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Implicit difference schemes for mixed problems related to
parabolic functional differential equations

by Milena Netka (Gdańsk)

Abstract. Solutions of initial boundary value problems for parabolic functional dif-
ferential equations are approximated by solutions of implicit difference schemes. The ex-
istence and uniqueness of approximate solutions is proved. The proof of the stability is
based on a comparison technique with nonlinear estimates of the Perron type for given
operators. It is shown that the new methods are considerably better than the explicit
difference schemes. Numerical examples are presented.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y )
the class of all continuous functions defined on X and taking values in Y .
We will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Write

E0 = [−b0, 0]× [−b, b], E = [0, a]× [−b, b],
where a > 0, b0 ∈ R+, R+ = (0,∞) and b = (b1, . . . , bn), bi > 0 for
i = 1, . . . , n. Suppose that φ0 : E → R and φ = (φ1, . . . , φn) : E → Rn are
given functions. Write ϕ(t, x) = (φ0(t, x), φ(t, x)) for (t, x) ∈ E. We assume
that 0 ≤ φ0(t, x) ≤ t for (t, x) ∈ E and −b ≤ φ(t, x) ≤ b for (t, x) ∈ E. For
(t, x) ∈ [0, a]× [−b, b] we define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0, (t+ τ, x+ y) ∈ E0 ∪ E}.
It is clear thatD[t, x] = [−b0−t, 0]×[−b−x, b−x]. For a function z : E0∪E →
R and a point (t, x) ∈ [0, a]× [−b, b] we define a function z(t,x) : D[t, x]→ R
as follows:

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x].

Then z(t,x) is the restriction of z to the set (E0 ∪ E) ∩ ([−b0, t] × Rn) and
this restriction is shifted to the set D[t, x]. Write I = [−b0 − a, 0] and B =
I × [−2b, 2b]. Then D[t, x] ⊂ B for (t, x) ∈ [0, a]× [−b, b]. Let Mn×n be the
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class of all n × n symmetric matrices with real entries. Put Ξ = E × R ×
C(B,R)×Rn ×Mn×n and suppose that F : Ξ → R is a given function. We
consider the functional differential equation

(1.1) ∂tz(t, x) = F (t, x, z(t, x), zϕ(t,x), ∂xz(t, x), ∂xxz(t, x))

where ∂xz = (∂x1z, . . . , ∂xnz), ∂xxz = [∂xixjz]i,j=1,...,n. Now we formulate
initial boundary conditions for (1.1). Write

Si = {x ∈ [−b, b] : xi = bi}, Sn+i = {x ∈ [−b, b] : xi = −bi}, i = 1, . . . , n,

and

Q+
1 = S1, Q+

i = Si \
i−1⋃
j=1

Sj , Q−i = Sn+i \
n+i−1⋃
j=1

Sj , i = 1, . . . , n.

Set
∂0E

+
i = [0, a]×Q+

i , ∂0E
−
i = [0, a]×Q−i , i = 1, . . . , n,

and

∂0E =
n⋃
i=1

(∂0E
+
i ∪ ∂0E

−
i ).

Suppose that β, γ, Ψ : ∂0E → R, ψ : E0 → R are given functions. The
following initial boundary conditions are associated with (1.1):

z(t, x) = ψ(t, x) on E0,(1.2)

β(t, x)z(t, x) + γ(t, x)∂xiz(t, x) = Ψ(t, x) on ∂0E
+
i , i = 1, . . . , n,(1.3)

β(t, x)z(t, x)− γ(t, x)∂xiz(t, x) = Ψ(t, x) on ∂0E
−
i , i = 1, . . . , n.(1.4)

We are interested in establishing a method of numerical approximation
of solutions to (1.1)–(1.4) by means of solutions of an associated implicit
difference schemes and in estimating the difference between the exact and
approximate solutions.

Difference schemes for parabolic functional differential equations are ob-
tained by replacing partial derivatives with difference operators. Moreover,
because solutions of difference equations are defined on the mesh and equa-
tion (1.1) contains the functional variable zϕ(t,x) which is an element of the
space C(D[ϕ(t, x)],R), some interpolating operators are needed. This leads
to difference functional problems which satisfy consistency conditions on
classical solutions of original problems. The main question in these consider-
ations is to find sufficient conditions for the stability of difference functional
schemes.

There are the following motivations for the construction of implicit differ-
ence schemes related to (1.1)–(1.4). Two types of assumptions are needed in
theorems on the stability of explicit difference schemes generated by (1.1)–
(1.4). The first type conditions concern regularity of F . It is assumed that
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(i) the function F of the variables (t, x, p, w, q, s), q = (q1, . . . , qn), s =
[sij ]ni,j=1, is of class C1 with respect to (q, s) and the functions

∂qF = (∂q1F, . . . , ∂qnF ), ∂sF = [∂sijF ]i,j=1,...,n,

are bounded.
(ii) F satisfies global estimates of the Perron type with respect to (p, w).

The second type conditions concern the mesh. It is required that difference
schemes corresponding to (1.1) satisfy the condition

(1.5) 1− 2h0

n∑
i=1

1
h2
i

∂siiF (P ) + h0

n∑
i,j=1
j 6=i

1
hihj
|∂sijF (P )| ≥ 0, P ∈ Ξ,

where h0 and (h1, . . . , hn) are steps of the mesh with respect to t and
(x1, . . . , xn), respectively. Note that if equation (1.1) has the form

∂tz(t, x) =
n∑
i=1

∂xixiz(t, x) + f(t, x, z(t, x), zϕ(t,x), ∂xz(t, x))

where f : E × R× C(B,R)× Rn → R then condition (1.5) has the form

1− 2h0

n∑
i=1

1
h2
i

> 0.

It is clear that strong assumptions on relations between h0 and (h1, . . . , hn)
are required in (1.5).

The aim of the paper is to show that there are difference schemes for
(1.1)–(1.4) such that assumption (1.5) can be omitted in the theorem on the
convergence of the difference method.

In recent years, a number of papers concerning numerical methods for
parabolic equations have been published. Difference approximations of non-
linear equations with initial boundary conditions of the Dirichlet type were
considered in [2], [18]. The results and methods presented in the above pa-
pers were extended in [4], [9], [16], [17] to functional differential problems.
Numerical treatment of functional differential equations with initial bound-
ary conditions of the Neumann type can be found in [7], [10]. In those papers
explicit difference schemes were considered. A comparison technique is used
in the investigations of the stability of nonlinear difference functional prob-
lems. Various monotone iterative methods and finite difference schemes for
computing of numerical solutions of reaction diffusion equations with time
delay were studied in [13], [14], [19].

Implicit difference schemes for parabolic functional differential equations
were first treated in [6], [8] (see also [11]). Nonlinear equations with initial
boundary conditions of the Dirichlet type and mixed problems of the Neu-
mann type were considered.
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In this paper we start the investigation of implicit difference methods for
the first mixed problem related to nonlinear parabolic functional differential
equations. Our results are new also in the case of differential equations
without functional dependence. The paper is a continuation of [4], [6], [8],
[12], [16] and it generalizes some results of those papers.

