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Non-existence of some natural operators on connections

by W. M. MikuLskI (Krakéw)

Abstract. Let n,r, k be natural numbers such that n > k + 1. Non-existence of
natural operators Cfj ~~ Q(reg T}, — Kj,) and C§ ~» Q(reg T},* — K.*) over n-manifolds
is proved. Some generalizations are obtained.

0. Introduction. Let n, r and k be natural numbers such that n > k+1.
In [1], C. Ehresmann constructed functorially the fiber bundle KM =
reg Ty M/Lj of contact (k,r)-elements over an n-dimensional manifold M
and obtained the bundle functor K : M f,, — FM from the category Mf,
of n-dimensional manifolds and their embeddings into the category F.M
of fibered manifolds and their fibered maps. In [5], I. Kolar, P. W. Michor
and J. Slovék studied the problem of how a vector field X on M induces
a vector field A(X) on K] M and proved that for sufficiently large n every
natural operator A : Tirqs, ~» TKj, is a constant multiple of the complete
lifting K7,

In [6], I. Kolaf and the author investigated the naturality problem for
bundle mappings B : KM — K;M and deduced the so called rigidity
theorem for K saying that the only natural transformation B : K| — KJ,
over n-manifolds is the identity. They also studied the naturality problem for
affinors (i.e. tensor fields of type (1,1)) C: TK;M — TK[M on KM and
derived that for sufficiently large n every natural affinor C' : TK;, — T K] on
K7, over n-manifolds is a constant multiple of the identity. Moreover they
analysed how a 1-form w on M can induce a 1-form D(w) on KM and
showed that for sufficiently large n every natural operator D : TDVI P
T*Kj, is a constant multiple of the vertical lifting. Some generalizations of
the above results can be found in [8].

Similarly to (k,r)-elements, C. Ehresmann introduced the fiber bundle
KJ*M = regT;*M/Lj, of contact (k,r)-coelements over an n-dimensional
manifold M. So, we have the bundle functor K* : M f,, — FM. In [9], we
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studied for K * M the same naturality problems as for K M and proved the
same results.

In the present paper we continue the investigation of KM and K*M.

In the first part of the paper, we study the problem of whether a torsion
free linear r-order connection A : TM — J"T'M on an n-manifold M induces
a connection A(\) : T'(regTy M) — I = Lie(L}) on the principal fiber
bundle reg T M — K; M with structure group Lj.. This problem is reflected
in the concept of natural operators A : C§ ~» Q(reg T} — Kj) in the sense
of [5]. We prove that if n > k + 1, then there are no natural operators
Cy ~ Q(reg T} — K7 ) over n-manifolds. We find an assumption on a bundle
functor F' : M f,, — FM under which there are no natural operators F' ~
Q(reg T} — K},). We give an example of a bundle functor F' : M f,, — FM
(n >k +1) and a natural operator A : F' ~» Q(reg T} — KJ).

In the second part we study the problem of whether a torsion free linear
r-order connection A : TM — J"TM on an n-manifold M induces a con-
nection A(X) : T'(reg T} * M) — [}, on the principal fiber bundle reg T;*M —
K *M with structure group Lj. We prove that if n > k + 1 then there are
no natural operators Cj ~» Q(regT}]* — K] *) over n-manifolds. We find an
assumption on a bundle functor F : Mf, — FM under which there are
no natural operators F' ~» Q(regT}* — K;*). We observe that there is a
bundle functor F' : Mf, — FM with n > k + 1 and a natural operator
A F ~ QregT]* — Ki¥).

Natural operations with connections have been studied by many authors;
see e.g. [2], [4], [5], [7], etc.

From now on z',...,z" and t',...,t* are the usual coordinates on R"
and R” respectively.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of
class C*°. Maps between manifolds are assumed to be smooth.

I. Torsion free linear connections of order r» and the bundle of
contact (k,r)-elements

1. The bundle functor K, of contact (k,r)-elements. Let n and k
be natural numbers. For every n-manifold M we have the bundle T} M =
JE(R*, M) over M of so-called (k,r)-velocities on M. Every embedding ¢ :
M — N of n-manifolds induces a bundle map T}y : T/ M — T[N by
Tro(357y) = j5(p o) for v : R¥ — M. The correspondence T} : Mf, —
F M is a bundle functor of order r from the category M f,, of n-dimensional
manifolds and their embeddings into the category FM of fibered manifolds
and their fibered maps.

