On the mean-value property of superharmonic functions

by ROBERT DALMASSO (Grenoble)

Abstract. We complement a previous result concerning a converse of the mean-value property for smooth superharmonic functions. The case of harmonic functions was treated by Kuran and an improvement was given by Armitage and Goldstein.

Recall that a function u is *harmonic* (resp. *superharmonic*) on an open set $U \subset \mathbb{R}^n$ $(n \ge 1)$ if $u \in C^2(U)$ and $\Delta u = 0$ (resp. $\Delta u \le 0$) on U. Denote by H(U) the space of harmonic functions on U and by SH(U) the subset of $C^2(U)$ consisting of superharmonic functions on U. Notice that superharmonic functions are usually defined in a more general sense (see [5] and Remark 3).

If $A \subset \mathbb{R}^n$ is Lebesgue measurable, $L^1(A)$ denotes the space of Lebesgue integrable functions on A. If A has finite measure we denote by |A| the Lebesgue measure of A.

In [3] we proved the following theorem.

THEOREM 1. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ be a bounded open set. Suppose that there exists $x_0 \in \Omega$ such that

$$u(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx$$

for every $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$. Then Ω is a ball with center x_0 .

Theorem 1 extends a result obtained by Epstein and Schiffer [4] for harmonic functions. The final step concerning harmonic functions was achieved by Kuran [6] who proved the following theorem.

THEOREM 2. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be a connected open set of finite measure. Suppose that there exists $x_0 \in \Omega$ such that

(1)
$$u(x_0) = \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx$$

for every $u \in H(\Omega) \cap L^1(\Omega)$. Then Ω is a ball with center x_0 .

[85]

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B05.

Key words and phrases: superharmonic functions, mean-value property.

R. Dalmasso

REMARK 1. The proof of Theorem 2 given in [2] for n = 2, which extends to $n \ge 2$, shows that the connectedness assumption is superfluous.

REMARK 2. The hypothesis of Theorem 2 can be weakened to require only that (1) holds for all positive harmonic functions that are integrable over Ω : see [1].

We first give a proof of the following result.

THEOREM 3. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be an open set of finite measure. Suppose that there exists $x_0 \in \Omega$ such that

(2)
$$u(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx$$

for every $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$. Then Ω is a ball with center x_0 .

Proof. We shall show that Ω satisfies the assumptions of Theorem 2. Let $h \in H(\Omega) \cap L^1(\Omega)$. Let $y \in \mathbb{R}^n \setminus \Omega$ and $a_n \in (-n, 0)$. We define $v : \mathbb{R}^n \setminus \{y\} \to \mathbb{R}$ by

$$v(x) = -\|x - y\|^{a_n}, \quad x \in \mathbb{R}^n \setminus \{y\}.$$

We have $\Delta v < 0$ in Ω . Moreover, $v \in L^1(\Omega)$. Indeed, let B(y, r) denote the open ball of fixed radius r > 0. Clearly $v \in L^1(B(y, r))$. Since Ω has finite measure and v is bounded on $\Omega \setminus B(y, r)$, $v \in L^1(\Omega \setminus B(y, r))$ and the result follows. Now for $m \in \mathbb{N}^* = \{1, 2, 3, \ldots\}$ we set

$$u_m = h + \frac{1}{m}v.$$

Then $u_m \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ and we have

$$u_m(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} u_m(x) \, dx,$$

that is,

$$h(x_0) + \frac{1}{m}v(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} h(x) \, dx + \frac{1}{m|\Omega|} \int_{\Omega} v(x) \, dx$$

Letting $m \to +\infty$ we obtain

(3)
$$h(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} h(x) \, dx.$$

As (3) holds for every $h \in H(\Omega) \cap L^1(\Omega)$, replacing h by -h in (3) we conclude that

$$h(x_0) = \frac{1}{|\Omega|} \int_{\Omega} h(x) \, dx$$

for all $h \in H(\Omega) \cap L^1(\Omega)$. Then Theorem 2 implies that Ω is a ball centered at x_0 .