There are the following differences between known theorems and our
results.

1. Difference schemes for parabolic equations with initial boundary con-
ditions of the Neumann type have the following property. Besides mesh
points (t(r), x(m)) ∈ R1+n satisfying the condition (t(r), x(m)) ∈ E some ad-
ditional mesh points are needed. More precisely, an approximate solution
must be defined at some points (t(r), x(m)) such that (t(r), x(m)) /∈ E (see
[7], [8]). In this approach, the error of an implicit difference scheme is esti-
mated by C

√
‖h‖, where C > 0. We show that under natural assumptions

on given functions and on the mesh the error of implicit difference schemes
is estimated by C‖h‖.

2. It is usually assumed that the function F of the variables (t, x, p, w,
q, s) satisfies nonlinear estimates of the Perron type with respect to (p, w)
and the assumption is global. Our conditions are more general. We prove
that solutions of difference schemes are bounded uniformly with respect to h
and we find estimates of classical solutions to (1.1)–(1.4). Then we assume
the local Perron type condition for F with respect to (p, w). It is clear
that there are differential equations with deviated variables and differential
integral equations such that local estimates with respect to (p, w) hold and
global conditions required in [4], [7]–[9], [16] are not satisfied.

Differential equations with deviated variables and differential integral
problems are particular cases of (1.1)–(1.4). Existence results for parabolic
functional differential problems were discussed in [1], [5], [15]. Information
on applications of functional differential equations can be found in [20].

2. Implicit difference schemes. A function z : E0 ∪ E → R will be
called of class C∗ if z is continuous on E0 ∪ E, the partial derivatives ∂tz,
∂xz = (∂x1z, . . . , ∂xnz), ∂xxz = [∂xixjz]i,j=1,...,n exist on E and the functions
∂tz, ∂xz, ∂xxz are continuous on E. We consider solutions of (1.1)–(1.4) of
class C∗. We will say that a function F : Ξ → R satisfies condition (V ) if
for all (t, x, p, w, q, s) ∈ Ξ and w̄ ∈ C(B,R) such that w(τ, y) = w̄(τ, y) for
(τ, y) ∈ D[ϕ(t, x)] we have F (t, x, p, w, q, s) = F (t, x, p, w̄, q, s). Condition
(V ) for F means that the value of F at (t, x, p, w, q, s) ∈ Ξ depends on
(t, x, p, q, s) and on the restriction of w to the set D[ϕ(t, x)] only. Suppose
that z ∈ C(E0 ∪ E,R) and that F satisfies condition (V ). Then the values
F (t, x, p, zϕ(t,x), q, s) exist for (t, x, p, q, s) ∈ E × R× Rn ×Mn×n.
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For x ∈ Rn, U ∈Mn×n where U = [uij ]ni,j=1 we write

‖x‖ =
n∑
i=1

|xi|, ‖U‖∞ = max
{ n∑
j=1

|uij | : 1 ≤ i ≤ n
}
.

For any sets X and Y we denote by F(X,Y ) the class of all functions
defined on X and taking values in Y . Let N and Z be the sets of natural
numbers and integers, respectively. We define a mesh in R1+n in the following
way. Let h = (h0, h), h = (h1, . . . , hn), stand for steps of the mesh. For
(r,m) ∈ Z1+n, m = (m1, . . . ,mn), we define nodal points as follows:

t(r) = rh0, x(m) = (m1h1, . . . ,mnhn) = (x(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h for which there exist (M1, . . . ,Mn) =
M ∈ Zn and M0 ∈ Z such that Mihi = bi for i = 1, . . . , n, M0h0 = b0. Let
K ∈ N be defined by the relations Kh0 ≤ a < (K + 1)h0. For h ∈ H we put

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n}

and

E0.h = E0 ∩ R1+n
h , Eh = E ∩ R1+n

h , Bh = B ∩ R1+n
h ,

∂0E
+
h.i = ∂0E

+
i ∩ R1+n

h , ∂0E
−
h.i = ∂0E

+
i ∩ R1+n

h ,

Dh[r,m] = D[t(r), x(m)] ∩ R1+n
h ,

Ξh = Eh × R× C(B,R)× Rn ×Mn×n.

Difference operators are defined in the following way. Let ei ∈ Rn be the
canonical unit vectors. Write J = {(i, j) : i, j = 1, . . . , n, i 6= j}. Suppose
that we have defined sets J+, J− ⊂ J such that J+ ∪ J− = J, J+ ∩ J− = ∅.
We assume that (i, j) ∈ J+ if (j, i) ∈ J+. In particular, it may happen that
J+ = ∅ or J− = ∅. Relations between the sets J+, J− and equation (1.1)
are given in Section 3.

Given z ∈ F(E0.h∪Eh,R) and (r,m) ∈ Z1+n, 0 ≤ r ≤ K−1, −(M−1) ≤
m ≤M − 1, where M − 1 = (M1 − 1, . . . ,Mn − 1), write

δ0z
(r,m) =

1
h0

[z(r+1,m) − z(r,m)],

δ+i z
(r,m) =

1
hi

[z(r,m+ei) − z(r,m)],

δ−i z
(r,m) =

1
hi

[z(r,m) − z(r,m−ei)], i = 1, . . . , n,

and δz(r,m) = (δ1z(r,m), . . . , δnz
(r,m)) where

δiz
(r,m) =

1
2

[δ+i z
(r,m) + δ−i z

(r,m)], i = 1, . . . , n.
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The difference operator δ(2) = [δij ]ni,j=1 is defined in the following way:

δ
(2)
ii z

(r,m) = δ+i δ
−
i z

(r,m) for i = 1, . . . , n

and

δ
(2)
ij z

(r,m) =
1
2

[δ+i δ
−
j z

(r,m) + δ−i δ
+
j z

(r,m)] for (i, j) ∈ J−,

δ
(2)
ij z

(r,m) =
1
2

[δ+i δ
+
j z

(r,m) + δ−i δ
−
j z

(r,m)] for (i, j) ∈ J+.

