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On oscillation of solutions of forced nonlinear
neutral differential equations of higher order II

by N. Parhi and R. N. Rath (Berhampur)

Abstract. Sufficient conditions are obtained so that every solution of

[y(t)− p(t)y(t− τ)](n) +Q(t)G(y(t− σ)) = f(t)

where n ≥ 2, p, f ∈ C([0,∞),R), Q ∈ C([0,∞), [0,∞)), G ∈ C(R,R), τ > 0 and σ ≥ 0,
oscillates or tends to zero as t → ∞. Various ranges of p(t) are considered. In order to
accommodate sublinear cases, it is assumed that

� ∞
0
Q(t) dt =∞. Through examples it is

shown that if the condition on Q is weakened, then there are sublinear equations whose
solutions tend to ±∞ as t→∞.

1. Introduction. In this paper, we study oscillatory and asymptotic
behaviour of solutions of

(1) [y(t)− p(t)y(t− τ)](n) +Q(t)G(y(t− σ)) = f(t),

where n ≥ 2, p, f ∈ C([0,∞),R), Q ∈ C([0,∞), [0,∞)), G ∈ C(R,R), τ > 0
and σ ≥ 0. In [5], most of the results hold for G satisfying

lim inf
|u|→∞

G(u)/u > λ > 0.

We remove this restriction on G in the present work. In most of our results
here we assume

(H1)
∞�

0

Q(t) dt =∞.

The technique employed in this paper is motivated by Lemma 2.1 (see
Section 2). The results hold true for homogeneous equations associated
with (1).

By a solution of (1) we mean a real-valued continuous function y on
[Ty−%,∞) for some Ty ≥ 0, where % = max{τ, σ}, such that y(t)−p(t)y(t−τ)
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is n-times continuously differentiable and (1) is satisfied for t ∈ [Ty,∞).
A solution of (1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is called nonoscillatory .

2. Main results. The following assumptions are needed below:

(H2) G is nondecreasing and uG(u) > 0 for u 6= 0.
(H3) There exists F ∈ Cn([0,∞),R) such that limt→∞ F (t) = 0 and

F (n)(t) = f(t).
(H4) For u > 0 and v > 0, there exists α > 0 such that G(u) + G(v) ≥

αG(u+ v).
(H̃4) For x < 0 and y < 0 there exists β > 0 such that G(x) + G(y) ≤

βG(x+ y).
(H5) G(uv) = G(u)G(v).
(H6)

� ∞
τ
Q∗(t) dt =∞, where Q∗(t) = min{Q(t), Q(t− τ)}.

Further, p(t) satisfies one of the following conditions:

(A1) 0 ≤ p(t) ≤ p1 < 1,
(A2) −1 < −p2 ≤ p(t) ≤ 0,
(A3) −p3 ≤ p(t) ≤ 0,
(A4) p(t) changes sign with −1 < −p4 ≤ p(t) ≤ p5 < 1 such that p4 + p5

< 1, where p4 > 0 and p5 > 0,
(A5) 1 ≤ p(t) ≤ p6,
(A6) 0 ≤ p(t) ≤ p7.

Remark 1. The prototype of a function G satisfying (H1)–(H̃4) is G(u)
= |u|γ sgnu, γ > 0 (see [4, p. 292]). Note that (H2) and (H5) imply that
G(−u) = −G(u). Further, (H4) and G(−u) = −G(u) imply (H̃4).

We need the following lemma.

Lemma 2.1 ([3, p. 19]). Let F,G, p ∈ C([t0,∞),R), t0 ≥ 0, be such
that F (t) = G(t) − p(t)G(t − τ), t ≥ t0 + %, τ ≥ 0, G(t) 6= 0 for t ≥ t0,
lim inft→∞G(t) = 0 if G(t) > 0 or lim supt→∞G(t) = 0 if G(t) < 0, and
limt→∞ F (t) = L exists. If p(t) satisfies (Ai), i = 1, 2, 5, 6, then L = 0.

Theorem 2.2. Let (H1), (H2) and (H3) hold. If p(t) satisfies either (A1)
or (A2), then every solution of (1) oscillates or tends to zero as t→∞.

Proof. Let y(t) be a nonoscillatory solution of (1). Then y(t) > 0 or
y(t) < 0 for t ≥ T0 > Ty ≥ 0. Let y(t) > 0 for t ≥ T0. For t ≥ T1 > T0 + %,
we set

(2) z(t) = y(t)− p(t)y(t− τ), w(t) = z(t)− F (t).

