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Mean stability of a stochastic difference equation

by Viorica Mariela Ungureanu (Targu Jiu) and
Sui Sun Cheng (Hsinchu)

Abstract. A simple personal saving model with interest rate based on random fluc-
tuation of national growth rate is considered. We establish connections between the mean
stochastic stability of our model and the deterministic stability of related partial difference
equations. Then the asymptotic behavior of our stochastic model is studied. Although the
model is simple, the techniques for obtaining its properties are not, and we make use of
the theory of abstract Banach algebras and weighted spaces. It is hoped that our study
will lead to more realistic random models.

1. Introduction. To motivate our study, let r(n) be the interest rate
of growth earned by a nation in the time period n ∈ N = {0, 1, 2, . . .}. In
real life, r(n) depends on many deterministic or random factors. Here we
are concerned with a simple model related to the random fluctuation of the
interest rate. More specifically, suppose the interest rate can fluctuate in dis-
crete manners, e.g., r(n) may take values such as −1%,−0.5%, 0%, 0.5%, 1%,
1.5%, . . . , etc. Then by properly scaling the unit of interest rates, we may
assume that r(n) ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Let Pn

i be the probability
that the interest rate in the time period n is equal to i, that is, r(n) = i
(in particular, initially the probability of finding r(0) = i is P 0

i ). We assume
further that at the end of each time interval, the interest rate may remain
the same, or may be changed one unit in any direction. Assume that the
probability that the interest rate does not change in a given unit of time is b,
the probability that it decreases is c, and the probability that it increases
is a. In other words, we are assuming that the stochastic process r(n) is a
random walk. By Bayes’ formula, it is easy to see that the following partial
difference equation holds:

(1) Pn+1
i = aPn

i−1 + bPn
i + cPn

i+1, n ∈ N, i ∈ Z.
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Some useful information can be obtained from this equation. First of all,
given an initial distribution {P 0

i }i∈Z, we may calculate

P 1
0 ; P 1

−1, P
1
1 , P 2

0 ; P 1
−2, P

2
−1, P

2
1 , P 1

2 , P 3
0 ; . . .

successively in a unique manner. Such a unique sequence together with the
sequence {P 0

i } constitutes a solution and is denoted by {Pn
i }i∈Z, n∈N. In

particular, if P 0
i = 1 for i = i0 and P 0

i = 0 for i 6= i0, then the corresponding
solution is called a fundamental solution driven by the point i0, and all other
solutions (the general solution) can be generated by linear combinations of
fundamental solutions (see [1], [2]). Note that the fundamental solution {Pn

i }
driven by i0 satisfies Pn

i = 0 for all i ∈ Z \ [i0 − n, i0 + n] and n ∈ N.

An important question is the effect of fluctuation of r(n) on personal
savings. More precisely, suppose a sum x(0) = x is deposited into a bank
account. Then the saving equation is

x(n + 1) − x(n) = r̃(n)x(n), n ∈ N,

where r̃(n) is the interest rate offered by the bank. In realistic situations,
r̃(n) depends on r(n) (through decisions of bank managers). We are then
led to equations of the form

(2) x(n + 1) = A(r(n))x(n), n ∈ N,

subject to the condition

(3) x(0) = x ∈ R,

where A : Z → R is a bounded function on Z.

There are many questions we can ask about the properties of this stochas-
tic difference equation. For instance, is there a chance for {x(n)} to grow
without bound, or to die out? In the following, we will study the mean sta-
bility of the process x(n), and the results obtained provide answers to some
of these questions.

It may seem that our model is too simple to be useful in everyday life. As
will be seen, however, the properties of this simple model are by no means
simple. We need to first transform our stochastic problems into deterministic
ones which involve partial difference equations. To study the latter, we need
to employ techniques of abstract Banach algebras and weighted spaces.

After going through such endeavors, we may see that more realistic ran-
dom models can be built and handled in the near future.

2. Notations and preliminaries. Let (Ω,F , P ) be a probability
space. If ξ is a random variable then we will denote by E(ξ) the expectation
(mean) of ξ. For any σ-algebra G of subsets of F , G ⊂ F we will denote by
E[ξ | G] the conditional expectation (mean) of ξ with respect to G. If G is
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the σ-algebra generated by the random variable η, then we will also use the
notation E[ξ | η] for the conditional expectation of ξ with respect to G.

If P{ω | η(ω) = x} > 0 we will denote by E[ξ | η = x] the conditional
expectation on the event η = x, and

(4) E[ξ | η = x] =
1

P{η(ω) = x}
\
χ{η(ω)=x}ξ(ω) P (dω),

while if P{ω | η(ω) = x} = 0 then E[ξ | η = x] = 0.

We also denote by Lp(Ω,F , P ), p ∈ N
∗ = {1, 2, 3, . . .}, the space of all

equivalence classes of real-valued random variables ξ such that E|ξ|p < ∞.

We recall that a random walk on R is a stochastic process r(n) = ξ1 +
· · ·+ξn, n ∈ N

∗, r(0) = 0 (or r(0) = x ∈ R), where ξ1, ξ2, . . . are real-valued,
independent random variables with the same distribution law. In the case
when r(0) = x we will say that the random walk r(n) is driven by the

point x. We denote by Fn the σ-algebra generated by {r(n) : 0 ≤ k ≤ n}.
Throughout this paper some or all of the following hypotheses will be

assumed.

(P1) {r(n)}n∈N∗ is a homogeneous Markov chain with state space Z,
time space N and infinite transition matrix Q = (qij) where qij =
P{r(n + 1) = j | r(n) = i} is assumed to satisfy the condition qij = 0
for all j ∈ Z − {i−m0, . . . , i, . . . , i + m0}, where m0 ∈ N

∗ is a given
number.

(P2) {r(n)}n∈N∗ is a simple random walk driven by the point i0 ∈ Z,
where the transition matrix Q = (qij) is assumed to be given by
qi,i−1 = c, qii = b, qi,i+1 = a and qij = 0 otherwise.