Solutions of difference functional equations are elements of the space
F(E0.h∪Eh,R). Since equation (1.1) contains the functional variable zϕ(t,x)

which is an element of the space C(D[ϕ(t, x)],R), we need an interpolat-
ing operator Th : F(E0.h ∪ Eh,R) → C(E0 ∪ E,R). We adopt additional
assumptions on Th in Section 3. Set

Fh[z](r,m) = F (t(r), x(m), z(r,m), (Thz)ϕ(r,m) , δz(r+1,m), δ(2)z(r+1,m))

and Λh[z](r,m) = (Λ+
h [z](r,m), Λ−h [z](r,m), where

Λ+
h [z](r,m) = (Λ+

h.1[z](r,m), . . . , Λ+
h.n[z](r,m)),

Λ−h [z](r,m) = (Λ−h.1[z](r,m), . . . , Λ−h.n[z](r,m))

and

Λ+
h.i[z]

(r,m) = β(r,m)z(r,m) + γ(r,m)δ−i z
(r,m) on ∂0E

+
h.i,

Λ−h.i[z]
(r,m) = β(r,m)z(r,m) − γ(r,m)δ+i z

(r,m) on ∂0E
−
h.i,

where i = 1, . . . , n.
Given Ψh : ∂0Eh → R and ψh : E0.h → R, we consider the difference

functional equation

(2.1) δ0z
(r,m) = Fh[z](r,m)

with the initial boundary conditions

z(r,m) = ψ
(r,m)
h on E0.h,(2.2)

Λh[z](r,m) = Ψ
(r,m)
h on ∂0Eh.(2.3)

Note that the values z(r+1,m+λ) where λ = (λ1, . . . , λn), λi ∈ {−1, 0, 1}
for i = 1, . . . , n and ‖λ‖ ≤ 2 appear in the expressions δz(r+1,m) and
δ(2)z(r+1,m). Then (2.1)–(2.3) is an implicit difference scheme for (1.1)–(1.4).

If we put z(r+1,m) and (Thz)ϕ(r+1,m) instead of z(r,m) and (Thz)ϕ(r,m)

in the definition of Fh[z] then we obtain the following implicit difference
method:

(2.4) δ0z
(r,m) =F (t(r), x(m), z(r+1,m),(Thz)ϕ(r+1,m) , δz(r+1,m), δ(2)z(r+1,m)).

We do not discuss implicit difference schemes (2.4), (2.2), (2.3) in this pa-
per. The papers [13], [14], [19] contain results on almost linear parabolic
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equations with a delay time variable and implicit difference equation of the
form (2.4).

3. Solutions of difference functional problems. We give sufficient
conditions for the existence and uniqueness of a solution to (2.1)–(2.3).

Assumption H∗[F ]. The function F : Ξ → R of the variables (t, x, p, w,
q, s), q = (q1, . . . , qn), s = [sij ]ni,j=1, satisfies condition (V ) and

1) F is continuous, the derivatives

∂qF = (∂q1F, . . . , ∂qnF ), ∂sF = [∂sijF ]ni,j=1

exist and the functions ∂qF : Ξ → Rn, ∂sF : Ξ →Mn×n are contin-
uous and bounded,

2) the matrix ∂sF is symmetric and
n∑

i,j=1

∂sijF (P )λiλj ≥ 0 for P ∈ Ξ, λ = (λ1, . . . , λn) ∈ Rn,(3.1)

∂sijF (P ) ≥ 0 for (i, j) ∈ J+, ∂sijF (P ) ≤ 0 for (i, j) ∈ J−,(3.2)

where P ∈ Ξ,
3) the steps of the mesh satisfy the conditions

(3.3) −1
2
|∂qiF (P )|+ 1

hi
∂siiF (P )−

n∑
j=1
j 6=i

1
hj

∣∣∂sijF (P )
∣∣ ≥ 0, i = 1, . . . , n,

where P ∈ Ξ.

Remark 3.1. We have assumed that for each (i, j) ∈ J, the function
gij(P ) = sign ∂sijF (P ), P ∈ Ξ,

is constant. Relations (3.2) can be considered as definitions of the sets J+

and J−. For the symmetric matrix ∂sF the following condition is satisfied:
(j, i) ∈ J+ if (i, j) ∈ J+.

Remark 3.2. Suppose that there is c̃ > 0 such that

∂siiF (P )−
n∑
j=1
j 6=i

|∂sijF (P )| ≥ c̃, P ∈ Ξ, i = 1, . . . , n.

Then condition (3.1) is satisfied (see [18]) and there is ε0 > 0 such that
inequalities (3.3) hold for ‖h‖ < ε0 and for h1 = · · · = hn.

For z ∈ C(E0 ∪E,R) and u ∈ F(E0.h ∪Eh,R) we define the seminorms

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ (E0 ∪ E) ∩ ([−b0, t]× Rn)},
‖u‖h.r = max{|u(i,m)| : (t(i), x(m)) ∈ (E0.h ∪ Eh) ∩ ([−b0, t(r)]× Rn)},

for 0 ≤ t ≤ a and 0 ≤ r ≤ K.
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Theorem 3.3. Suppose that Assumption H∗[F ] is satisfied and ψh :
E0.h → R, Ψh : ∂0Eh → R, β : ∂0Eh → (0,+∞), γ : ∂0Eh → R+. Then
there is exactly one solution uh : E0.h ∪ Eh → R of problem (2.1)–(2.3).

Proof. Suppose that 0 ≤ r < K is fixed and that the solution uh to
problem (2.1)–(2.3) is given on the set (E0.h ∪ Eh) ∩ ([−b0, t(r)] × Rn). We
prove that the values u(r+1,m)

h , −M ≤ m ≤ M , exist and that they are
unique. It is sufficient to show that there exists exactly one solution of the
system of equations
(3.4)
z(r+1,m) = u

(r,m)
h +h0F (t(r), x(m), u

(r,m)
h , (Thuh)ϕ(r,m) , δz(r+1,m), δ(2)z(r+1,m)),

where −(M − 1) ≤ m ≤M − 1, and

(3.5) Λ[z](r+1,m) = Ψ
(r+1,m)
h on ∂0Eh.

There is Ah ∈ R+ such that

(3.6) Ah ≥ 2h0

n∑
i=1

1
h2
i

∂siiF (P )− h0

∑
(i,j)∈J

1
hihj
|∂sijF (P )|, P ∈ Ξ.

Write

G(r,m)
i [τ ] =

hiΨ
(r,m)
h

hiβ(r,m) + γ(r,m)
+

γ(r,m)

hiβ(r,m) + γ(r,m)
τ, i = 1, . . . , n,

where τ ∈ R, and

G(r,m)
h [q, s] = F (t(r), x(m), u

(r,m)
h , (Thuh)ϕ(r,m) , q, s),

where q ∈ Rn, s ∈ Mn×n. The difference problem (3.4), (3.5) is equivalent
to the system
(3.7)

z(r+1,m) =
1

1 +Ah

[
Ahz

(r+1,m) + u
(r,m)
h + h0G(r,m)

h [δz(r+1,m), δ(2)z(r+1,m)]
]
,

where −(M − 1) ≤ m ≤M − 1 and

(3.8)
z(r+1,m) = G(r+1,m)

i [z(r+1,m−ei)] on ∂0E
+
h.i,

z(r+1,m) = G(r+1,m)
i [z(r+1,m+ei)] on ∂0E

−
h.i,

where i = 1, . . . , n. Set Xh = {x(m) : −M ≤ m ≤M}. For χ ∈ F(Xh,R) we
write χ(m) = χ(x(m)) and

δχ(m) = (δ1χ(m), . . . , δnχ
(m)), δ(2)χ(m) = [δijχ(m)]ni,j=1,

where δi, δij , 1 ≤ i ≤ n, are defined in Section 2. The norm in the space
F(Xh,R) is defined by

‖χ‖Xh
= max{|χ(m)| : x(m) ∈ Xh}.
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Set

Yh = {χ ∈ F(Xh,R) : χ(m) = G(r+1,m)
i [χ(m−ei)] on ∂0E

+
h.i and

χ(m) = G(r+1,m)
i [χ(m+ei)] on ∂0E

−
h.i, i = 1, . . . , n}.