From (1) it follows that

(3) w(n)(t) = −Q(t)G(y(t− σ)) ≤ 0



Oscillation of solutions of nonlinear neutral differential equations 103

for t ≥ T1. Hence, for large t, each of w,w′, w′′, . . . , w(n−1) is monotonic and
of constant sign.

We claim that y(t) is bounded. If not, then there exists a strictly increas-
ing sequence {tn} ⊂ [T4,∞) satisfying

(4) lim
n→∞

tn =∞, lim
n→∞

y(tn) =∞, y(tn) = max{y(t) : t ∈ [T1, tn]}.

From (2) we obtain

(5) w(tn) = y(tn)− p(tn)y(tn − τ)− F (tn).

Assume (A1) holds. Then from (5) we get w(tn) > (1− p1)y(tn)−F (tn)
for n large enough such that tn − τ > T1. Thus limn→∞ w(tn) = ∞. Con-
sequently, w(t) > 0 and w′(t) > 0, t ≥ T2 > T1. From (3) it follows that
w(n−1)(t) > 0, t ≥ T3 > T2. On the other hand, for 0 < ε < w(T3), |F (t)| < ε
for t ≥ T4 > T3. Hence, for t ≥ T4, w(t) < y(t) − F (t) < y(t) + ε, which
implies that 0 < w(T3)−ε < w(t)−ε < y(t). Setting u(t) = w(t)−ε, t ≥ T4,
we obtain 0 < u(t) < y(t), u′(t) = w′(t) > 0, u(n−1)(t) = w(n−1)(t) > 0 and
u(n)(t) = w(n)(t) = −Q(t)G(y(t − σ)). Integrating from T5 to t (T4 + σ <
T5 < t) and using (H2) we obtain

u(n−1)(t) = u(n−1)(T5)−
t�

T5

Q(s)G(y(s− σ)) ds

< u(n−1)(T5)−G(u(T5 − σ))
t�

T5

Q(s) ds.

Hence u(n−1)(t) < 0 for large t by (H1), contradicting u(n−1)(t) > 0 for
t ≥ T4. If (A2) is satisfied, then from (5) we get w(tn) ≥ y(tn) − F (tn).
Hence limn→∞ w(tn) = ∞. Thus w(t) > 0 and w′(t) > 0 for t ≥ T2 > T1.
Consequently, from (3) it follows that w(n−1)(t) > 0 for t ≥ T3 > T2. Since
w(t) is increasing, we have, for t > T3 + τ ,

(1− p2)w(t) ≤ w(t) + p(t)w(t− τ)(6)

= y(t)− F (t)− p(t)p(t− τ)y(t− 2τ)− p(t)F (t− τ)

≤ y(t)− F (t)− p(t)F (t− τ).

For 0 < ε < (1 − p2)w(T3), there exists T4 > T3 such that |F (t)| < ε/2,
t ≥ T4. From (6) it follows that

(1− p2)w(T3) < (1− p2)w(t) ≤ y(t) + ε/2− p(t)ε/2 < y(t) + ε

for t > T4 + τ because w(t) is increasing and −p(t) < 1. Setting u(t) =
(1−p2)w(t)−ε for t > T4 +τ , we obtain 0 < (1−p2)w(T3)−ε < u(t) < y(t),
u′(t) = (1− p2)w′(t) > 0, u(n−1)(t) = (1− p2)w(n−1)(t) > 0 and

(7) u(n)(t) = (1− p2)w(n)(t) = −(1− p2)Q(t)G(y(t− σ)).
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Integrating (7) from T5 to t (T4 + 2% < T5 < t) we obtain

u(n−1)(t) < u(n−1)(T5)− (1− p2)
t�

T5

Q(s)G(u(s− σ)) ds

< u(n−1)(T5)− (1− p2)G(u(T5 − σ))
t�

T5

Q(s) ds,

because u is increasing. Hence u(n−1)(t) < 0 for large t, due to (H1), a
contradiction.