(P3) The function A : Z → R in (2) is bounded on Z, that is, there exist
l, L ∈ R such that A(i) ∈ [l, L] for all i ∈ Z.

It is known from [3] and [4] that

(5) E[η(ω) | r(n)] =
∞∑

j=−∞

χr(n)=jE[η(ω) | r(n) = j]

if η is a nonnegative or an integrable random variable on (Ω,F , P ). Thus

E[η(ω)] =
∞∑

j=−∞

P (r(n) = j)E[η(ω) | r(n) = j](6)

=
∞∑

j=−∞

Pn
j E[η(ω) | r(n) = j].
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In particular, if (P2) holds, then

(7) E[η(ω)] =

n+i0∑

j=n−i0

Pn
j E[η(ω) | r(n) = j].

Our problem is to investigate the asymptotic behavior of the mean square
of the solutions of the system (2)–(3) under some of the above hypotheses.

3. Representation theorems for the solutions of discrete time

systems with Markov perturbations. In the following we will assume
that (P1) holds.

To the system (2) we associate the random evolution operator X(n, k)
defined by X(k, k) = 1 and

X(n, k) = A(r(n − 1))A(r(n − 2)) · · ·A(r(k)), 0 ≤ k < n.

In terms of X(n, k), the unique solution of (2) for n ≥ k with the initial
condition x(k) = x ∈ R is x(n) = X(n, k)x. It is clear that X(n, k) ∈
L2(Ω,F , P ).

We associate to the system (2) the following partial difference equation:

yi
n+1 = [A(i)]2

i+m0∑

j=i−m0

qijy
j
n, i ∈ Z, n ∈ N,(8)

y0 = φ,(9)

where φ = {φi}i∈Z, φi = 1 for all i ∈ Z. It is clear that the above system has
a unique solution {yi

n}n∈N, i∈Z.

As in [5] where the case of Markov perturbations with finite state space
is considered, we can obtain a representation of the mean square of the
stochastic process X(n, k) using the solution of the above partial difference
equation.

Similar results are obtained in [6] for linear discrete-time stochastic sys-
tems with independent random perturbations in Hilbert spaces, and in [7]
for linear stochastic differential equations. In [6], it is proved that the covari-
ance operator associated to the solution of the stochastic system satisfies a
deterministic linear discrete-time system on a space of nuclear (trace class)
operators, and consequently, the stability problem in the stochastic case
reduces to the stability problem of the deterministic system.

Theorem 1. Assume that (P1) holds. If X(n, k) is the random evolution

operator associated with the stochastic system (2), and y = {yi
n}i∈Z, n∈N is

the solution of (8)–(9), then for all i ∈ Z and n, k ∈ N such that n ≥ k, we

have

(10) E[X(n, k)2 | r(k) = i] = yi
n−k
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and

(11) E[X(n, k)]2 =
∞∑

i=−∞

P k
i yi

n−k,

where P k
i = P{r(k) = i}.

Proof. Denote by S the set of all functions g : Z → R+ and let f ∈ S.
Write

(∗) = E[X(n + 1, k)2f(r(n + 1)) | r(k) = i].

By Lebesgue’s monotone convergence theorem,

(∗) = E[A(r(n))2X(n, k)2f(r(n + 1)) | r(k) = i]

=
∞∑

j=−∞

E[A(r(n))2X(n, k)2χr(n+1)=jf(j)) | r(k) = i].

We introduce the function Y : S → S defined by

Y (g)(i) = [A(i)]2
i+m0∑

j=i−m0

qijg(j), i ∈ Z.

It is clear that Y is well defined. Applying the properties of a Markov chain
and (5), we get

(∗) =
∞∑

j=−∞

E[A(r(n))2X(n, k)2f(j)E[χr(n+1)=j | Fn]) | r(k) = i]

=
∞∑

j=−∞

E[A(r(n))2X(n, k)2f(j)E[χr(n+1)=j | r(n)]) | r(k) = i]

=

∞∑

j=−∞

E[A(r(n))2X(n, k)2f(j)qr(n)j | r(k) = i]

= E[X(n, k)2Y (f)(r(n)) | r(k) = i],

where E[χr(n+1)=j | Fn] (respectively E[χr(n+1)=j | r(n)]) is the conditional
expectation of the random variable χr(n+1)=j with respect to the σ-algebra
Fn (respectively the σ-algebra generated by r(n)).

So we obtain the recurrence formula

E[X(n + 1, k)2f(r(n + 1)) | r(k) = i] = E[X(n, k)2Y (f)(r(n)) | r(k) = i].

Taking f(i) = 1 for all i ∈ Z and iterating we obtain

(12) E[X(n + 1, k)2 | r(k) = i] = E[X(p, k)2Y n+1−p(f)(r(k)) | r(k) = i]
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for all n + 1 > p ≥ k. It is easy to see that

Y n+1(f)(i) = Y (Y n(f))(i) = [A(i)]2
i+m0∑

j=i−m0

qijY
n(f)(j).

By denoting Y n(f)(i) = yi
n for n ∈ N, i ∈ Z, we see that yi

0 = Y 0(f)(i) =
f(i) = 1 for i ∈ Z and yi

n is the unique solution of (8)–(9). Taking p = k
in (12), we obtain (10). Using (6) we obtain (11) and the proof is complete.

Similarly we can prove the following result.

Proposition 1. Assume that (P1) holds. Then for all i∈Z and n, k∈N

such that n ≥ k,

E[|X(n, k)| | r(k) = i] = z̃i
n−k,

and

(13) E[|X(n, k)|] =
∞∑

i=−∞

P k
i z̃i

n−k

where {z̃i
n}i∈Z,n∈N is the solution of the partial difference equation

z̃i
n+1 = |A(i)|

i+m0∑

j=i−m0

qij z̃
j
n, i ∈ Z, n ∈ N,(14)

z̃0 = φ.(15)

4. Stability. Using the results of the above section we can obtain deter-
ministic characterizations of the p-mean exponential stability or instability,
where p = 1, 2, of the stochastic system (2)–(3).

Definition 1.