Let Wr.h be an operator defined on Yh in the following way:

Wr.h[χ](m) =
1

1 +Ah

[
Ahχ

(m) + u
(r,m)
h + h0G(r,m)

h [δχ(r+1,m), δ(2)χ(r+1,m)]
]
,

where −(M − 1) ≤ m ≤M − 1 and

Wr.h[χ](m) = G(r+1,m)
i [Wr.h[χ](m−ei)] on ∂0E

+
h.i,(3.9)

Wr.h[χ](m) = G(r+1,m)
i [Wr.h[χ](m+ei)] on ∂0E

−
h.i,(3.10)

where i = 1, . . . , n. It follows that Wr.h : Yh → Yh. It is clear that problem
(3.7), (3.8) is equivalent to the equation

(3.11) χ = Wr.h[χ].

Now we prove that for χ, χ̄ ∈ Yh we have

(3.12) ‖Wr.h[χ]−Wr.h[χ̄]‖Xh
≤ Ah

1 +Ah
‖χ− χ̄‖Xh

.

Suppose that −(M − 1) ≤ m ≤M − 1. Set

P [τ, χ, χ̄](r,m) =
(
t(r), x(m), u

(r,m)
h , (Thuh)ϕ(r,m) ,

(1− τ)δχ̄(m) + τδχ(m), (1− τ)δ(2)χ̄(m) + τδ(2)χ(m)
)

and

S0[χ, χ̄](r,m) = h0

∑
(i,j)∈J

1
hihj

1�

0

|∂sijF (P [τ, χ, χ̄](r,m))| dτ

− 2h0

n∑
i=1

1
h2
i

1�

0

∂siiF (P [τ, χ, χ̄](r,m)) dτ,

Si.+[χ, χ̄](r,m) =
h0

2hi

1�

0

∂qiF (P [τ, χ, χ̄](r,m)) dτ

+
h0

h2
i

1�

0

∂siiF (P [τ, χ, χ̄](r,m)) dτ − h0

n∑
j=1
j 6=i

1
hihj

1�

0

|∂sijF (P [τ, χ, χ̄](r,m))| dτ,
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Si.−[χ, χ̄](r,m) = − h0

2hi

1�

0

∂qiF (P [τ, χ, χ̄](r,m)) dτ

+
h0

h2
i

1�

0

∂siiF (P [τ, χ, χ̄](r,m)) dτ − h0

n∑
j=1
j 6=i

1
hihj

1�

0

|∂sijF (P [τ, χ, χ̄](r,m))| dτ,

where i = 1, . . . , n and

Sij [χ, χ̄](r,m) =
h0

2hihj

1�

0

∂sijF (P [τ, χ, χ̄](r,m)) dτ, (i, j) ∈ J.

By using the Hadamard mean value theorem for the difference

G(r,m)
h [δχ(m), δ(2)χ(m)]− G(r,m)

h [δχ̄(m), δ(2)χ̄(m)]

we get[
Wr.h[χ](m) −Wr.h[χ̄](m)

]
(1 +Ah) = (Ah + S0[χ, χ̄](r,m))(χ− χ̄)(m)

+
n∑
i=1

Si.+[χ, χ̄](r,m)(χ− χ̄)(m+ei) +
n∑
i=1

Si.−[χ, χ̄](r,m)(χ− χ̄)(m−ei)

+
∑

(i,j)∈J+

Sij [χ, χ̄](r,m)
[
(χ− χ̄)(m+ei+ej) + (χ− χ̄)(m−ei−ej)

]
−

∑
(i,j)∈J−

Sij [χ, χ̄](r,m)
[
(χ− χ̄)(m+ei−ej) + (χ− χ̄)(m−ei+ej)

]
.

We conclude from (3.1), (3.2) and (3.6) that

Ah + S0[χ, χ̄](r,m) ≥ 0, Si.+[χ, χ̄](r,m) ≥ 0, Si.−[χ, χ̄](r,m) ≥ 0, i = 1, . . . , n,

Sij [χ, χ̄](r,m) ≥ 0 for (i, j) ∈ J+, Sij [χ, χ̄](r,m) ≤ 0 for (i, j) ∈ J−
and

S0[χ, χ̄](m)+
n∑
i=1

Si.+[χ, χ̄](r,m)+
n∑
i=1

Si.−[χ, χ̄](r,m)+2
∑

(i,j)∈J

|Sij [χ, χ̄](r,m)| = 0.

Thus we get
(3.13)

‖Wr.h[χ](m)−Wr.h[χ̄](m)‖ ≤ Ah

1 +Ah
‖χ−χ̄‖Xh

for −(M−1) ≤ m ≤M−1.

Suppose that (t(r+1), x(m)) ∈ ∂0Eh. It follows from (3.9), (3.10) that

Wr.h[χ](m) −Wr.h[χ̄](m) =
γ(r,m)

hiβ(r,m) + γ(r,m)
{Wr.h[χ](m−ei) −Wr.h[χ̄](m−ei)}
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for (t(r+1), x(m)) ∈ ∂0E
+
h.i and

Wr.h[χ](m) −Wr.h[χ̄](m) =
γ(r,m)

hiβ(r,m) + γ(r,m)
{Wr.h[χ](m+ei) −Wr.h[χ̄](m+ei)}

for (t(r+1), x(m)) ∈ ∂0E
−
h.i, where i = 1, . . . , n. The result is

(3.14) ‖Wr.h[χ](m) −Wr.h[χ̄](m)‖ ≤ Ah

1 +Ah
‖χ− χ̄‖Xh

for (t(r+1), x(m)) ∈ ∂0Eh. Relations (3.13) and (3.14) imply (3.12). The
Banach fixed point theorem implies that there exists exactly one solution
to (3.11). It follows that the values u(r+1,m)

h , −M ≤ m ≤ M , exist and
that they are unique. Since uh is given on E0.h, the proof is completed by
induction.