Now we have the following theorem.

THEOREM 4. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be an open set of finite measure. Suppose that, for all $y \in \partial \Omega$, there exists a sequence (y_j) in $\mathbb{R}^n \setminus \overline{\Omega}$ such that $y_j \to y$ as $j \to +\infty$. If (2) holds for every positive $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$, then Ω is a ball with center x_0 .

We shall need three lemmas.

LEMMA 1. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ be an open set of finite measure. Suppose that (2) holds for all positive $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$. Then (2) holds for all $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ that are bounded from below.

Proof. Let $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ be bounded from below. There exists $c \in \mathbb{R}$ such that u > c on Ω . Then $u - c \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ since Ω has finite measure, and u - c is positive on Ω . By hypothesis, u - c has the mean value property (2). The constant function c has the mean value property (1). Hence u satisfies (2).

LEMMA 2. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ be an open set of finite measure and let $\alpha \in (-n, 0)$.

(i) Suppose that there exists a sequence (y_j) in ℝⁿ \ Ω such that y_j → y ∈ ∂Ω as j → +∞.
(ia)

$$\lim_{j \to +\infty} \int_{\Omega} \|x - y_j\|^{\alpha} \, dx = \int_{\Omega} \|x - y\|^{\alpha} \, dx.$$

(ib) If (b_j) is a sequence in \mathbb{R}^n such that $b_j \to b$ as $j \to +\infty$, then $\lim_{j \to +\infty} \int_{\Omega} b_j \cdot (x - y_j) \|x - y_j\|^{\alpha - 1} dx = \int_{\Omega} b \cdot (x - y) \|x - y\|^{\alpha - 1} dx.$

(ii) Suppose that there exists a sequence (z_j) in $\mathbb{R}^n \setminus \overline{\Omega}$ such that $||z_j|| \to +\infty$ as $j \to +\infty$. Then

$$\lim_{j \to +\infty} \int_{\Omega} \|x - z_j\|^{\alpha} \, dx = 0.$$

Proof. (i) Since the arguments are similar, we only prove (ia). Since Ω has finite measure the function $x \mapsto ||x - y_j||^{\alpha}$ is in $L^1(\Omega)$ for every $j \in \mathbb{N}$ and we have seen in the proof of Theorem 3 that $x \mapsto ||x - y||^{\alpha}$ is also in $L^1(\Omega)$. Let r > 0 be fixed. There exists $j(r) \in \mathbb{N}$ such that $y_j \in B(y, r/3)$ for all $j \geq j(r)$. For $j \geq j(r)$ we can write

 $\int_{\Omega \cap B(y,r)} \|x-y_j\|^{\alpha} \, dx = \int_{\Omega \cap B(y_j,r/3)} \|x-y_j\|^{\alpha} \, dx + \int_{\Omega \cap B(y,r) \backslash B(y_j,r/3)} \|x-y_j\|^{\alpha} \, dx.$

We have

$$\int_{\Omega \cap B(y_j, r/3)} \|x - y_j\|^{\alpha} \, dx \le C_n r^{n+\alpha}, \qquad \int_{\Omega \cap B(y, r)} \|x - y\|^{\alpha} \, dx \le C_n r^{n+\alpha}$$

and

$$\int_{\Omega \cap B(y,r) \setminus B(y_j,r/3)} \|x - y_j\|^{\alpha} \, dx \le (r/3)^{\alpha} |\Omega \cap B(y,r) \setminus B(y_j,r/3)| \le C_n r^{n+\alpha},$$

where $C_n > 0$ is independent of j and r. On the other hand, the Lebesgue dominated convergence theorem implies that

(4)
$$\lim_{j \to +\infty} \int_{\Omega \setminus B(y,r)} \|x - y_j\|^{\alpha} dx = \int_{\Omega \setminus B(y,r)} \|x - y\|^{\alpha} dx.$$

