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On the Noether exponent

by ANNA STASICA (Krakéw and Le Bourget du Lac)

Abstract. We obtain, in a simple way, an estimate for the Noether exponent of an
ideal I without embedded components (i.e. we estimate the smallest number p such that
(rad " C I).

1. Introduction. Let k[X] be the polynomial ring of n variables over
an algebraically closed field. The Nullstellensatz guarantees that for a given
ideal I C k[X] there is a number p such that (rad I)* C I. The smallest such
w is called the Noether exponent of the ideal I and will be denoted by u;.
An estimate of this exponent was obtained by Kollar in [K]. Subsequently
several authors contributed to this problem, especially in the easier case
when the ideal I has only isolated components in its primary decomposition
(see e.g. [CP], [FPT], [JOW], [STV], [AM]).

In this note we also consider the case without embedded components. We
give a very simple method to obtain an estimate for the Noether exponent
(Theorem 7) which is sharper than the results obtained in [FPT] and [JOW].
More precisely for the ideal I = (f1,..., fx), where deg fo > ... > deg f >
deg f1 we show that

pr < max
i€{ri,...,rm}

deg f1- ... -degf;
d; ’
where rq,...,7r, are all possible codimensions of irreducible components

of the zero set of the ideal I, and d; is the minimal degree of irreducible
components of codimension 4 of the variety given by the ideal I.

We conjecture that this estimate is also valid in the general case.
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2. Preliminaries. We denote by A" the affine space of dimension n and
by k[X] = k[z1,...,z,] the polynomial ring over the algebraically closed
field k. The zero set of an ideal I is denoted by V(I). For an algebraic set
Z C A™ we consider the ideal I(Z) = {f € k[X] | fz = 0}.

Let Z1,...,Z, C A" be hypersurfaces and let V be an irreducible com-
ponent of Z1 N...N Z,.. We say that Z1,...,Z, meet properly along V or
that this intersection is proper along V if dimV = n — r. Recall

DEFINITION 1. Let Z; = {F; =0},...,Z, = {F, = 0} C A" be hyper-
surfaces meeting properly along the variety V. Then we define the index of
intersection of Zy1, ..., Z, along V to be the number

Z(Zl et Zr; V) = ek[X]p((Fl, ceey Fr)p)a

where

ek[X]p<(F1, v 7Fr)p) tn T

n!
is the Hilbert-Samuel polynomial of k[X],/(Fi,...,F};), and p = I(V) is
the ideal of the variety V.

REMARK 2. Since k[X], is a Cohen-Macaulay ring we have
i(Zy-...- Zp; V) =length(k[X],/(F1, ..., Fr)p).

See e.g. [F, Example 7.1.10, p. 123].

We will need the following facts:

THEOREM 3 (Associativity formula from [Na, (24.7)]). Let (R,m) be a
local Ting and let I be an m-primary ideal generated by a system of pa-
rameters f1,..., fn € m. Let b be the ideal generated by f1,..., fr for some
r < n, and let p; be the minimal prime ideals of b such that length(p;) = k
and dim R/p; =n —r. Then

e() = 3 e((I+ppy) - e(6R,).
i
THEOREM 4. Let @ : K" — K" be a generically finite polynomial map-
ping of geometric degree gdeg® (by geometric degree we mean the number
of points in a generic fiber). Then for each y € K™ the number of isolated
points in the fiber &1 (y) is not greater than gdeg ®.

Proof. The statement is obvious for a quasi-finite mapping. The general
case follows from the Stein factorization applied to the compactification of
®. Indeed, let I' = graph @ and let I" C P™ x k™ be its closure. Consider the
projection f : I' — k™. Due to the Stein factorization theorem there exist
a normal variety W and two morphisms, ¢ : I’ — W which has connected
fibers and u : W — k™ which is finite, such that f = uoq. Moreover, gdeg u =
gdeg @. Consequently, every fiber f~!(y) has no more than gdegu = gdeg @
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connected components. This implies that the number of isolated points in a
fiber ®~1(y) is not greater than gdeg ®. m

We have a useful characterization of the index of proper intersection:

PROPOSITION 5. Let Z; = {Fy = 0},...,Z, = {F, = 0} C A" be
hypersurfaces given by polynomials F; which meet along V' properly. Let
H;=V (o) be the hyperplane given by a linear form o forje{l,...,n—r}.
Define @ := (F1,...,Fr,a1,...,an_y). If the intersection Z1N...NZ,NH1N
...N H,_, is proper at a point Q, then

W21 ZpV)=i(Z1-...- Zp - L; Q) = po(P)
for every linear subspace L of dimension n — r which meets (\;_; Z; trans-

versely at Q. Here pg(®) denotes the multiplicity index of ¢ at Q.