Every & = jiv € Lt = inv J§(R*, R¥), the Lie group of invertible r-jets
RF — RF with source and target 0 € R*, induces a natural automorphism
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€: Ty — Ty, €: T{M — T{M by E(jsy) = j5(y o ") for 5 : R — M.
This defines a group homomorphism L} — Aut(7}).

It is well known that if n > k 4+ 1 then the above homomorphism is an
isomorphism, i.e. Aut(7}) = Lj,.

Assume n > k + 1. For every n-manifold M, f,:M = reg J§(R*, M) =
{j57 | v : RF — M, rank(dg7y) = k} is an open subbundle of 7} M. Elements
of TTM are called regular (k, r) velocities on M. For every embeddlng p:
M — N of n-manifolds, Tkgo(TkM) C T,:N and we let Tkgo TkM — T,:N
be the restriction of 77} ¢. The correspondence TT Mf, — FM is a bundle
functor of order r.

For every m-manifold M, ko is invariant with respect to the action
of Lj, = Aut(T})) on T;/M. So we have (by restriction) the left action of
Lj on T M, and the quotient bundle K; M = TTM/LT over M of so-
called contact (k,r)-elements. Let 7 : K};M — M be the bundle projection.
This bundle was introduced by C. Ehresmann [1]. The quotient projection
K : T,: M — KM is a principal fiber bundle with structure group Lj,. The
right principal bundle action of L}, on TVIQ M is given by v.§ = E’l(v) for
Eeli,ve T,SM For every embedding ¢ : M — N of n-manifolds, ZN“,:@
commutes with the left action of L}, on CINZ M and we have the quotient map
Kjp: KM — K;N. Then f,: @ is a principal bundle morphism covering
K7 . The correspondence K}, : M f, — F.M is a bundle functor of order 7.

2. Principal fiber bundle x° : P' — Q° and non-existence of
GL(R")-invariant connections on P°. Let n > k+ 1. Let k° : PY — Q°
be the restriction of & : ng” — KIR" to the fibers over 0 € R™. Then °
is a principal fiber bundle (a principal subbundle of k) with structure group
L7. The right action of L on P is the restriction of the right action of L%
on f,:]R"

There is a left action a® : GL(R") x P® — P° given by a°(n,p) = Tgn(p)
for n € GL(R™), p € PY. This action covers the left action 3° : GL(R") x
Q" — QY defined by 3°(n, q) Kkn( ) for n € GL(R"), ¢ € Q°. For every
n € GL(R™) the mapping af) = a’(n,-) : P® — P?is a principal fiber bundle
isomorphism covering ﬁo ﬂo (n,): Q% — Q°.

A connection w : TP0 — 17 = Lie(L}) on P is called GL(R™)-invariant
if (a))*w = w for every n € GL(R").

PROPOSITION 1. There are no GL(R™)-invariant connections w : T P°
— 15 on PY.

Proof. Suppose w : TP — I is a GL(R")-invariant connection. Ac-
cording to the general theory of invariant connections (see Kobayashi and
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Nomizu [3]), there is a linear map A : gl(R™) — [} satisfying the following
two conditions:

(1) A(X) = X\(X) for X € Lie(J);

(2) A(ad(y)(X)) = ad(A(j))A(X) for j € J and X € gl(R™).
Here J C GL(R™) is the stabilizer of k°(00) € Q°, o9 = j5(t',...,t*,0,...,0)
€ P° and X : Lie(J) — [} is the Lie algebra homomorphism corresponding
to the group homomorphism A : J — Ly, that is, j.oo = oo. A(j) for j € J.
We recall that A(X) = wy, (X) for X € gl(R”) where X is the vector field
on P? induced by X.

We have the Lie algebra isomorphism [}, = Jj(TR")y := {j5X | X €
X (R™), Xo = 0}, where the bracket in J§(TR"™), is given by 16X, 50Y] =
Jo (1Y, X]) (see [5]).

Consider the elements

0 0
1 _ r 1 3 _ qr k+1

0 0
2 .y 1 4 _ 7 k+1
X —]0<$ %) X —Jo< +a$>

of gl(R™) C I],. Their one-parameter subgroups in GL(R™) C L are

a; = j5(x 1,...,xk, AR L L )
CL% _jO(et'rl .’13‘ 7xn)7

a? = jo(xt, ... 2k et$k+1 Pt 2,

ap = jo(zt —}—tmk'H 2.z,

Of course a?,a},a} € J, Ma?) # id, AMa}) = id, A(a}) = id and a} €
GL(R™) C L". Hence X2, X3, X*€Lie(J), X' €gl(R"), A(X?)=A(X*) =0
and A(X?) # 0.