Thus y(t) is bounded. Consequently, whether p(t) satisfies (A1) or (A2),
w(t) is bounded and hence

(8) (−1)n+kw(k)(t) < 0, k = 1, . . . , n− 1,

for t ≥ T6 > T1. If lim inft→∞ y(t) = α > 0, then y(t) > β > 0 for t ≥ T7

> T6. Hence from (3) we get

w(n−1)(t) < w(n−1)(T7 + σ)−G(β)
t�

T7+σ

Q(s) ds.

Thus, for large t, w(n−1)(t) < 0 by (H1), contrary to (8). We conclude that
lim inft→∞ y(t) = 0.

Since w(t) is bounded, limt→∞ w(t) exists due to (8) whether n is odd or
even. Hence limt→∞ z(t) exists. Lemma 2.1 applied to (2) yields limt→∞ z(t)
= 0.

If (A1) holds then for t ≥ T1, z(t) ≥ y(t)−p1y(t−τ) implies y(t) ≤ z(t)+
p1y(t − τ). Hence lim supt→∞ y(t) ≤ limt→∞ z(t) + p1 lim supt→∞ y(t − τ),
that is, (1− p1) lim supt→∞ y(t) ≤ 0. Consequently, limt→∞ y(t) = 0.

If (A2) holds then y(t) ≤ z(t) for t ≥ T1. Hence limt→∞ y(t) = 0. If
y(t) < 0 for t ≥ t0, then we set x(t) = −y(t) for t ≥ t0 to obtain

[x(t)− p(t)x(t− τ)](n) +Q(t)G̃(x(t− σ)) = f̃(t),

where f̃(t) = −f(t) and G̃(u) = −G(−u). If F̃ (t) = −F (t), then (H2) and
(H3) are satisfied for G̃ and F̃ respectively. Hence limt→∞ x(t) = 0, that is,
limt→∞ y(t) = 0. Thus the theorem is proved.

As a consequence of Theorem 2.2 we get the following.

Corollary 2.3. Under the assumptions of Theorem 2.2, every nonos-
cillatory solution of (1) tends to zero as t→∞ and hence every unbounded
solution of (1) oscillates.

Remark 2. Theorem 2.2 remains true if f(t) ≡ 0.

For sublinear G, that is, G satisfying
� ±c
0 du/G(u) < ∞, c > 0, or

lim inf|u|→0 G(u)/u > µ > 0, condition (H1) cannot be relaxed e.g. to
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� ∞
0 tn−1Q(t) dt = ∞ used in [5]. This follows from the example given be-

low.

Example. Consider

(9) [y(t)− py(t− 1)]′′ + 3
8 (t− 1)−1/2(t−3/2 − p(t− 1)−3/2)y1/3(t− 1) = 0

with either 0 < p < 1/2 and t ≥ t0 > max{2, (1 − (2p)2/3)−1}, or −1 < p
< 0 and t > t0 > 2. In the first case (H1) fails because from the inequality

Q(t) = 3
8 [t−3/2(t− 1)−1/2 − p(t− 1)−2] < 3

8 [t−3/2 − p(t− 1)−2]

it follows that
� ∞
t0
Q(t) dt <∞. However,

Q(t) >
3p
8

[2(t− 1)−2 − (t− 1)−2] =
3p
8

(t− 1)−2

implies that
t�

t0

sQ(s) ds >
3p
8

t�

t0

s(s− 1)−2 ds > ln[(t− 1)/(t0 − 1)].

Hence
� ∞
t0
Q(t) dt = ∞. Similarly in the second case

� ∞
t0
Q(t) dt < ∞ and

� t
t0
sQ(s) ds > 3

8

� t
t0
ds/s implies that

� ∞
t0
tQ(t) dt = ∞. In both cases, (9)

admits a solution y(t) = t3/2 which is nonoscillatory and unbounded.

In the following theorem, p(t) is allowed to change sign.

Theorem 2.4. Let (H1), (H2) and (H3) hold. Let p(t) be τ -periodic and
(A4) be satisfied. Then every solution of (1) oscillates or tends to zero as
t→∞.

Proof. Let y(t) be a nonoscillatory solution of (1). Proceeding as in the
proof of Theorem 2.2 we conclude that there is a sequence {tn} satisfying (4).
Then (5) and (A4) yield

w(tn) ≥ y(tn)− p5y(tn − τ)F (tn) ≥ (1− p5)y(tn)− F (tn).