Now let $f_j(x) = ||x - y_j||^{\alpha} - ||x - y||^{\alpha}, x \in \Omega$. For $j \ge j(r)$ we write $\left| \int_{\Omega} f_j(x) dx \right| \le \left| \int_{\Omega \cap B(y,r)} f_j(x) dx \right| + \left| \int_{\Omega \setminus B(y,r)} f_j(x) dx \right|$ $\le 3C_n r^{n+\alpha} + \left| \int_{\Omega \setminus B(y,r)} f_j(x) dx \right|.$

Let $\varepsilon > 0$. Take r > 0 such that $3C_n r^{n+\alpha} \le \varepsilon/2$. By (4) there exists $j_0 \ge j(r)$ such that

$$\int_{\Omega \setminus B(y,r)} f_j(x) \, dx \Big| \le \varepsilon/2 \quad \forall j \ge j_0,$$

and (ia) follows.

(ii) For $k \in \mathbb{N}^*$ define $\Omega_k = \Omega \setminus B(0,k)$. Let $k \in \mathbb{N}^*$ and r > 0 be fixed. We write

$$\int_{\Omega} \|x - z_j\|^{\alpha} \, dx = \int_{\Omega \cap B(0,k)} \|x - z_j\|^{\alpha} \, dx + \int_{\Omega_k} \|x - z_j\|^{\alpha} \, dx$$

We have

$$\int\limits_{\varOmega_k \backslash B(z_j,r)} \|x-z_j\|^\alpha \, dx \leq r^\alpha | \varOmega_k$$

and

$$\int_{\Omega_k \cap B(z_j, r)} \|x - z_j\|^{\alpha} \, dx \le C_n r^{n+\alpha},$$

where $C_n > 0$ is independent of j, k and r. Now let $\varepsilon > 0$. Take r > 0 such that $C_n r^{n+\alpha} \leq \varepsilon/3$. Since $|\Omega_k| \to 0$ as $k \to +\infty$, there exists $k \in \mathbb{N}$ such that $r^{\alpha} |\Omega_k| \leq \varepsilon/3$. By the Lebesgue dominated convergence theorem there exists $j_0 \in \mathbb{N}$ such that

$$\int_{\Omega \cap B(0,k)} \|x - z_j\|^{\alpha} \, dx \le \varepsilon/3 \quad \forall j \ge j_0,$$

and (ii) follows.

88

LEMMA 3. In the setting of Theorem 4 there exists a sequence (z_j) in $\mathbb{R}^n \setminus \overline{\Omega}$ such that $||z_j|| \to +\infty$ as $j \to +\infty$.

Proof. Suppose first that $\partial \Omega$ is bounded. Since Ω has finite measure, we deduce that $\mathbb{R}^n \setminus \overline{\Omega}$ is unbounded and the lemma follows. Now, if $\partial \Omega$ is unbounded, there exists a sequence (y_j) in $\partial \Omega$ such that $||y_j|| \to +\infty$. By hypothesis, for each $j \in \mathbb{N}$ there exists $z_j \in (\mathbb{R}^n \setminus \overline{\Omega}) \cap B(y_j, 1)$. Clearly $||z_j|| \to +\infty$.

Proof of Theorem 4. Since Ω has finite measure there exists a largest open ball B centered at x_0 of radius r which lies in Ω . We will show that $\Omega = B$. There exists $y \in \partial \Omega \cap \partial B$ such that $||y - x_0|| = r$. Let (y_j) in $\mathbb{R}^n \setminus \overline{\Omega}$ be such that $y_j \to y$ as $j \to +\infty$ and let (z_j) be as in Lemma 3. Define

$$h(x) = r^{n-2} (\|x - x_0\|^2 - r^2) \|x - y\|^{-n}, \quad x \in \mathbb{R}^n \setminus \{y\},$$

$$h_j(x) = \|y_j - x_0\|^{n-2} (\|x - x_0\|^2 - \|y_j - x_0\|^2) \|x - y_j\|^{-n}, \quad x \in \mathbb{R}^n \setminus \{y_j\},$$