Proof. We follow [No]. Set F' = {F,...,F.} and H = {a1,...,an_}.
Clearly F1,...,F, form a system of parameters of the localization k[X],,
where p is the ideal of the variety V. Since the hyperplanes H; for j €
{1,...,n —r} meet V transversely at @, it follows that {F, H} is a system
of local parameters in the ring k[X]m, and hence from the associativity
formula we get

e((F, H)) = e(((F, H) + p)/p) - e(K[X]p/(F)p)-
Since (F, H) generate the maximal ideal in the local ring k[X]n,, we get
e((F, H) +p)/p) =1 and

e(F, H) = e(k[X]p/(F)p),
which proves that i(Zy-...- Z;V)=i(Z1-...- Z, - L; Q). =

mQ

We will also need the following version of the Bézout Theorem.

THEOREM 6 (Bézout Theorem, an affine version). Let Z; = {F; = 0},
oy Zp = {F, = 0} C A™ be hypersurfaces given by polynomials F; which
meet along V1, ..., Vs properly. Then

S T
> i(Zy-... Zy;Vi)deg Vi < [ [ deg Fi.
i=1 i=1

Proof. According to the previous proposition the index of intersection
is independent of the choice of a generic point P. Take generic hyperplanes
Hj given by linear forms o (j = 1,...,n — ) and set d; := degVj for
1=1,...,s.

Clearly the intersection S := (UJ;_; Vi) N ;= H; is a finite set. Let
{Pj,... 7PU%Z,} =VinSforie{l,...,s}. Consider the map & := (F1,..., Fr,
a1,...,0an—r). Note that it is generically finite and hence for a generic fiber
&~ !(y) we have, by Theorem 4 and by the inequality of Rusek—Winiarski
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(L, p. 319)),

> up(®) =gdegd < [[deg F,
Ped—1(y) i=1

where pp(®) is the multiplicity of ¢ at P. Since there are exactly d; points
in V; NS we have

S up(®) =D ppi(P) - di,
=1

Ped—1(y)

and finally due to Proposition 5 we get

S

N i(Zy-... Zy;Vi)degVi < [[ deg Fi. w
=1 =1

3. Main result. Our main result is the following estimate.

THEOREM 7. Let I = (f1,..., frx) be an ideal generated by polynomials
[j € k[X], where deg fo > ... > deg fi, > deg fi. Assume that there is a pri-
mary decomposition I = (%, ¢; without embedded components, where g; are
pi-primary ideals. Set r; :== codim V' (¢;), and define d; := min{deg V' (g;) |
codimV(g;) =t} fort € {r1,...,rm}. Then

degfl'...-degft}.

dy

To prove this theorem we will proceed by reduction to the case where
the intersection along components of V(1) is proper. The proof will be given
in the next section.

Observe that for an ideal I without embedded components we are able
to find in this ideal a finite set F' of polynomials such that each component
of V(I) can be represented as a proper intersection of some hypersurfeces
given by polynomials which lie in the set F. In fact we have the following

< max
TS
H te{ri,...,rm} {

LEMMA 8. Let I = (f1,...,fx) be an ideal with only isolated p;-prime
components g;, say (fi,...,fx) = ity @, and define r; = codim V(g;).
Then there exists a family of polynomials

Py = fl)

F,=aifu+...+ailfy foru>2,
where a}f € k, such that for each i € {1,...,m} the intersection V(F1) N
...NV(F;,) along V(q;) is proper.