(a) We say that the equation (2) is p-mean exponentially stable, where
p = 1, 2, iff for any k ∈ N there exist βk ≥ 1 and αk ∈ (0, 1) such
that

(16) E|X(n, k)|p ≤ βkα
n−k
k for all n ≥ k.

(b) We say that the equation (2) is p-mean exponentially instable, where
p = 1, 2, iff for any k ∈ N there exist βk > 0 and αk > 1 such that

(17) E|X(n, k)|p ≥ βkα
n−k
k for all n ≥ k.

If the βk and αk in condition (a) (respectively (b)) of Definition 1 can
be taken constant, independent of k ∈ N, then it is natural to say that the
equation (2) is p-mean uniformly exponentially stable (respectively instable).

We remark that it is necessary to take βk ≥ 1, because for n = k in (16)
we obtain E|X(k, k)|p ≤ βk, that is, 1 ≤ βk.
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We also remark that stability is defined for the more general X(n, k)
instead of just for X(n, 0). We motivate this definition by referring to the
saving equation, where it is necessary to decide whether money should be
deposited into a bank account this year or some time in the future.

The next corollary is a direct consequence of the above definition and of
Theorem 1.

Corollary 1. Assume that (P1) holds.

(a) The system (2) is mean square exponentially stable iff for any k ∈ N

there exist βk ≥ 1 and αk ∈ (0, 1) such that the double sequence {yi
n}

defined by (8)–(9) satisfies

(18)
∞∑

i=−∞

P k
i yi

n ≤ βkα
n
k , n ∈ N.

(b) The system (2) is mean square exponentially instable iff for any k∈N

there exist βk > 0 and αk > 1 such that the double sequence {yi
n}

defined by (8)–(9) satisfies

(19)
∞∑

i=−∞

P k
i yi

n ≥ βkα
n
k , n ∈ N.

Theorem 2. Assume that (P2) holds and abc > 0.

(a) The system (2) is mean square exponentially stable iff for any k ∈ N

there exist βk ≥ 1 and αk ∈ (0, 1) such that the double sequence {yi
n}

defined by (8)–(9) satisfies

(20) yi
n ≤ βkα

n
k , |i − i0| ≤ k, n ∈ N.

(b) The system (2) is mean square exponentially instable iff there exist

β > 0 and α > 1 such that the component yi0
n of the double sequence

{yi
n} defined by (8)–(9) satisfies

(21) yi0
n ≥ βαn, n ∈ N.

Proof. (a) First recall that if (P2) holds, then P k
i = 0 for all |i− i0| > k

and P k
i is the coefficient of xi−i0 in the expansion of the rational function

(ax + b + cx−1)k (see [2]). Since abc > 0, we have P k
i 6= 0 for all |i− i0| ≤ k.

By Theorem 1, we get

(22) E[X(n, k)]2 =

i0+k∑

i=i0−k

P k
i yi

n−k

and statement (a) is an easy consequence of Definition 1 and Theorem 1.

(b) If there exist β > 0 and α > 1 such that (21) holds, then for all
k ∈ N we have
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E[X(n, k)]2 =

i0+k∑

i=i0−k

P k
i yi

n−k ≥ βP k
i0

αn−k

and the conclusion follows by Definition 1. Conversely, if (2) is mean square
exponentially instable, then for k = 0, there exist β > 0 and α > 1 such
that E[X(n, 0)]2 ≥ βαn for all n ∈ N. Thus yi0

n ≥ βαn for all n ∈ N and the
conclusion follows.

Remark 1. (a) By minor modifications of the above proof, the state-
ments of the above theorem remain true even in the cases where abc = 0.
For example, if a = 0 and bc > 0, then P k

i is the coefficient of xi−i0 in the
expansion of (b + cx−1)k. It is clear that P k

i 6= 0 iff i0 − k ≤ i ≤ i0. It is
not difficult to see that if we replace the condition |i − i0| ≤ k in (20) with
i ∈ [i0 − k, i0] then statements (a) and (b) of the above theorem stay true
in the case where (P2) holds, a = 0 and bc > 0.

Analogously if (P2) holds, c = 0 and ac > 0, then (a) and (b) hold if we
replace |i − i0| ≤ k in (20) with i ∈ [i0, i0 + k].

(b) Replacing the double sequence {yi
n} in the statements of Corollary 1

and Theorem 2 with the double sequence {z̃i
n} defined by (14) and (15)

we obtain necessary and sufficient conditions for the 1-mean exponential
stability, respectively instability of (2).

(c) From statement (b) of Theorem 2 and the above remark we deduce
that system (2) is p-mean exponentially instable, p = 1, 2, iff there exist
β > 0 and α > 1 such that, for all n ∈ N,

E|X(n, 0)|p ≥ βαn.

Corollary 1 and Theorem 2 show that, under (P1) or (P2), stability con-
ditions expressed in terms of the 1-mean or 2-mean of the stochastic pro-
cess X(n, k) are equivalent to conditions for deterministic partial difference
equations. Consequently, we need to study the properties of the solutions of
partial difference equations such as (8) or (14).

5. Stability and instability results for linear discrete time sys-

tems in an ordered Banach algebra. Let l∞(Z) be the linear space of
all doubly infinite real sequences y = (. . . , y−1, y0, y1, y2, . . .), yi ∈ R, i ∈ Z,
that satisfy

‖y‖∞ = sup
i∈Z

|yi | < ∞.

It is known that l∞(Z), when endowed with the usual operations, is a Banach
space with the norm ‖ · ‖∞. We will denote as before by φ = {φi}i∈Z the
element of l∞(Z) where each φi is 1. The Banach space l∞(Z) is a Banach
algebra with multiplication x · y = {xiyi}i∈Z (|x · y|∞ ≤ |x|∞|y|∞) and
with unit φ. We will denote by x[n] the product x · . . . · x (n-times), that
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is, x[n] = {(xi)n}i∈Z. For comparison, note that we have used yi or (y)i to
denote the ith component of y ∈ l∞(R).