and

$$v_j(x) = -\|x - z_j\|^{a_n}, \quad x \in \mathbb{R}^n \setminus \{z_j\},$$

where $a_n \in (-n, 0)$. Clearly $h \in H(\mathbb{R}^n \setminus \{y\})$, $h_j \in H(\mathbb{R}^n \setminus \{y_j\})$ and $\Delta v_j < 0$ in Ω . Moreover h, h_j and v_j are in $L^1(\Omega)$, $h(x_0) = -1$ and h > 0 on $\mathbb{R}^n \setminus \overline{B}$. Let $u_j = 1 + h_j + v_j$. Then $u_j \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ and u_j is bounded from below on Ω for every j. Therefore Lemma 1 implies that

(5)
$$u_j(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} u_j(x) \, dx \quad \forall j \in \mathbb{N}.$$

By Lemma 2 we can let $j \to +\infty$ in (5) to obtain

(6)
$$1 + h(x_0) \ge \frac{1}{|\Omega|} \int_{\Omega} (1 + h(x)) \, dx.$$

Since $1 + h \in H(\Omega) \cap L^1(\Omega)$ we have

(7)
$$0 = 1 + h(x_0) = \int_B (1 + h(x)) \, dx.$$

Now with the help of (6) and (7) we can write

$$\begin{split} 0 &\geq \frac{1}{|\Omega|} \int_{\Omega} (1+h(x)) \, dx \\ &= \frac{1}{|\Omega|} \int_{\Omega \setminus B} (1+h(x)) \, dx + \frac{1}{|\Omega|} \int_{B} (1+h(x)) \, dx \\ &= \frac{1}{|\Omega|} \int_{\Omega \setminus B} (1+h(x)) \, dx \geq \frac{|\Omega \setminus B|}{|\Omega|} \geq \frac{|\Omega \setminus \overline{B}|}{|\Omega|} \end{split}$$

R. Dalmasso

This implies that $|\Omega \setminus \overline{B}| = 0$. Then the open set $\Omega \setminus \overline{B}$ must be empty, hence $\Omega \subset \overline{B}$. Since Ω is open and $B \subset \Omega \subset \overline{B}$, we deduce that $\Omega = B$.

REMARK 3. The assumption in Theorem 2 imposes a certain geometric restriction on the open set Ω . We give an example that shows that this hypothesis cannot be omitted completely. Let $\Omega = B \setminus \{x\}$ where B denotes an open ball centered at the origin in \mathbb{R}^n $(n \ge 2)$ and $x \in B \setminus \{0\}$. We claim that if $u \in L^1(\Omega)$ is a positive superharmonic function on Ω , then (2) holds. Indeed such a function u has a (unique) superharmonic extension v on B (see [5, Theorem 7.7, p. 130]). Then we have

$$u(0) = v(0) \ge \frac{1}{|B|} \int_{B} v(y) \, dy = \frac{1}{|\Omega|} \int_{\Omega} u(y) \, dy.$$

In fact, using Theorem 7.7 in [5], we can take $\Omega = B \setminus Z$ where Z is a relatively closed polar subset of B such that $0 \notin Z$. For instance in \mathbb{R}^3 , Z could be a line segment (see [5, Example 4, p. 127]).

References

- D. H. Armitage and M. Goldstein, The volume mean-value property of harmonic functions, Complex Variables 13 (1990), 185–193.
- [2] R. B. Burckel, Three secrets about harmonic functions, Amer. Math. Monthly 104 (1997), 52–56.
- [3] R. Dalmasso, On the mean value property of superharmonic and subharmonic functions, Int. J. Math. Math. Sci. 2 (2006), 1–3.
- B. Epstein and M. Schiffer, On the mean-value property of harmonic functions, J. Anal. Math. 14 (1965), 109–111.
- [5] L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.
- [6] U. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311–312.

Laboratoire Jean Kuntzmann Equipe EDP Tour IRMA – BP 53 38041 Grenoble Cedex 9, France E-mail: robert.dalmasso@imag.fr

> Received 6.9.2007 and in final form 8.1.2008 (1815)

90