Hence limn→∞ w(tn) = ∞. Thus w(t) > 0 and w′(t) > 0 for t ≥ T2 > T1.
From (3) it follows that w(n−1)(t) > 0 for t ≥ T3 > T2. Since w(t) is
increasing and positive and p(t) = p(t− τ), we obtain

(1− p4)w(t) < w(t)− p4w(t− τ) < w(t) + p(t)w(t− τ)

= y(t)− F (t)− p(t)p(t− τ)y(t− 2τ)− p(t)F (t− τ)

= y(t)− F (t)− p2(t)y(t− 2τ)− p(t)F (t− τ)

< y(t)− F (t)− p(t)F (t− τ)

for t ≥ T4 > T3 + %. Then proceeding as in the proof of Theorem 2.2 we
arrive at a contradiction. Hence y(t) is bounded. Consequently, limt→∞ z(t)
exists. Applying the argument of the proof of Theorem 2.2, we may show
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that lim inft→∞ y(t) = 0. As Lemma 2.1 cannot be applied here to show
that lim supt→∞ y(t) = 0, we proceed as follows: observe that

lim
t→∞

z(t) = lim sup
t→∞

[y(t)− p(t)y(t− τ)] ≥ lim sup
t→∞

[y(t)− p5y(t− τ)]

≥ lim sup
t→∞

y(t) + lim inf
t→∞

[−p5y(t− τ)]

= lim sup
t→∞

y(t)− p5 lim sup
t→∞

y(t− τ)

= (1− p5) lim sup
t→∞

y(t)

and

lim
t→∞

z(t) = lim inf
t→∞

[y(t)− p(t)y(t− τ)] ≤ lim inf
t→∞

[y(t) + p4y(t− τ)]

≤ lim inf
t→∞

y(t) + lim sup
t→∞

[p4y(t− τ)] = p4 lim sup
t→∞

y(t− τ)

= p4 lim sup
t→∞

y(t),

since lim inft→∞ y(t) = 0. Combining the above inequalities we get

0 ≤ (1− p5 − p4) lim sup
t→∞

y(t) ≤ 0,

because p4 + p5 < 1. Hence limt→∞ y(t) = 0. If y(t) < 0 for t ≥ T0, we
obtain limt→∞ y(t) = 0 in a similar manner. Thus the theorem is proved.

Theorem 2.5. Suppose that (H1)–(H̃4) hold and Q is decreasing. If p(t)
≡ −1, then every solution of (1) oscillates or tends to zero as t→∞.

Proof. Proceeding as in the previous proofs we show that w(t) is mono-
tonic and hence limt→∞ w(t) = `, where −∞ ≤ ` ≤ ∞. If −∞ ≤ ` < 0
then z(t) < 0 for large t, a contradiction. If ` = 0, then z(t) > y(t) implies
that limt→∞ y(t) = 0. Suppose 0 < ` ≤ ∞. Then w(n−1)(t) > 0 for large t
and hence limt→∞ w(n−1)(t) exists and is finite. Further, z(t) > λ > 0 for
t ≥ T2 > T1. Integrating (3) from T2 to s (s > T2) and then taking the limit
as s→∞, we obtain

(10)
∞�

T2

Q(t)G(y(t− σ)) dt <∞.

On the other hand, for T3 > T2 +%,
� ∞
T3
Q(t)G(z(t−σ)) dt ≥ G(λ)

� ∞
T3
Q(t) dt

implies
� ∞
T3
Q(t)G(z(t− σ)) dt =∞ due to (H1). Hence

∞�

T3

Q(t)[G(y(t− σ)) +G(y(t− σ − τ))] dt =∞

by (H4). Consequently, using (10), we obtain
� ∞
T3
Q(t)G(y(t−σ−τ)) dt =∞,
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that is,

∞ =
∞�

T3−τ
Q(s+ τ)G(y(s− σ)) ds <

∞�

T3−τ
Q(s)G(y(s− σ)) ds <∞,

a contradiction. Hence ` = 0 is the only possibility. The proof of the theorem
is thus complete.

Theorem 2.6. Let (H2)–(H6) hold. If p(t) satisfies (A3), then every so-
lution of (1) oscillates or tends to zero as t→∞. (Observe that (H6)⇒(H1)
and it is not necessary to assume Q(t) to be decreasing in Theorem 2.6. How-
ever, if Q(t) is decreasing then (H6) and (H1) are equivalent.)