Now we introduce an order on l∞(Z). We say that y ≥ z, where y, z ∈
l∞(Z), iff yi ≥ zi for all i ∈ Z. If y ≥ 0, then y is nonnegative. We denote
by K the cone of all nonnegative vectors in l∞(Z). If B is a Banach algebra
we denote by L(B) the Banach space of all bounded linear operators on B.

Consider in l∞(Z) the system

yn+1 = Γ (yn), n ∈ N,(23)

y0 = φ,(24)

where Γ ∈ L(l∞(Z)) satisfies the condition Γ (K) ⊂ K. It is clear that
(23)–(24) has a unique solution given by yn = Γn(φ) = Γ (Γ (· · ·Γ (φ))).

Remark 2. Γ (y) ≥ 0 for all y ∈ K and consequently Γ (y) ≥ Γ (z) for all
y ≥ z, where y, z ∈ l∞(Z). Also ‖Γ (y)‖∞ ≥ ‖Γ (z)‖∞ for all y ≥ z, y, z ∈ K.

The following result is analogous to a known result where H is a Hilbert
space, KH is the cone of all nonnegative operators on H, and Γ is a linear
operator on L(H) satisfying Γ (KH) ⊂ KH (see [8]).

Lemma 1. If Γ ∈ L(l∞(Z)) and Γ (K) ⊂ K, then ‖Γ‖ = ‖Γ (φ)‖∞.

Proof. For any y ∈ l∞(Z), since − supi∈Z |yi | ≤ yi ≤ supi∈Z |yi |, we see
that −‖y‖∞φ ≤ y ≤ ‖y‖∞φ. Using Remark 2 we get Γ (−‖y‖∞φ) ≤ Γ (y) ≤
Γ (‖y‖∞φ) and −‖y‖∞Γ (φ) ≤ Γ (y) ≤ ‖y‖∞Γ (φ) . Hence −‖y‖∞Γ i(φ) ≤
Γ i(y) ≤ ‖y‖∞Γ i(φ) and |Γ i(y)| ≤ ‖y‖∞Γ i(φ) (Γ i(φ) ≥ 0 for all i ∈ Z).
Thus supi∈Z |Γ i(y)| ≤ ‖y‖∞ supi∈Z Γ i(φ) and ‖Γ (y)‖∞ ≤ ‖y‖∞‖Γ (φ)‖∞.

Now it is clear that sup‖y‖∞=1 ‖Γ (y)‖∞ ≤ ‖Γ (φ)‖∞ and ‖Γ‖≤‖Γ (φ)‖∞.
The other inequality is trivial.

Definition 2.

(a) We say that the solution {yn} of (23)–(24) has the property (E) if
there exist β > 1 and α ∈ (0, 1) such that

‖yn‖∞ ≤ βαn for all n ∈ N,

and has the property (IE) if there exist β > 0 and α > 1 such that

‖yn‖∞ ≥ βαn for all n ∈ N.

(b) We say that the ith component yi
n, i ∈ Z, of the solution {yn} of

(23)–(24) has the property (CE) if there exist βi > 1 and αi ∈ (0, 1)
such that

|yi
n| ≤ βiα

n
i for all n ∈ N,

and has the property (CIE) if there exist βi > 0 and αi > 1 such
that

|yi
n| ≥ βiα

n
i for all n ∈ N.
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Remark 3.
(a) The solution {yn} of (23)–(24) has the property (E) if there exist

β > 1 and α ∈ (0, 1) such that ‖Γn(φ)‖∞ ≤ βαn for all n ∈ N, and has the
property (IE) iff there exist β > 0 and α > 1 such that ‖Γn(φ)‖∞ ≥ βαn

for all n ∈ N.
(b) If the solution {yn} of (23)–(24) has the property (E), then every

component yi
n, i ∈ Z, of this solution has the property (CE). The converse

is not true. On the other hand, if there exist β > 1 and α ∈ (0, 1) such that

(25) |yi
n| ≤ βαn

for all i ∈ Z, n ∈ N, we deduce that {yn} has the property (E).

(c) If there exists a component yî
n, î ∈ Z, of the solution {yn} of

(23)–(24) which has the property (CIE), then {yn} has the property (IE).
The converse is not true.

The next theorem establishes necessary and sufficient conditions for the
exponential stability of the system (23)–(24). In some sense this result is
a version of Theorem 17 in [6] which gives a characterization of the uni-
form exponential stability of a discrete time system of type (23) by using
Lyapunov equations of type (26).

Theorem 3. The following statements are equivalent :

(1) The solution {yn} of (23)–(24) has the property (E).
(2) There exists a unique solution z ∈ K of the equation

(26) z = Γ (z) + φ.

(3) r(Γ ) < 1, where r(Γ ) denote the spectral radius of Γ.

Proof. (1)⇒(2). Assume that (23)–(24) has the property (E). Then∑∞
k=0 Γ k(φ) is convergent in l∞(Z) (we note that Γ 0(φ) = φ). Indeed, using

Remark 3(a) we deduce
∞∑

k=0

‖Γ k(φ)‖∞ ≤
∞∑

k=0

βαk = β
1

1 − α

and the conclusion follows. Now set z =
∑∞

k=0 Γ k(φ). Since Γ is continuous
we have

Γ (z) = Γ
( ∞∑

k=0

Γ k(φ)
)

=
∞∑

k=0

Γ k+1(φ) = z − φ,

that is, z is a solution of (26). It is clear that since φ ≥ 0, we have Γ k(φ) ≥ 0
for all k ≥ 1 and z ≥ φ. Hence ‖z‖∞ ≥ 1. Now we will prove the uniqueness.
Assume that z, w ∈ K are two solutions of (26). Then z−w = Γ (z−w) and
z − w = Γn(z − w) for any n ∈ N. Since

‖z − w‖∞ ≤ ‖z‖∞ + ‖w‖∞ ≤ 2max{‖z‖∞, ‖w‖∞} = 2M,
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we see that ‖z − w‖∞ ≤ 2M‖Γn‖. Using the properties of Γ we deduce
that Γn(K) ⊂ K. Applying Lemma 1 we obtain ‖Γn‖ = ‖Γn(φ)‖∞ and
consequently ‖z − w‖∞ ≤ 2Mβαn for any n ∈ N. Letting n → ∞ yields
‖z − w‖∞ = 0 and z = w.

