of ahr for hg = 6—14, hy =ho = 6%1.
Table II

) 0.125 0.188 0.250 0.312 0.438
eV 415e—03 5.64e—03 6.90e —03 8.0le—03 9.95¢ — 03

Note that condition is not satisfied in the above example and the
explicit difference method is not convergent.

Our results show that there are implicit difference methods for nonlin-
ear parabolic functional differential equations with general initial boundary
conditions which are convergent while the corresponding explicit difference
schemes are not convergent.

Acknowledgments. The author wishes to thank Dr. Wojciech Czer-
nous for several helpful comments concerning numerical examples.
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