Proof. Using the notations of previous proofs, setting limt→∞ w(t) = `,
we show that −∞ ≤ ` < 0 is not possible and ` = 0 implies limt→∞ y(t) = 0.
Assume, if possible, that 0 < ` ≤ ∞. Hence z(t) > λ > 0 and w(n−1)(t) > 0
for t ≥ T2 > T1 > T0 + %. If t ≥ T3 > T2 + %, then using (H2), (H4), (H5)
and (H6) we deduce from (3) that

0 = w(n)(t) +Q(t)G(y(t− σ))

+G(−p(t− σ))[w(n)(t− τ) +Q(t− τ)G(y(t− τ − σ))]

≥ w(n)(t) +G(p3)w(n)(t− τ) + αQ∗(t)G(z(t− σ))

≥ w(n)(t) +G(p3)w(n)(t− τ) + αG(λ)Q∗(t).

Integrating the above inequality and using (H6) we get

w(n−1)(t) +G(p3)w(n−1)(t− τ) < 0

for large t, a contradiction. The case y(t) < 0 for t ≥ T0 may be dealt with
similarly. Thus the theorem is proved.

The following example shows that condition (H6) cannot be weakened
for sublinear G.

Example. Consider (9) with p(t) = −3/2 for t ≥ 2. We have

Q(t) = (t− 1)−1/2[ 3
8 t
−3/2 + 9

16 (t− 1)−3/2
]

and Q(t) is decreasing. Further, Q(t) < 15
16 (t − 1)−2 for t ≥ 2 implies

that
� ∞
2 Q(t) dt < ∞. However, tQ(t) > 3

8 t
−1/2(t − 1)−1/2 > 3/(8t), so� ∞

2 tQ(t) dt =∞. Equation (9) admits a positive unbounded solution y(t) =
t3/2.

Remark 3. In the literature there are a few papers dealing with the
case p(t) ≥ 1 (see [1, 2, 5, 6]). In the following some results in this direction
are obtained.
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Theorem 2.7. Suppose that n is odd and (H1) and (H2) hold. If p(t)
satisfies (A3) then every nonoscillatory solution of

(11) [y(t)− p(t)y(t− τ)](n) +Q(t)G(y(t− σ)) = 0

tends to +∞ or −∞ as t→∞.

Proof. Proceeding as in the proof of Theorem 2.2, we deduce that

lim
t→∞

z(n−1)(t) = λ, −∞ ≤ λ <∞.

Suppose that −∞ < λ <∞.
If lim inft→∞ y(t) > 0, then y(t) > β > 0 for t ≥ T3 > T2. Hence

∞�

T3+σ

Q(t)G(y(t− σ)) dt > G(β)
∞�

T3+σ

Q(t) dt

implies that
� ∞
T3+σ Q(t)G(y(t − σ)) dt = ∞ by (H1). On the other hand,

integrating z(n)(t)+Q(t)G(y(t−σ)) = 0, we obtain
� ∞
T3+σ Q(t)G(y(t−σ)) dt

= z(n−1)(T3 + σ)− λ <∞, a contradiction. Hence lim inft→∞ y(t) = 0.
Thus there exists a sequence {tn} ⊂ [T2,∞) such that tn → ∞ and

y(tn) → 0 as n → ∞. As z(tn) = y(tn) − p(tn)y(tn − τ) < y(tn), we have
lim supn→∞ z(tn) ≤ 0. Similarly, z(tn + τ) = y(tn + τ) − p(tn + τ)y(tn) >
−p6y(tn) implies that lim infn→∞ z(tn + τ) ≥ 0.

If z(t) > 0 for t ≥ T2, then limt→∞ z(t) = µ, where 0 ≤ µ ≤ ∞. If 0 <
µ ≤ ∞ then z(t) > a > 0 for t ≥ T4 > T2. Hence 0 ≥ lim supn→∞ z(tn) ≥
a > 0, a contradiction. Thus µ = 0.

If z(t) < 0 for t ≥ T2, then limt→∞ z(t) = µ, where −∞ ≤ µ ≤ 0. If
−∞ ≤ µ < 0, then z(t) < b < 0 for large t. Hence 0 ≤ lim infn→∞ z(tn+τ) ≤
b < 0, a contradiction. Thus µ = 0.