4. Estimates of solutions. Now we give estimates of solutions to (1.1)–
(1.4) and (2.1)–(2.3).

Assumption H[F, σ0]. Suppose that Assumption H∗[F ] is satisfied and

1) the function σ0 : [0, a]×R+ → R+ is continuous, nondecreasing with
respect to both variables, and for each η ∈ R+ there exists on [0, a]
the maximal solution of the Cauchy problem

(4.1) ω′(t) = σ0(t, ω(t)), ω(t) = η,

2) the estimate

(4.2) |F (t, x, p, w,0n,0[n])| ≤ σ0(t,max{|p|, ‖w‖B})
is satisfied for (t, x) ∈ E, p ∈ R, w ∈ C(B,R), where 0n = (0, . . . , 0) ∈
Rn and 0[n] ∈Mn×n is the zero matrix,

3) the functions β : ∂0E → (0,∞), γ : ∂0E → R+ are continuous and
the constant B̃ > 0 is such that β(t, x) ≥ B̃ on ∂0E,

4) the following initial boundary estimates are satisfied:

|ψ(t, x)| ≤ η̃ on E0 and |Ψ(t, x)| ≤ B̃ω(t, η̃) on ∂0E,(4.3)

|ψ(r,m)
h | ≤ η̃ on E0.h and |Ψ (r,m)

h | ≤ B̃ω(t(r), η̃) on ∂0Eh,(4.4)

where ω(·, η̃) is a maximal solution to problem (4.1) with η = η̃,
5) there is c0 > 0 such that hi ≤ c0h0 for i = 1, . . . , n.

Lemma 4.1. Suppose that Assumption H[F, σ0] is satisfied and v is a
solution of problem (1.1)–(1.4) and v is of class C∗. Then

(4.5) |v(t, x)| ≤ ω(t, η̃) on E.

Proof. For ε > 0 we denote by ω(·, η̃, ε) the right hand maximal solution
of the Cauchy problem

(4.6) ω′(t) = σ0(t, ω(t)) + ε, ω(0) = η̃ + ε.
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There exists ε̃ > 0 such that for 0 < ε < ε̃ the solution ω(·, η̃, ε) is defined
on [0, a] and limε→0 ω(t, η̃, ε)=ω(t, η̃) uniformly on [0, a]. Write ζ(t)=‖v‖t,
t ∈ [0, a]. We prove that

(4.7) ζ(t) < ω(t, η̃, ε) for t ∈ [0, a].

Suppose for contradiction that assertion (4.7) fails to be true. Then the set
Σ+ = {t ∈ [0, a] : ζ(t) ≥ ω(t, η̃, ε)} is not empty. If we put t̃ = minΣ+, from
condition 4) it is clear that t̃ > 0 and there exists x̃ ∈ [−b, b] such that

ω(t̃, η̃, ε) = ζ(t̃) =
∣∣v(t̃, x̃)

∣∣ .
There are two possibilities: either (i) v(t̃, x̃) = ω(t̃, η̃, ε) or (ii) v(t̃, x̃) =
−ω(t̃, η̃, ε). Let us consider the first case. We conclude from conditions 3)
and 4) of Assumption H[F, σ0] that (t̃, x̃) /∈ ∂0E. Hence (t̃, x̃) ∈ E \ ∂0E.
We have

(4.8) D−ζ(t̃) ≥ ω′(t̃, η̃, ε).

Set

A(t, x)
= F (t, x, v(t, x), vϕ(t,x), ∂xv(t, x), ∂xxv(t, x))−F (t, x, v(t, x), vϕ(t,x),0n,0[n]),

B(t, x) = F (t, x, v(t, x), vϕ(t,x),0n,0[n]).

It follows from Hadamard’s mean value theorem that

A(t, x)

=
n∑
i=1

1�

0

∂qiF (P̃ [τ, v]) dτ ∂xiv(t, x) +
n∑

i,j=1

1�

0

∂sijF (P̃ [τ, v]) dτ ∂xixjv(t, x),

where P̃ [τ, v], 0 ≤ τ ≤ 1, are intermediate points defined by the theorem.
Since x̃ ∈ (−b, b), we have ∂xv(t̃, x̃) = 0 and

(4.9)
n∑

i,j=1

∂xixjv(t̃, x̃)λiλj ≤ 0 for λ ∈ Rn.

We have
D−ζ(t̃) ≤ ∂tv(t̃, x̃) = A(t̃, x̃) +B(t̃, x̃)

From conditions 1), 2) of Assumption H[F, σ0] and from (4.9) we conclude
that

D−ζ(t̃) ≤ σ0(t̃, ω(t̃, η̃, ε)) < ω′(t̃, η̃, ε),

which contradicts (4.8). The case v(t̃, x̃) = −ω(t̃, η̃, ε) can be treated in a
similar way. Hence Σ+ is empty and inequality (4.5) is proved on E. This
completes the proof.
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Assumption H[Th]. The operator Th : F(E0.h∪Eh,R)→ C(E0∪E,R)
satisfies the conditions:

1) for z, z̃ ∈ F(E0.h ∪ Eh,R) we have

‖Th[z]− Th[z̃]‖t(r) ≤ ‖z − z̃‖h.r, 0 ≤ r ≤ K,

2) if z : E0 ∪ E → R is of class C2 then there is γ∗ : H→ R+ such that

‖Th[zh]− z‖t ≤ γ∗(h), 0 ≤ t < a, lim
h→0

γ∗(h) = 0

where zh is the restriction of z to the set E0.h ∪ Eh,
3) if Oh ∈ F(E0.h∪Eh,R) is given by Oh(t, x) = 0 for (t, x) ∈ E0.h∪Eh

then Th[Oh](t, x) = 0 for (t, x) ∈ E0 ∪ E.

Remark 4.2. The operator Th given in [3, Chapter V], is such that for
each z : E0 ∪ E → R of class C2 there is C̄ ∈ R+ such that

‖zh − Thzh‖t ≤ C̄‖h‖2, 0 ≤ t ≤ a,

(see [3, Theorem 5.27, p. 159]) and conditions 1), 3) of Assumption H[Th]
are satisfied.

Lemma 4.3. Suppose that Assumptions H[Th], H[F, σ0] are satisfied and
vh is a solution of problem (2.1)–(2.3). Then

(4.10) |v(r,m)
h | ≤ ω(t(r), η̃) on E0.h ∪ Eh.

Proof. For ε > 0 we denote by ω(·, η̃, ε) the right hand maximal solution
of the Cauchy problem (4.6). There exists ε̃ > 0 such that for 0 < ε < ε̃ the
solution ω(·, η̃, ε) is defined on [0, a] and limε→0 ω(t, η̃, ε) = ω(t, η̃) uniformly
on [0, a]. Write

ε
(r)
h = max{|v(i,m)

h | : (t(i), x(m)) ∈ E0.h ∪ Eh, i ≤ r}, 0 ≤ r ≤ K.

We now prove that

(4.11) ε
(r)
h < ω(t(r), η̃, ε)

where 0 ≤ r ≤ K. From (4.4) we deduce that (4.11) is true for r = 0.
Assuming that ε(j)h < ω(t(j), η̃, ε) for 0 ≤ j ≤ r we will prove (4.11) for
r + 1. There exists (t(i), x(m)) ∈ Eh such that ε(r+1)

h = |v(i,m)
h |. If i < r + 1

then |v(i,m)
h | ≤ ε

(r)
h < ω(t(r), η̃, ε) and consequently ε

(r+1)
h < ω(t(r+1), η̃, ε).