(2)⇒(1). Assume that (26) has the solution z ∈ K. We define fn = Γn(z)
and we see that

fn = Γn(Γ (z) + φ) = Γn+1(z) + Γn(φ) = fn+1 + Γn(φ).

Since z ≥ 0 we deduce from (26) that z ≥ φ and ‖z‖∞ ≥ 1. Writing
M = 2‖z‖∞ < ∞ we get

φ ≥ 1

M
z, Γn(φ) ≥ 1

M
Γn(z) =

1

M
fn

and (
1 − 1

M

)
fn ≥ fn+1, n ∈ Z.

Hence Γn(z) ≤ (1 − 1/M)nz for all n ∈ Z and using the inequality z ≥ φ
we obtain Γn(φ) ≤ (1 − 1/M)nz.

Now it is clear that

‖Γn(φ)‖∞ ≤ ‖z‖∞
(

1 − 1

M

)n

= M

(
1 − 1

M

)n

.

Taking β = M and α = 1 − 1/M we deduce that ‖yn‖∞ ≤ βαn and the
conclusion follows.

(1)⇒(3). Reasoning as above we see that

‖Γn‖ = ‖Γn(φ)‖∞ < 2βαn, n
√

‖Γn‖ < n
√

2βαn

and

lim
n→∞

n
√

‖Γn‖ ≤ lim
n→∞

n
√

2βαn < 1.

Thus r(Γ ) < 1.

(3)⇒(1). If r(Γ ) < 1 then limn→∞
n
√

‖Γn‖ = s < 1. We deduce that
there exists ε > 0 such that s + ε = α < 1. Then there exists k0 ∈ N such
that for all n ≥ k0 we have ‖Γn‖ ≤ αn. If we take

β = max{1, ‖Γ‖/α, . . . , ‖Γ k0−1‖/αk0−1},
we see that ‖Γn‖ ≤ βαn for all n ∈ N. Using Lemma 1 again, we obtain
‖Γn(φ)‖∞ ≤ βαn and the conclusion follows.

Remark 4. Consider the ordered Banach algebra l∞ of all infinite real
sequences v = (v0, v1, v2, . . .) such that

‖v‖∞ = sup
i∈N

|vi | < ∞
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and l∞ is endowed with the usual operations and the order defined by y ≥ z
iff yi ≥ zi for all i ∈ N. If we consider the following system on l∞:

yn+1 = Γ+(yn),

y0 = φ+, φi
+ = 1, i ∈ N,

and if we assume Γ+ ∈ L(l∞), Γ+(K+) ⊂ K+ (K+ is the cone of all non-
negative vectors belonging to l∞) then the statements of the above theorem
stay true if we replace Γ with Γ+, φ with φ+, and K with K+.

Example 1. Consider Γ : l∞(Z) → l∞(Z) defined by

(Γ (y))i = ci(cy
i−1 + byi + ayi+1), i ∈ Z,

where ci ∈ (0, L) for all i ∈ Z. We will assume that b > 0 and {ci}i∈Z

has an accumulation point η > 1/b. It is clear that Γ ∈ L(l∞(Z)). We will
investigate whether the solution yn of (23)–(24) has the property (E).

Under the above assumptions, the equation (26) can be written as

(27) ci(cy
i−1 + byi + ayi+1) + 1 = yi.

Assume that (27) has a unique nonnegative solution on l∞(Z). Let {in}n∈N

be an integer sequence such that cin → η as n → ∞. Since y ∈ l∞(Z)
and y ≥ 0, we see that {yin}n∈N is bounded and there exists a subsequence
{yink} converging to τ ≥ 1 (we recall that y ≥ φ). Analogously there are
subsequences {yipk

−1}, {yipk}, {yipk
+1} converging to τ−1, τ0, τ1 respectively.

Then ηcτ−1 + (ηb − 1)τ0 + ηaτ1 + 1 = 0, which is impossible.
Hence (26) cannot have a solution in K. By Theorem 3, the solution of

(23)–(24) does not have the property (E).
We note that if in the above example ci ∈ (0, s) where s < 1, then

‖Γ (φ)‖∞ = supi∈Z ci ≤ s < 1. Lemma 1 implies that ‖Γ‖ ≤ s < 1 and
consequently r(Γ ) < 1. In this situation the solution of (23)–(24) has the
property (E) according Theorem 3.

The following result provides a characterization of the property (IE) of
the solution of the system (23)–(24).

Theorem 4. The solution of the system (23)–(24) has the property (IE)
iff r(Γ ) > 1.

Proof. Assume that there exist β > 0 and α > 1 such that ‖yn‖∞ ≥ βαn

for all n ∈ N. Since yn = Γn(φ), we use Lemma 1 (‖Γn(φ)‖∞ = ‖Γn‖) to

deduce that ‖Γn‖ ≥ βαn for all n ∈ N. Hence n
√

‖Γn‖ ≥ n
√

βαn for all n ∈ N

and passing to the limit we get r(Γ ) > 1.
Conversely, if r(Γ ) > 1, then limn→∞

n
√

‖Γn‖ = t > 1 and there exists

ε > 0 such that t−ε > 1. Hence there exists Nε ∈ N such that n
√

‖Γn‖ ≥ t−ε
for all n ≥ Nε. We take α = t − ε and

β = min{1, ‖Γ‖/α, ‖Γ 2‖/α2, . . . , ‖ΓNe−1‖/αNε−1},
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and it follows that ‖Γn‖ ≥ βαn for all n ∈ N. We note that β 6= 0, other-
wise there exists k < Nε, k ∈ N, such that Γ k = 0, which contradicts the
assumption r(Γ ) > 1. Using Lemma 1 again, we get the conclusion.

Since the property (IE) of the solution of (23)–(24) does not guarantee
the property (CIE) (see Remark 3(c)), we will investigate the behavior of the
components yi

n, i ∈ Z, of the solution of (23)–(24). The following result gives
sufficient conditions for some component yi

n of yn to have the property (CIE).