Consequently, (−1)n+kz(k)(t) < 0, k = 0, 1, . . . , n − 1, for large t, and
limt→∞ z(k)(t) = 0, k = 0, 1, . . . , n− 1. Since n is odd, z′(t) < 0 for large t.
Hence z(t) > 0 for t ≥ T2. From (2) we obtain y(t) > y(t − τ). Hence
lim inft→∞ y(t) > 0, a contradiction. Thus λ = −∞. This implies that
limt→∞ y(t) =∞. Thus the proof of the theorem is complete.

Remark 4 (see [5]). The conclusion of Theorem 2.7 holds for G with
lim inf|u|→∞G(u)/u > λ > 0 provided (H1) is replaced by

� ∞
0 tn−1Q(t) dt

=∞.

Corollary 2.8. Let the conditions of Theorem 2.7 be satisfied. Then
every bounded solution of (11) oscillates.

Theorem 2.9. Suppose that p(t) satisfies (A6). Let (H2) and (H3) hold.
If , for every sequence {σi} ⊂ (0,∞) such that limi→∞ σi =∞ and for every
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γ > 0 such that the intervals (σi−γ, σi+γ), i = 1, 2, . . . , are nonoverlapping ,

∞∑

i=1

σi+γ�

σi−γ
Q(t) dt =∞,

then every unbounded solution of (1) oscillates or tends to ±∞ as t → ∞,
and every bounded solution of (1) oscillates or tends to zero as t→∞.

Proof. Proceeding as in the proof of Theorem 2.7 we obtain

lim
t→∞

w(n−1)(t) = −∞ or lim
t→∞

w(n−1)(t) = λ.

If the former holds, then limt→∞ w(t) = −∞. Since w(t) > −p7y(t− τ)
− F (t), we have limt→∞ y(t) =∞.

Suppose that the latter holds. Proceeding as in the proof of Theorem 2.7
and using (H3), we have limt→∞ w(t) = 0. Hence (−1)n+kw(k)(t) < 0, k =
0, 1, . . . , n− 1, for t ≥ T2 > T1 and limt→∞ w(k)(t) = 0, k = 0, 1, . . . , n− 1.

If y(t) is unbounded, then there exists a sequence {tn} ⊂ [T2,∞) such
that tn → ∞ and y(tn) → ∞ as n → ∞. Let µ > 0. Then y(tn) > µ for
n ≥ N1 > 0. From the continuity of y it follows that there exists δn > 0
with lim infn→∞ δn > 0 such that y(t) > µ for t ∈ (tn − δn, tn + δn). Then
choosing n large enough such that δn > δ > 0 for n ≥ N > N1, we obtain

∞�

T2

Q(t)G(y(t− σ)) dt ≥
∞∑

n=N

tn+δn+σ�

tn−δn+σ

Q(t)G(y(t− σ)) dt

> G(µ)
∞∑

n=N

tn+δn+σ�

tn−δn+σ

Q(t) dt

> G(µ)
∞∑

n=N

tn+δ+σ�

tn−δ+σ
Q(t) dt.

From the hypothesis it follows that
� ∞
T2
Q(t)G(y(t− σ)) dt =∞. Integrating

(3) yields
∞�

T2

Q(t)G(y(t− σ)) dt = w(n−1)(T2) <∞,

a contradiction.
If y(t) is bounded, then we claim lim supt→∞ y(t) = 0. If not, then

lim supt→∞ y(t) = α, α > 0. Then there exists a sequence {tn} such that
y(tn) > β > 0 for large n. Proceeding as above we arrive at a contradiction.
Hence our claim holds. Consequently, limt→∞ y(t) = 0. The case y(t) < 0
for t ≥ T0 may be dealt with similarly. Thus the theorem is proved.



110 N. Parhi and R. N. Rath

Acknowledgements. The authors are grateful to the referee for vari-
ous suggestions to improve the quality of the paper.

References

[1] M. P. Chen, Z. C. Wang, J. S. Yu and B. G. Zhang, Oscillation and asymptotic
behaviour of higher order neutral differential equations, Bull. Inst. Math. Acad. Sinica
22 (1994), 203–217.

[2] Q. Chuanxi and G. Ladas, Oscillations of higher order neutral differential equations
with variable coefficients, Math. Nachr. 150 (1991), 15–24.
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Reçu par la Rédaction le 29.3.2001
Révisé le 5.11.2002 (1248)