Suppose that ε(r+1)
h = |v(r+1,m)

h |. There are two possibilities: either ε(r+1)
h =

v
(r+1,m)
h or ε(r+1)

h = −v(r+1,m)
h . Let us consider the first case. We conclude

from conditions 3), 4) of Assumption H[F, σ0] that (t(r+1), x(m)) /∈ ∂0Eh.
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Write

Ã(r,m) = F (t(r), x(m), v
(r,m)
h , (Thvh)ϕ(r,m) , δv

(r+1,m)
h , δ(2)v

(r+1,m)
h )(4.12)

− F (t(r), x(m), v
(r,m)
h , (Thvh)ϕ(r,m) ,0n,0[n]),

and
B̃(r,m) = F (t(r), x(m), v

(r,m)
h , (Thvh)ϕ(r,m) ,0n,0[n]).

By applying the Hadamard mean value theorem to the difference (4.12) we
conclude that there are

S
(r,m)
0 , S

(r,m)
i.+ , S

(r,m)
i.− , i = 1, . . . , n, and S

(r,m)
ij , (i, j) ∈ J,

such that

v
(r+1,m)
h (1 + S

(r,m)
0 ) = v

(r,m)
h + h0B̃

(r,m) +
[ n∑
i=1

S
(r,m)
i.+ v

(r+1,m+ei)
h

+
n∑
i=1

S
(r,m)
i.− v

(r+1,m−ei)
h +

∑
(i,j)∈J+

S
(r,m)
ij [v(r+1,m+ei+ej)

h + v
(r+1,m−ei−ej)
h ]

−
∑

(i,j)∈J−

S
(r,m)
ij [v(r+1,m−ei+ej)

h + v
(r+1,m+ei−ej)
h ]

]
.

Moreover we have

S
(r,m)
i.+ ≥ 0, S

(r,m)
i.− ≥ 0 for i = 1, . . . , n,

S
(r,m)
ij ≥ 0 for (i, j) ∈ J+, S

(r,m)
ij ≤ 0 for (i, j) ∈ J−

and

S
(r,m)
0 +

n∑
i=1

S
(r,m)
i.+ +

n∑
i=1

S
(r,m)
i.− + 2

∑
(i,j)∈J

|S(r,m)
ij | = 0.

The above relations and Assumption H[F, σ0] imply

ε
(r+1)
h ≤ ε(r)h + h0σ0(t(r), ε(r)h )

and consequently
ε
(r+1)
h < ω(t(r), η̃, ε).

The case ε(r)h = −v(r+1,m)
h can be treated in a similar way. Hence the proof

of (4.11) is complete. From (4.11), letting ε tend to 0, we obtain inequality
(4.10). This proves the lemma.

5. Convergence of implicit difference methods. Write A = ω(a, η̃),
where ω(·, η̃) is the maximal solution to (4.1) and KC(B,R)[A] = {ω ∈
C(B,R) : ‖ω‖B ≤ A}. Set

ΞA = E × [−A,A]×KC(B,R)[A]× Rn ×Mn×n.
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Assumption H[σ]. Assumption H[F, σ0] is satisfied and there is a func-
tion σ : [0, a]× R+ → R+ such that:

1) σ is continuous and it is nondecreasing with respect to both variables,
2) the estimate

(5.1) |F (t, x, p, w, q, s)− F (t, x, p̄, w̄, q, s)| ≤ σ(t,max{|p− p̄|, ‖w − w̄‖B})

is satisfied on ΞA,

3) σ(t, 0) = 0 for t ∈ [0, a) and function ω̄ ≡ 0 is the maximal solution
of the Cauchy problem

ω′(t) = σ(t, ω(t)), ω(0) = 0.

In the theorems on convergence of difference methods in [4], [6]–[9],
[16], [17], it is assumed that the corresponding functions F of the variables
(t, x, p, w, q, s) satisfy estimates of the Perron type globally with respect
to (p, w). Note that we have assumed estimate (5.1) for p ∈ [−A,A] and
w ∈ KC(B,R)[A] only. It is clear that there are differential equations with
deviated variables and differential integral equations such that the corre-
sponding functions F satisfy condition (5.1) on ΞA but not on Ξ.

Theorem 5.1. Suppose that Assumptions H[σ], H[Th] are satisfied and

1) uh : E0.h ∪ Eh → R is a solution of (2.1)–(2.3),
2) v : E0 ∪ E → R is a solution of (1.1)–(1.4) and v is of class C∗ and

vh is restriction of v to the set E0.h ∪ Eh,
3) there is α0 : H→ R+ such that

|ψ(r,m)
h − ψ(r,m)| ≤ α0(h) on E0.h,

|Ψ (r,m)
h − Ψ (r,m)| ≤ h0α0(h) on ∂0Eh

and limh→0 α0(h) = 0.

Then there is α : H→ R+ such that

(5.2) |(uh − vh)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0.

Proof. The proof starts with the observation that

δijv
(r,m) =

1
2

1�

0

1�

0

∂xixjv(t(r), x(m) + shiei + τhjej) ds dτ

+
1
2

1�

0

1�

0

∂xixjv(t(r), x(m) − shiei − τhjej) ds dτ for (i, j) ∈ J+
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and

δijv
(r,m) =

1
2

1�

0

1�

0

∂xixjv(t(r), x(m) + shiei − τhjej) ds dτ

+
1
2

1�

0

1�

0

∂xixjv(t(r), x(m) − shiei + τhjej) ds dτ for (i, j) ∈ J−.

It follows from the above relations and from Assumptions H∗[F ], H[Th] that
there are Γh : Eh → R and γ1 : H→ R+ such that

(5.3) δ0v
(r,m)
h = Fh[vh](r,m) + Γ

(r,m)
h

for −(M − 1) ≤ m ≤M − 1, 0 ≤ r ≤ K − 1 and

(5.4)
δ+i v

(r,m)
h = ∂xiv

(r,m) + Γ
(r,m)
h on ∂0E

+
h.i,

δ−i v
(r,m)
h = ∂xiv

(r,m) − Γ (r,m)
h on ∂0E

−
h.i,

where i = 1, . . . , n and

|Γ (r,m)
h | ≤ γ1(h) on Eh, lim

h→0
γ1(h) = 0.

Write zh = vh − uh and

ε
(r)
h = max{|z(i,m)

h | : (t(i), x(m)) ∈ E0.h ∪ Eh, i ≤ r}, 0 ≤ r ≤ K.