Proposition 2. Let {yn}n∈N, where yn = (. . . , y−1
n , y0

n, y1
n, . . .), be the

solution of (23)–(24). Assume that there exist α > 0 and δ > 0 such that

infi∈Z(Γ (φ))i > α and Γ (y) ≥ δΓ (φ)y. Then

(a) yi
n ≥ (γ(Γ (φ))i)n for all n ∈ N and i ∈ Z, where γ is defined by

(28) γ = inf
n∈N∗, i∈Z

(Γ ((Γ (φ))[n]))i

((Γ (φ))i)n+1
, γ ∈ [δ, (‖Γ‖/α)2].

(b) In addition, if there exists î ∈ Z such that γΓ î(φ) > 1, then the

component yî
n of yn has the property (CIE).

Proof. (a) Since (Γ (φ))[n] ∈ l∞(Z), we see that Γ ((Γ (φ))[n]) is well de-
fined. Using the hypothesis we deduce that there exists α > 0 such that
(Γ (φ))i > α for all i ∈ Z and

Γ ((Γ (φ))[n]) ≥ δΓ (φ)(Γ (φ))[n].

Hence
(Γ ((Γ (φ))[n]))i

((Γ (φ))i)n+1
≥ δ.

On the other hand,

γ ≤ (Γ (Γ (φ)))i

((Γ (φ))i)2
≤

(‖Γ‖
α

)2

and so we have proved that γ ∈ [δ, (‖Γ‖/α)2].
We will prove by induction on n ∈ N that yi

n ≥ (γ(Γ (φ))i)n for the
solution of (23)–(24). For n = 0 this is obviously true. Assume that yi

n ≥
(γ(Γ (φ))i)n. Then yn ≥ γn(Γ (φ))[n] and

yi
n+1 = (Γ (yn))i ≥ γn(Γ ((Γ (φ))[n]))i = γn (Γ ((Γ (φ))[n]))i

((Γ (φ))i)n+1
((Γ (φ))i)n+1

≥ γn+1((Γ (φ))i)n+1 = (γ(Γ (φ))i)n+1.

The conclusion follows.
(b) We take α

î
= γΓ î(φ) and β

î
= 1 and we get the conclusion.

Next we will obtain conditions which ensure that every component of
the solution of (23)–(24) has the property (CE) although the solution of



46 V. M. Ungureanu and S. S. Cheng

(23)–(24) does not necessarily possess the property (E). Let us consider the
linear space lh of all infinite sequences y = {yi}i∈Z such that

‖y‖h =

∞∑

i=−∞

|yi|
h|i|

< ∞,

where h ∈ R and h > 1. It is easy to see that lh is a Banach space with the
norm ‖ · ‖h introduced above.

Since l∞(Z) ⊂ lh, it is natural to ask if a solution of (23)–(24) in l∞(Z)
has the property (E) in ‖ · ‖h, that is, if there exist β > 1 and α ∈ (0, 1)
such that ‖yn‖h ≤ βαn for all n ∈ N.

We note that if this is so, then for all i ∈ Z there exist βi = βh|i| and
αi = α such that |yi

n| ≤ βiα
n
i for all n ∈ N.

Assume that Γ ∈ L(lh) and η ∈ lh. Then there exists a unique solution
yn(η) ∈ lh of (23) with the initial condition y0 = η.

Recall that the equation (23) is said to be stable if limη→0 supn∈N yn(η)
= 0; asymptotically stable if it is stable and limn→∞ yn(η) = 0 for all η ∈ lh;
and exponentially stable if there exist β > 1 and α ∈ (0, 1) such that
‖yn(η)‖h ≤ βαn‖η‖h for all η ∈ lh and n ∈ N.

The following lemma is a result of Lyapunov type.

Lemma 2. Let η ∈ lh and yn(η) be the unique solution of (23) with

the initial condition y0 = η. Assume that {Vn}n∈N is a sequence of real

continuous functions defined on lh satisfying :

(1) there exist α, β > 0 such that α‖η‖h ≤ Vn(η) ≤ β‖η‖h for all n ∈ N

and η ∈ lh,
(2) there exists a nonnegative sequence {gn}n∈N and a positive number

Q such that 0 ≤ gn < Q for all n ∈ N,
∑∞

n=0 gn = ∞ and

Vn+1(yn+1(η)) ≤ Vn(yn(η)) − gn‖yn(η)‖h, η ∈ lh, n ∈ N.

Then the system (23) is asymptotically stable. Moreover , if gn = g for all

n ∈ N, then (23) is exponentially stable.

Proof. For simplicity, denote yn(η) by yn. We have

Vn+1(yn+1) ≤ V0(η) −
n∑

k=0

gk‖yk‖h

and
∞∑

n=0

gn‖yn‖h ≤ V0(η) < ∞.

It is clear that we cannot find M > 0 and NM ∈ N such that ‖yn‖h ≥ M
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for all n ≥ NM , because otherwise
∞∑

n=0

gn‖yn‖h ≥ M
∞∑

n=NM

gn = ∞

and we obtain a contradiction. Thus for all k ∈ N, there exists nk ∈ N such
that ‖ynk

‖h ≤ 1/k. Hence a subsequence converges to 0. On the other hand,
0 ≤ Vn+1(yn+1) ≤ Vn(yn) and so Vn(yn) is a decreasing sequence, which
converges to l ∈ R+. Since

Vnk+1(ynk+1) ≤ (β − gnk
)‖ynk

‖h,

letting k → ∞ we obtain l = 0. Letting n → ∞ in Vn(yn) ≥ α‖yn‖h we see
that ‖yn‖h → 0 as n → ∞. On the other hand, α‖yn‖h ≤ Vn(yn) ≤ V0(η)
and

lim
η→0

sup
n∈N

yn(η) ≤ lim
η→0

V0(η)

α
= 0

and the first assertion of the proposition follows.