On the other hand if ¢ = (z! + 2%+ 22, ... 2") then j = jio € J and
A(j) = id. So,

ACK) = adAO)AC) = 49X = 4 (G5 (- (+ 551 ) ) )
= AX'+ X2 - XP - XY = AXY) + AX?),
ie. A(X?) =0.

This contradiction ends the proof of Proposition 1. =

3. Linear connections of order r. A linear r-order connection on an
n-manifold M is a vector bundle morphism A : TM — J"T'M such that
7o 0 A = idpas, where wfy : J'TM — TM is the target projection (see [10]).
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REMARK 1. If M is an n-manifold we have the principal fiber bundle
P'M = inv JJ(R™, M) over M with standard group L. The right ac-
tion of L7 on P"M is given by the composition of jets. If ¢ : M — N
is an embedding of n-manifolds, then we define P"(yp) : P(M) — P(N)
by composition of jets. There is a canonical bijection between connections
w:TP"M — I on P"M and linear r-order connections A : TM — J"T'M
on M by HY = P" o (A xpridprar), where HY : TM xpy P"M — TP"M is
the horizontal lifting morphism of w, and P" : J'TM xy PPM — TP"M
is the flow morphism of P" (see [10]).

Given an n-manifold M we define C" (M) = (idp«p ®@75) " (idry) C
T*M @ J"T'M to be the subbundle in T*M ® J"T'M, where 7 : J"T'M —
T M is the target projection. It is called the bundle of linear r-order connec-
tions on M. The sections of C"(M) are exactly the linear r-order connec-
tions on M. For every embedding ¢ : M — N the mapping T*p ® J Ty :
T"M® J'TM — T*N @ J'TN sends C"(M) into C"(N) and we have (by
restriction) a fiber bundle map C"(¢) : C"(M) — C"(N). The correspon-
dence C" : M f, — FM is a bundle functor of order r + 1.

An r-order linear connection A : TM — J"TM is called torsion free
if {A(u),A\(v)} = 0 for any u,v € T, M, x € M. Here {-,-} : J'TM xp
J"TM — J"~YTM is the algebraic bracket given by

{2 X, 55Y} =5 (X, Y]
(see [10]).

By the Frobenius theorem, an r-order connection A on an n-manifold M
is torsion free iff for each = € M there is a chart ¢ near = such that (x) =0
and C"(®)(\;) = A%, where \? : TyR™ — JJTR™ is defined by \°(u) = jiu
for u € ToR™ and u is the constant vector field on R™ such that uy = u.
The coordinates @ corresponding to @ are called normal coordinates of A
at x (see [10]). Clearly, if & are another normal coordinates of A at z then
® = Ao for some A € GL(R").

Given an n-manifold M we define Cfj (M) to be the orbit in T*M & J"T' M
of A\ with respect to embeddings ¢ : R® — M, where \° € (TjR") ®
(JETR™) is as above. It is a subbundle of T*M ® J"TM and it is called
the bundle of torsion free linear r-order connections on M. The sections of
Cy(M) are exactly the torsion free linear r-order connections on M. For
every embedding ¢ : M — N the mapping T*¢o @ J' T : T*"M Q@ J'TM —
T*N ® J"TN sends C§(M) into C§(IN) and we have (by restriction) a fiber
bundle map Cfj(p) : C5(M) — C§(N). The correspondence C§j : Mf, —
FM is a bundle functor of order r + 1.

4. Non-existence of natural operators Cj ~» Q(f,: — KJ). Let
P — P be a principal fiber bundle with structure group L;, and m-dimensio-
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nal base. According to the general theory, connections TP — [}, on P can
be identified with sections of some fiber bundle QP = Q(P — P) over P,
called the bundle of connections on P. It is known that every local principal
bundle isomorphism ¥ : (P — P) — (H — H) covering ¥ : P — H induces
functorially a fiber bundle map Q¥ : QP — QH over ¥. The correspondence
Q : Pn(L}) — FM is a gauge bundle functor from the category P, (L})
of principal fiber bundles with structure group Lj, and m-dimensional bases
and their local principal bundle isomorphisms (see [5]).

According to [5] a natural operator A : C§ ~ Q(I} — KI) over n-

manifolds is a family of regular operators
A CR(CHM)) = CRpar(QUITEM — K M)

from the set of torsion free r-order linear connections on M (sections of
Cy(M)) into the set of connections on « : Ty M — KM (sections of
QT M — K;M)) for every n-manifold M such that the naturality con-
dition with respect to M f,-morphisms is satisfied. This means that for
every A € C(Cy(M)) and A € CY(CH(N)) and every M f,-morphism
¢ : M — N, if X and X are p-related, then A(X) and A()\) are QT} p-related.