We prove that the function ε
(r)
h satisfies the recurrent inequality

(5.5) ε
(r+1)
h ≤ ε(r)h + h0σ(t(r), ε(r)h ) + h0γ̃(h), 0 ≤ r ≤ K − 1,

where γ̃(h) = γ1(h)(1 + c0) + B̃−1α0(h). Suppose that (t(r+1), x(m)) ∈ Eh

and −(M − 1) ≤ m ≤M − 1. Then

(5.6) z
(r+1,m)
h = z

(r,m)
h + h0Ah[uh, vh](r,m) + h0Bh[uh, vh](r,m),

where

Ah[uh, vh](r,m) =

Fh[vh](r,m)−F (t(r), x(m), u
(r,m)
h , (Thuh)ϕ(r,m) , δv

(r+1,m)
h , δ(2)v

(r+1,m)
h )+Γ (r,m)

h

and

Bh[uh, vh](r,m) =

F (t(r), x(m), u
(r,m)
h , (Thuh)ϕ(r,m) , δv

(r+1,m)
h , δ(2)v

(r+1,m)
h )− Fh[uh](r,m).

It follows from condition 2) of Assumption H[σ] that

(5.7) |Ah[uh, vh](r,m)| ≤ σ(t(r), ε(r)h ) + γ1(h).

We conclude from the Hadamard mean value theorem that there are

S̃
(r,m)
0 , S̃

(r,m)
i.+ , S̃

(r,m)
i.− , i = 1, . . . , n, S̃(r,m)

ij , (i, j) ∈ J,
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such that

h0Bh[uh, vh](r,m) = S̃
(r,m)
0 z

(r+1,m)
h +

n∑
i=1

S̃
(r,m)
i.+ z

(r+1,m+ei)
h

+
n∑
i=1

S̃
(r,m)
i.− z

(r+1,m−ei)
h +

∑
(i,j)∈J+

S̃
(r,m)
ij [z(r+1,m+ei+ej)

h + z
(r+1,m−ei−ej)
h ]

−
∑

(i,j)∈J−

S̃
(r,m)
ij [z(r+1,m−ei+ej)

h + z
(r+1,m+ei−ej)
h ].

Moreover

S̃
(r,m)
i.+ ≥ 0, S̃

(r,m)
i.− ≥ 0 for i = 1, . . . , n,

S̃
(r,m)
ij ≥ 0 for (i, j) ∈ J+, S̃

(r,m)
ij ≤ 0 for (i, j) ∈ J−

and

S̃
(r,m)
0 +

n∑
i=1

S̃
(r,m)
i.+ +

n∑
i=1

S̃
(r,m)
i.− + 2

∑
(i,j)∈J

|S̃(r,m)
ij | = 0.

We conclude from the above relations and from (5.6), (5.7) that

(5.8) |z(r+1,m)
h | ≤ ε(r)h + h0σ(t(r), ε(r)h ) + h0γ1(h).

Suppose that (t(r+1), x(m)) ∈ ∂0E
+
h.i. Then

z
(r+1,m)
h =

γ(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
z
(r+1,m−ei)
h

+
γ(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
hiΓ

(r+1,m)
h

+
hi

hiβ(r+1,m) + γ(r+1,m)
[Ψ (r+1,m) − Ψ (r+1,m)

h ]

and consequently

(5.9) |z(r+1,m)
h | ≤ ε(r)h + h0σ(t(r), ε(r)h ) + h0γ1(h) + c0h0γ1(h) +

1
B̃
h0α0(h).

In a similar way we prove (5.9) for (t(r+1), x(m)) ∈ ∂0E
−
h.i. Estimates

(5.8) and (5.9) imply (5.5). Let us consider the Cauchy problem

(5.10) ω′(t) = σ(t, ω(t)) + γ̃(h), ω(0) = α0(h).

There is ε0 > 0 such that the maximal solution ω(·,h) to (5.10) is defined
on [0, a] for 0 ≤ ‖h‖ < ε0 and limh→0 ω(t,h) = 0 uniformly on [0, a]. We
conclude from Assumption H[σ] that

ω(t(r+1),h) ≥ ω(t(r),h) + h0σ(t(r), ω(t(r),h)) + h0γ̃(h), 0 ≤ r ≤ K − 1.
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This gives
ε
(r)
h ≤ ω(t(r),h) for 0 ≤ r ≤ K.

Thus assertion (5.2) is satisfied with α(h) = ω(a,h).

Remark 5.2. Suppose that all the assumptions of Theorem 5.1 are sat-
isfied and σ : [0, a]× R+ × C(I,R+)→ R+ is given by

σ(t, p) = Lp on [0, a]× R+,

where L ∈ R+. Then

|u(r,m)
h − v(r,m)

h | ≤ α̃(h) on Eh

where

α̃(h) = α0(h)eLa +
γ̃(h)
L

(eLa − 1) if L > 0,(5.11)

α̃(h) = α0(h) + aγ̃(h) if L = 0.(5.12)

We obtain the above estimates by solving problem (5.10) with σ(t, p) = Lp.

We consider problem (2.1)–(2.3) with Th defined in [3].

Lemma 5.3. Suppose that all assumptions of Theorem 5.1 are satisfied
with σ(t, p) = Lp on [0, a]× R+, where L ∈ R+ and

1) ψh = ψ on E0.h and Ψh = Ψ on ∂0Eh,
2) the interpolating operator Th : FC(E0.h ∪ Eh,R) → C(E0 ∪ E,R) is

given in [3, Chapter 5],
3) v : E0 ∪ E → R is a solution of (1.1)–(1.4) and v is of class C3.

Then there are C1, C2 ∈ R+ such that

(5.13) |(uh − vh)(r,m)| ≤ C1‖h‖+ C2‖h‖2 on Eh,

where uh : E0.h∪Eh → R is a solution to (2.1)–(2.3) and vh is the restriction
of v to the set E0.h ∪ Eh.

Proof. It follows from Theorem 5.1 and from condition 3) that there are
C̃0, C̃1 ∈ R+ such that the function Γh defined by (5.3), (5.4) satisfies the
condition

|Γ (r,m)
h | ≤ C̃0‖h‖+ C̃1‖h‖2 on Eh.

Then we obtain (5.13) from (5.11), (5.12).

6. Comments and examples. Let us assume that the solution uh to
problem (2.1)–(2.3) is known on the set (E0.h∪Eh)∩([−b0, t(r)]×Rn). Then
computing the values u(r+1,m)

h for −M ≤ m ≤M leads to the system (3.4),
(3.5). We will show that the Newton method is a natural way for computing
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approximate solutions to the above problem. Write

k =
n∏
i=1

(2Mi + 1).