If gn = g for all n ∈ N, then g ≤ β and

Vn+1(yn+1) ≤ Vn(yn) − g‖yn‖h ≤ γVn(yn),

where γ = max{1−g/β, 1/3}. Thus Vn(yn) ≤ γnV0(η) ≤ βγn‖η‖h and using
(1) we obtain the conclusion. The proof is complete.

Let us consider the system (8)–(9) in lh and

Example 2. Assume that (P3) holds, l > 0 and A(0) = 1, and let
a, b, c be real nonnegative numbers satisfying a + b + c = 1, c > a > 0
and

√
c −√

a ≥ 10−1. In this example, the real numbers l and L are those
introduced in (P3). We consider the linear operator Γ : lh → lh given by

(29) (Γ (y))i = [A(i)]2(cyi−1 + byi + ayi+1)

for i ∈ Z. It is clear that Γ ∈ L(lh) and Γ (K) ⊂ K. We also introduce the
mappings M, m : (1,∞) → R+ defined by

M(h) =
1

ah + c/h + b + 10−2
, m(h) =

1

ch + a/h + b + 10−2
.

Assume that there exists h > 1 such that

M ≤ M(h), m ≤ m(h) and
h − 1

h
(a + c) > 10−2,

where m = supi∈Z, i<0[A(i)]2 and M = sup i∈Z, i>0[A(i)]2. We will prove that
(23) is exponentially stable in ‖ · ‖h.

We consider the bounded linear operator C : lh → lh defined by (Cy)i =
[1/A(i)]2yi for i ∈ Z. The function V : lh → R+ defined by

V (y) = ‖Cy‖h, y ∈ lh,
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is continuous and the sequence {Vi = V }i∈N satisfies condition (1) of Lem-
ma 2, where α=1/L2 and β=1/l2. Furthermore, setting σn

+ =
∑∞

i=1 |yi
n|/hi

and σn
− =

∑−1
i=−∞ |yi

n|/h|i|, we get

‖V (yn+1)‖h ≤
(

ah +
c

h
+ b

)
σn

+ +

(
a + c

h
+ b

)
|y0

n| +
(

ch +
a

h
+ b

)
σn
−

≤ M

[(
ah +

c

h
+ b

)
+ 10−2

]
σn

+

M

+m

[
ch +

a

h
+ b + 10−2

]
σn
−

m
+ |y0

n| − 10−2(σn
+ + σn

− + |y0
n|)

≤
∞∑

i=1

1

[A(i)]2
|yi

n|
hi

+
−1∑

i=−∞

1

[A(i)]2
|yi

n|
h|i| + |y0

n| − 10−2‖yn‖h

= ‖V (yn)‖h − 10−2‖yn‖h.

Thus condition (2) of Lemma 2 is satisfied with gn = 10−2 for n ∈ N. Then
‖yn‖h ≤ (L/l)2γn, where γ = max{1 − l2/100, 1/3}. The proof is complete.

Now we assume that the stochastic equation (2)–(3) is the saving equa-
tion of a sum x deposited into a bank account, (P2) holds and i0 = 0. Then
(8)–(9) is the deterministic system associated with the mean square stability
problem of (2)–(3). We note that (8) can be written as (23) with Γ ∈ L(lh)
defined by (29). As a numerical example we consider the situation where
c = 0.8, b = 0.1, a = 0.1, A(0) = 1, L2 = 1.04 and l2 = 0.86. Let us adopt
the notation introduced in the above example. The graphs of the functions
M(·), m(·) defined above are depicted below.

We deduce from the above example that if there exists h > 1 such that
M ≤ M(h), m ≤ m(h) and (h − 1)(a + c)/h > 10−2, then the system
(8) is exponentially stable. For example if h = 1.2, then M(h) = 1.1152,
m(h) = 0.86705 and (a + c)(h − 1)/h = 0.15 > 10−2. Thus if M ≤ 1.115
and m ≤ 0.867, then yi

n ≤ 10.4
8.6 (0.991)n(1.2)i for all i ∈ Z and n ∈ N. Thus

the system is exponentially stable.
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Hence, E[X(n, 0)]2 = y0
n ≤ 10.4

8.6 (0.991)n and we deduce that, under the
above hypotheses, there is a good chance to loose 0.025 of the original sum
in 25 units of time (for example a unit could be a month).

6. Stability criteria for the stochastic system. Throughout this
section we will assume that (P3) holds. Consider the systems (8)–(9) and
(14)–(15) in the Banach space l∞(Z). We see that (8) can be written as

(30) yn+1 = Γ2(yn)

where Γ2 : l∞(Z) → l∞(Z) is defined by

(Γ2(y))i = [A(i)]2
i+m0∑

j=i−m0

qijy
j , i ∈ Z.

It is a simple exercise to see that Γ2 ∈ L(l∞(Z)) (since ‖Γ2‖ ≤ max{l2, L2}).
Analogously, (14) can be written as

yn+1 = Γ1(yn)

where Γ1 ∈ L(l∞(Z)) is defined by

(Γ1(y))i = |A(i)|
i+m0∑

j=i−m0

qijy
j, i ∈ Z, ‖Γ1‖ = max{|l|, |L|}.

It is easy to verify that Γp(K) ⊂ K, p = 1, 2, where K is the cone of all
nonnegative elements of l∞(Z). If we define Γ1, Γ2 on lh we see that Γ1, Γ2 ∈
L(lh).

Theorem 5. Assume that (P1) and (P3) hold. If r(Γp) < 1 then the

system (2) is p-mean uniformly exponentially stable for p = 1, 2. (Here the

spectral radius is computed with respect to the space L(l∞(Z)).)

Proof. Assume that r(Γ2) < 1. Using Theorem 3 and Remark 3(a), we
deduce that there exist β > 1 and α ∈ (0, 1) such that yi

n ≤ βαn for all
i ∈ Z. Then

∑∞
i=−∞ P k

i yi
n ≤ βαn for all n ≥ k ≥ 0 and the conclusion

follows by Corollary 1(a).