Proof. We will construct such a family inductively. Obviously for i such
that codim V' (g;) = 1 the statement is true. Assume that for all s < [ <
max{ry,..., n} we have polynomials Fy such that the intersection Wy :=
V(F1) N...N V(Fs) is proper along each component which does not lie
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in the set V(I). Moreover, suppose that if there is ¢ € {1,...,m} such
that r; = s then the hypersurfaces V(F}),...,V(Fs) meet properly along
V(gi). Consider a decomposition W;_; = I/Vll_l U...uU I/Vls_l_l1 into irreducible
components. Take points 2 | € W/, \ V(I) (for non-empty W/ ; \ V(I)).
Since not all f; for j =1,..., k vanish at 2} |, for generic aé- the intersection
W1 NV (F;) along all components of codimension [ is proper. Thus if there
is V(g;) such that r; = [ then clearly it must be contained in W;_; NV (F})
and hence V(F1), ...,V (F;) meet properly along this V(g;). Continuing this
process, in a finite number of steps we obtain a family of polynomials F},
such that for each i the intersection V(Fy) N...N V(F},) is proper along

V(gi) m

4. Estimates. In this section we give the proof of the main result, hence
we work throughout under the assumptions and notation of Theorem 7.
First, consider the rings k[X],, /I, for ¢ € {1,...,m}. Since the ideal I has
only isolated components we obtain for each ¢ an isomorphism
k[X]Pi/I = k[X]P¢<Qi)Pi =: R;.
Consider in the ring R; an increasing family of modules

M;(h) = ((qi)pi : hs) = {g € R; ’ gh® € (Qi)Pi}v
for some h € k[X] with hjy ;) = 0. We have
LEMMA 9. If s is such that
Mi(h) ... © Mi(h) = Miy(h) = ...
then h® € q;.

Proof. Take the smallest n € N such that h" € (¢;)p, and assume that
n > s. Clearly h"~~! € M! ,(h) and hence also h"~*~! € M!(h), but this
means that K"~ € (¢;),,, contrary to the minimality of n. Thus h—f = 3 for
some a € ¢; and b € rad ¢;. This means that bh® € ¢; and since the ideal g;
is primary, h® € ¢;. =

Define

si(h) := min{s | M;(h) = si+1(h)}, s; = max{s;(h) | by = 0}.

This is well defined since R; is the Artin ring. Finally define s as the maxi-
mum of s; for i € {1,...,m}. Then we have the following inequalities:
LEMMA 10. pr < s < length(R;) for i such that s; = s. Consequently,
pr < maxieqy gy {length(R;)}.
Proof. Take h such that hy ) = 0. Then h = 0 on each V; and hence

h* € g; for each i € {1,...,m} by Lemma 9. This proves the first inequality.
The second one is a consequence of the definition of the length. =
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Proof of Theorem 7. We choose polynomials F;, as in Lemma 8. Denote
by Z, the hypersurface V(F,). Since for each i = 1,..., m the intersection
Z1N...NZ,, is proper along V(g;), Remark 2 yields

length(k[X]pe/(Fy, - Fr)p) = i(Z1 - Zoi Vo).

Using the affine version of the Bézout Theorem we get
Fp-... F,, ri
(21 2 Vi) < deg I : deg I, < deg f1 : degfl‘

Clearly
length(R;) < length(k[X],,/(F1,..., Fr)p:),

hence finally due to Lemma 10 we obtain

deg f1-...-degf; .
d; '
Note that for a set-theoretic complete intersection we have at once
(see [PT))

COROLLARY 11. If an ideal I = (f1,..., fr) is a set-theoretic complete
intersection, then

< max
IS
a i€{ri,...,rm} {

deg f1 - ...-deg fr
minie{l,...,s}{deg Xi}7

pr <

where V(I) = J;_; X;.

The next corollary is a generalization of a result from [CP].

COROLLARY 12. Let f = (f1,..., fn) be a polynomial mapping such that
f71(0) is a finite, non-empty set. Set p = max{u(f) | a € f~1(0)}, where
ta(f) is the local multiplicity of the map f at the point a. Then for each
polynomial g € C[X] such that g;s-1(9) = 0, we have g" € (f1,..., fn)-

Finally let us state the following

CONJECTURE. Let I = (f1,..., fx) be an ideal generated by polynomials
[; € kK[X], where deg fo > ... > deg f > deg f1. Let ()", ¢ = I be a pri-
mary decomposition. Set r; := codim V' (¢;) and define d; := min{deg V' (g;) |
codim V' (q;) =t} fort € {r1,...,rm}. Then

deg f1-... -degf;
dy '

pr < max
te{ri,..,rm}
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