The first main result of this paper is the following theorem.

THEOREM 1. Let n, k and r be natural numbers such that n > k + 1.
There are no natural operators C§ ~ Q(T} — K}.) over n-manifolds.

Proof. Suppose that A : Cj ~~ Q(Tkr — K7J) is a natural operator over
n-manifolds. We define H* : TQ? xgo P® — T P° by

H®(u,v) = HAR) (u,v)

for u € T,Q% 0 € Q°, v € P°, k°(v) = o, where HAXY) TKJR" X grgn
Tkr R"™ — Tf,: R"™ is the horizontal lifting morphism of A(A\°) and where \°
is the translation invariant section of C§j(R™) such that X‘OO = A% Here )\ is
the element from Cf(R™) as in Section 3.

Clearly, H*(u,v) € TUTV,;R" and it projects on u under Tk. Hence
H%(u,v) is (T,CTR"H R™)-vertical because u is w-vertical. Therefore, H“ (u, v)
€ TP°. Since HA®") is a horizontal lifting, so is H“. B

Let w : TP? — I} be the corresponding connection on PY. Since A’ is

GL(R™)-invariant, so is A(A°) because of the naturality od A. Hence w is
GL(R"™)-invariant.
This is a contradiction by Proposition 1. =

We have the following obvious corollaries of Theorem 1.

COROLLARY 1. Let n, k and r be natural numbers such that n >k + 1.
There are no natural operators C" ~ Q(T} — KJ,) over n-manifolds.
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COROLLARY 2. Let n, k and r be natural numbers such that n >k + 1.
There are no canonical connections w : TTy M — 1 on TT, M over n-
manifolds.

5. A generalization. Using the same method as in the proof of Theo-
rem 1 we obtain the following general fact.

THEOREM 2. Let n, k and r be natural numbers such that n > k+1. Let
F: Mf, — FM be a bundle functor such that there is a GL(R™)-invariant
element u° € FyR™. There are no natural operators A : F ~ Q(T} — K}).

Proof. In the proof of Theorem 1 we replace 2O by the translation in-

variant section f1° of FR™ such that /7[\)0 =u. =

REMARK 2. There are many natural bundles F'M satisfying the assump-
tion of Theorem 2. For example, C§(M) and C*(M) for all s, fiber products
CSH(M) X pr. .. xp Cy¥ (M), TAM for all Weil algebras A, all natural vector
bundles (QF T*M ® @ TM, T M, T{*M, ...), etc.

COROLLARY 3. Let n,k and r be natural numbers such that n > k+1.
There are no natural operators A sending a generalized connection I' on
Ty M — M (or KM — M) and a linear connection V on M to a connec-

tion A(I',V) : TTy M — 5.

Proof. Every r-order linear connection A : TM — J"T'M on M gives
rise to a generalized connection I" on T/ M — M (or KM — M) because

Ty (or K}) is of order r. Next we apply Theorem 2 and Remark 2. m

The following example shows that Theorem 1 is not true for an arbitrary
natural bundle F' instead of C{.

EXAMPLE 1. Let F = P™t' : Mf, — FM be the bundle functor
from Remark 1. Consider a connection w : TT}R" — [ on x : T/R" —
KJR". Given a section ¢ of F'M define A(p) : Tf,:]\/[ — 1 by A(o)(v) =
w(TT o~ (v)) for j5Fo = o(x), v € (TT;M),, = € M. Then A(p) is a

connection on x : T, M — K; M. In this way we obtain a natural operator
A:F~ QU] — K}).

II. Torsion free linear connections of order r and the bundle
functor of contact (k,r)-coelements

6. The bundle functor K}* of contact (k,r)-coelements. Let n and
k be natural numbers. For every n-manifold M we have the bundle 77 *M =
J"(M,RF¥)y over M of so-called (k,r)-covelocities on M. Every embedding
¢ : M — N of n-manifolds induces a bundle map T} *¢ : T*M — T[*N
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by Ti*e(iny) = Jo@ (v o @™ forv: M — R¥ 2 € M, y(z) = 0. The
correspondence TT* : Mf, — FM is a bundle functor of order r.