Assume that r(Γ1) < 1. Reasoning as above we deduce that there exist
β > 1 and α ∈ (0, 1) such that z̃i

n ≤ βαn for all i ∈ Z. Using Remark 1(b)
we deduce the conclusion.

The following proposition is a direct consequence of Theorems 2, 4 and
Remarks 1(b), 3(c) and offers necessary conditions for the exponential in-
stability of the stochastic equation (2).

Proposition 3. Assume that (P2) and (P3) hold. If (2) is p-mean

exponentially instable then r(Γp) > 1, p = 1, 2.
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Before we state the next result, note that

(Γ2(y))i = [A(i)]2
i+m0∑

j=i−m0

qijy
j ≥ [A(i)]2qiiy

i = qii(Γ2(φ)y)i

and analogously we can prove that

(Γ1(y))i ≥ qii(Γ1(φ)y)i.

Let us replace Γ with Γp, p = 1, 2, in (28). We obtain the following
formulas for γp:

γ2 = inf
n∈N∗, i∈Z

∑i+m0

j=i−m0
qij [A(j)]2n

[A(i)]2n
, γ1 = inf

n∈N∗, i∈Z

∑i+m0

j=i−m0
qij |A(j)|n

|A(i)|n .

Theorem 6. Assume that (P1), (P3) hold , infi∈Z |A(i)| > 0 and there

exists δ > 0 such that qii ≥ δ.

(i) If there exists s > 1 such that γp[A(i)]2 ≥ s for all i ∈ Z, then the

system (2) is p-uniformly exponentially instable, p = 1, 2.
(ii) In addition, if (P2) holds, abc > 0 and γp[A(i0)]

2 > 1, then the

system (2) is p-mean uniformly exponentially instable, p = 1, 2.

Proof. We only prove the statements for p = 2 because the proof for
p = 1 is similar.

(i) Using Proposition 2 we deduce that yi
n ≥ sn for all i ∈ Z. Since∑∞

i=−∞ P k
i yi

n ≥ sn, the conclusion follows by Corollary 1(b).
(ii) The conclusion follows by Proposition 2 and Theorem 2(b).

Example 3. Assume that (P2) holds, i0 = 0 and abc > 0, b + a > 1/2.
We write [A(i)]2 =ci and we also assume that ci =1/2 for all i<0, and ci =2
for i ∈ N. Then Γ2 : l∞(Z) → l∞(Z) and (Γ2(y))i = ci(cy

i−1 + byi + ayi+1)
for i ∈ Z. Since

(Γ ((Γ (φ))[n]))i

((Γ (φ))i)n+1
=





1, |i| > 1 and i = 1,

c + b + a(4n), i = −1,

c(1/4n) + b + a, i = 0,

and γ2 = b + a, and since γ2[A(0)]2 = 2(a + b) > 1, we use statement (ii) of
the above theorem to deduce that the system (2) is mean square uniformly
exponentially instable. Moreover since y0

n ≥ [2(a + b)]n for all n ∈ N, we
deduce that yn has the property (IE) and consequently r(Γ2) > 1.

Proposition 4. Assume that (P3) holds.

(a) If (P1) holds and there exist M0 > 0 and h > 1 such that P 0
i h|i| ≤

M0 for all i ∈ Z, and limn→∞ ‖yn‖h = 0, then for any k ∈ N,

lim
n→∞

E[X(n, k)]2 = 0.
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(b) If (P1) is satisfied and there exist M0 > 0 and h > 1 such that

P 0
i h|i| ≤ M0 for all i ∈ Z and the system (30) is exponentially stable

in lh, then the system (2) is mean square exponentially stable.

(c) If (P2) holds and there exists h > 1 such that the system (30) is

exponentially stable in lh, then the system (2) is mean square expo-

nentially stable.

Proof. (a) Using the hypotheses we see that P 0
i ≤ (1/hi)M0 and P 0

i ≤
hiM0 for all i ∈ Z. Now, we apply Theorem 4.4 in [2] to deduce that P k

i ≤
M0(1/h)i(ah + b + c/h)k and P k

i ≤ M0h
i(a/h + b + ch)k for all i ∈ Z and

k ∈ N. Hence P k
i h|i| ≤ Mk, where

Mk = M0 max{(ah + b + c/h)k, (a/h + b + ch)k}.
We further note that for all n, k ∈ N with n > k,

E[X(n, k)]2 =
∞∑

i=−∞

P k
i h|i| yi

n−k

h|i|
≤ Mk

∞∑

i=−∞

yi
n−k

h|i|
= Mk‖yn−k‖h.

It follows that limn→∞ E[X(n, k)]2 = 0 and our first assertion is proved.
(b) If the system (30) is exponentially stable in lh, then there exist β > 1

and α ∈ (0, 1) such that ‖yn‖h ≤ βαn for all n ∈ N. Reasoning as above we
can deduce that for all k ∈ N there exists an Mk ∈ R+ such that P k

i h|i| ≤ Mk

for all i ∈ Z. Then

(31) E[X(n, k)]2 =
∞∑

i=−∞

P k
i h|i| yi

n−k

h|i|
≤ Mk‖yn−k‖h ≤ M̃kα

n−k,

where M̃k = βMk. Hence the system (2) is mean square exponentially stable.
(c) If (P2) holds, then P 0

i = δi0
i and P 0

i h|i| ≤ h|i0| for i ∈ Z. Defining

M0 = h|i0| we see that the hypotheses of statement (b) are satisfied and we
obtain the conclusion. The proof is complete.

7. Concluding remarks. We have built a simple personal saving model
when the bank offers interest based on fluctuation of national growth rate.
The results could be easily extended to the case of stochastic equations
in general separable real Hilbert spaces. We have also established connec-
tions between the stochastic stability of our model and the deterministic
stability of related partial difference equations. Thus we are able to deduce
asymptotic behavior of our stochastic model. Such asymptotic behavior can
be compared with the real situations and provide insights for the investors
to decide on their investment policies. Since we base our investigations on
random walk models, there are limitations to the predictive power of our
stochastic model. However, it is hoped that more realistic random models
can be imposed and the corresponding saving equations studied in the near
future.
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