Elements of the space Rk will be denoted by y = {y(m)}−M≤m≤M . Consider
the operator G : Rk → Rk, G(y) = {G(m)(y)}−M≤m≤M , where

G(m)(y) = uh + h0F (t(r), x(m), u
(r,m)
h , (Thuh)ψ(r,m) , δy(m), δ(2)y(m)),

−(M − 1) ≤ m ≤M − 1, and

G(m)(y) =
hiΨ

(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
+

γ(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
y(m−ei)

for (t(r+1), x(m)) ∈ ∂0E
+
h.i, while

G(m)(y) =
hiΨ

(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
+

γ(r+1,m)

hiβ(r+1,m) + γ(r+1,m)
y(m+ei)

for (t(r+1), x(m)) ∈ ∂0E
−
h.i, where i = 1, . . . , n. System (3.4), (3.5) is equiva-

lent to the equation

(6.1) y = G(y)

Let Ek×k denote the identity matrix in Mk×k. We approximate the solution
u

(r+1,m)
h , −M ≤ m ≤M , of (6.1) with the sequence {y(i)}, y(i) ∈ Rk, defined

by the following Newton method:

y(0) = {u(r,m)
h }−M≤m≤M ,

y(i+1) = y(i) − [Ek×k − G′(y(i))]
−1[y(i) − G(y(i))] for i ≥ 0.

The next remark states that the Newton sequence {y(i)} exists.

Remark 6.1. Suppose that Assumption H∗[F ] is satisfied and

1) the solution uh of (2.1)–(2.3) is given on the set (E0.h∪Eh)∩([−b0, t(r)]
× Rn),

2) Th : F(E0.h ∪ Eh,R)→ C(E0 ∪ E,R),
3) the functions β : ∂0E → (0,∞), γ : ∂0E → R+ are continuous and B̃

is such that β(t, x) ≥ B̃ on ∂0E.

Then the matrix C = Ek×k − G′(y) is invertible.

Indeed, it follows from Assumption H∗[F ] that the matrix C = Ek×k −
G′(y), C = [cij ]ki,j=1, satisfies the condition

cii >

k∑
j=1
j 6=i

|cij |, i = 1, . . . , k,

and consequently detC 6= 0. Thus the Newton sequence for (6.1) exists.
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It is easy to formulate a Kantorovich type theorem on the convergence
of the Newton method for (6.1). In order to formulate such a theorem one
would need the following additional assumption: the functions ∂qF, ∂sF of
variables (t, x, p, w, q, s) satisfy the Lipschitz condition with respect to (q, s)
on ΞA.

Now we give numerical examples. We begin with a differential integral
equation.

Example 6.2. Let n = 2, I = [−0.5, 0.5], I+ = [0, 0.5], E = I+ × I × I
and E0 = {0} × I × I. Consider the differential integral equation

(6.2) ∂tz(t, x, y) = ∂xxz(t, x, y)− 1
2
∂xyz(t, x, y) + ∂yyz(t, x, y)

+ y

x�

0

z(t, s, y)ds+ x

y�

0

z(t, x, s)ds+ f(x, y)z(t, x, y) + g(t, x, y)

where

f(x, y) = 2(xy − 2x2 − 2y2), g(t, x, y) = e2xy + (et − 1),

and the initial boundary conditions

z(0, x, y) = 0, (x, y) ∈ I × I,(6.3)

∂xz(t, 0.5, y) + z(t, 0.5, y) = ψ
(+)
1 (t, y), (t, y) ∈ I+ × I,

−∂xz(t,−0.5, y) + z(t,−0.5, y) = ψ
(−)
1 (t, y), (t, y) ∈ I+ × I,

(6.4)

∂yz(t, x, 0.5) + z(t, x, 0.5) = ψ
(+)
2 (t, x), (t, x) ∈ I+ × I,

∂yz(t, x,−0.5) + z(t, x,−0.5) = ψ
(−)
2 (t, x), (t, x) ∈ I+ × I,

(6.5)

where

ψ
(+)
1 (t, y) = ey(et − 1)(1 + 2y), ψ

(−)
1 (t, y) = e−y(et − 1)(1− 2y),

ψ
(+)
2 (t, x) = ex(et − 1)(1 + 2x), ψ

(−)
2 (t, x) = e−x(et − 1)(1− 2x).

The solution of (6.2)–(6.5) is known to be v(t, x, y) = (et − 1)e2xy.
Let us denote by uh : Eh → R the solution of the implicit difference

problem corresponding to (6.2)–(6.5). Write

(6.6) ε
(r)
h =

1
(2M1 + 1)(2M2 + 1)

(M1,M2)∑
m=−(M1,M2)

|u(r,m)
h − v(r,m)|, 0 ≤ r ≤ K,

where M1h1 = 0.5, M2h2 = 0.5. The numbers ε(r)h are the arithmetical
means of the errors. In Table I we give experimental values for ε(r)h and
h0 = 1

128 , h1 = h2 = 1
64 , where (h0, h1, h2) are steps of the mesh with

respect to (t, x, y), respectively.
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Table I

t(r) 0.125 0.188 0.250 0.312 0.438

ε
(r)
h 2.96e− 04 3.73e− 04 4.16e− 04 4.35e− 04 4.25e− 04

Note that condition (1.5) is not satisfied in the above example and the
explicit difference method is not convergent. The average errors of the ex-
plicit difference method exceed 106.

Now we consider a differential equation with deviated variables.

Example 6.3. Let n = 2, E = [0, 0.5]× [−1, 1]× [−1, 1] and E0 = {0}×
[−1, 1]× [−1, 1]. Consider the differential equation with deviated variables

∂tz(t, x, y) = 2∂xxz(t, x, y) + 2∂yyz(t, x, y)(6.7)
− cos [∂xxz(t, x, y)− ∂yyz(t, x, y)]
+ z(t, 0.5(x+ y), 0.5(x− y))

− 4z(t, x, y) + ex−y + 1− tey

and the initial boundary conditions

z(0, x, y) = 0, (x, y) ∈ [−1, 1]× [−1, 1],(6.8)

∂xz(t, 1, y) + z(t, 1, y) = 2te1−y, −∂xz(t,−1, y) + z(t,−1, y) = 0,

∂yz(t, x, 1) + z(t, x, 1) = 0, −∂yz(t, x,−1) + z(t, x,−1) = 2tex+1.
(6.9)

The solution of (6.7)–(6.9) is known to be v(t, x, y) = tex−y. Let us denote by
ũh : Eh → R the solution of the implicit difference problem corresponding
to (6.7)–(6.9). Let uh : Eh → R be a numerical approximation of ũh which
is obtained by using the Newton method. We have calculated three Newton
iterations. Let ε(r)h be defined by (6.6) with M1h1 = 1, M2h2 = 1. In Table II
we give experimental values of ε(r)h for h0 = 1

64 , h1 = h2 = 1
64 .

Table II

t(r) 0.125 0.188 0.250 0.312 0.438

ε
(r)
h 4.15e− 03 5.64e− 03 6.90e− 03 8.01e− 03 9.95e− 03

Note that condition (1.5) is not satisfied in the above example and the
explicit difference method is not convergent.

Our results show that there are implicit difference methods for nonlin-
ear parabolic functional differential equations with general initial boundary
conditions which are convergent while the corresponding explicit difference
schemes are not convergent.

Acknowledgments. The author wishes to thank Dr. Wojciech Czer-
nous for several helpful comments concerning numerical examples.
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