Every ¢ = qu/; € L;, induces a natural automorphism £ T — 17,
€: Tp"M — Ty M, defined by &(j77) = ji( o) for v : M — R*, z € M,
v(z) = 0. This defines a group homomorphism Lj, — Aut(7}*)

If n > k4 1 then the above homomorphism is an isomorphism, i.e.
Aut(T7*) = L.

Assume n > k + 1. For every n-manifold M, f,:*M =reg J"(M,RF)y =
{7y |v: M —RF x € M, vy(z) = 0, rank(d,y) = k} is an open subbundle
of T7* M. Elements of fg*M are called regular (k,r)-covelocities on M. For
every embedding ¢ : M — N of n-manifolds, T,g*cp(f,g*M) C TV,Q*N, and we
let T,: o T VM — ZN“,: *N be the restriction of T} *¢. The correspondence
Tkr *: Mf, — FM is a bundle functor of order r.

For every n-manifold M, T .*M is invariant with respect to the action of
L}, = Aut(17*) on T;* M. So we have (by restriction) the left action of L
on Tk*M and the quotient bundle K[*M = Tkr *M/Lj, over M of so called
contact (k,r)-coelements. This bundle was mtroduced in [9]. The quotient
projection k* : T,: *M — Kj;*M is a principal fiber bundle with structure
group Lj. The right principal bundle action of L} on TV,: *M is given by
v.& =& Yv) for £ € LT, v € T,:*M For every embedding ¢ : M — N of
n-manifolds, f,: *¢ commutes with the left action of L] on fkr *M and we
have the quotient map K "¢ : K;*M — K;*N. Then fg*ap is a principal
bundle morphism covering K;*p. The correspondence K* : Mf,, — FM
is a bundle functor of order r (see [9]).

7. Principal fiber bundle «*° : P** — Q*° and non-existence of
GL(R™)-invariant connections on P*O Let n > k+ 1. Let x*0: P*0 —
Q*Y be the restriction of x* : T,:*R” — K[*R"™ to the fibers over 0 € R".
Then x*0 is a principal fiber bundle (a principal subbundle of x*) with
structure group Lj. Its right action of L} on P*Y is the restriction of the
right action of L} on TIZ*R".

There is a left action a*® : GL(R") x P*? — P*Y defined by a*%(n,p) =
ka*n(p) for n € GL(R"), p € P*°. This action covers the left action 3*° :
GL(R")x Q" — Q*° given by 3(n, q) = Kin(g) for iy € GL(R™), q € Q™.
For every n € GL(R") the mapping a;’ = o~ O,y : PO — P*0is a
principal fiber bundle isomorphism Covermg 6*0 B*0(n, ) : Q0 — Q*°.

A connection w : TP*® — 7 = L(L?) on P"‘O is called GL(R"™)-invariant

if (;?)*w = w for every n € GL(R").

PROPOSITION 2. There are no GL(R™)-invariant connections w : T P*°
— 17 on P*0,
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Proof. Similar to the proof of Proposition 1. m

8. Non-existence of natural operators Cj ~~ Q(f,:* — Kj;). The
definition of natural operators Cj ~ Q(T,g * — K7*) is similar to that of
natural operators C{j ~ Q(Tk’; — KJ).

The second main result of this paper is the following theorem.

THEOREM 3. Let n, k and r be natural numbers such that n > k + 1.
There are no natural operators C§ ~» Q(T}* — K.*) over n-manifolds.

Proof. The proof is similar to that of Theorem 1. One uses Proposition 2
instead of Proposition 1. =

We have the following obvious corollaries of Theorem 3.

COROLLARY 4. Let n, k and r be natural numbers such that n >k + 1.
There are no natural operators C" ~ Q(T}* — K*) over n-manifolds.

COROLLARY 5. Let n, k and r be natural numbers such that n > k + 1.
There are no canonical connections w : TTV*M — 1 on T)*M over n-
manifolds.

9. A generalization. Using the same method as in the proof of Theo-
rem 2 we obtain the following general fact.

THEOREM 4. Let n,r,k be natural numbers such that n > k + 1. Let
F: Mf, — FM be a bundle functor such that there is a GL(R™)-invariant

element pu’ € FyR™. Then there are no natural operators A : F ~
QT — Ki*).

COROLLARY 6. Let n,r, k be natural numbers such that n > k+1. There
are no natural operators A sending a generalized connection I' on T * M —
M (or K[*M — M) and a linear connection V on M to a connection
AN =TT M — 1.

REMARK 3. Modifying Example 1 we can show that Theorem 3 is not
true for an arbitrary natural bundle F’ instead of Cf.
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