Non-existence of some natural operators on connections

by W. M. Mikulski (Kraków)

Abstract. Let n, r, k be natural numbers such that $n \geq k+1$. Non-existence of natural operators $C_0^r \leadsto Q(\operatorname{reg} T_k^r \to K_k^r)$ and $C_0^r \leadsto Q(\operatorname{reg} T_k^{r*} \to K_k^{r*})$ over n-manifolds is proved. Some generalizations are obtained.

0. Introduction. Let n, r and k be natural numbers such that $n \geq k+1$. In [1], C. Ehresmann constructed functorially the fiber bundle $K_k^r M = \operatorname{reg} T_k^r M/L_k^r$ of contact (k, r)-elements over an n-dimensional manifold M and obtained the bundle functor $K_k^r : \mathcal{M} f_n \to \mathcal{F} \mathcal{M}$ from the category $\mathcal{M} f_n$ of n-dimensional manifolds and their embeddings into the category $\mathcal{F} \mathcal{M}$ of fibered manifolds and their fibered maps. In [5], I. Kolář, P. W. Michor and J. Slovák studied the problem of how a vector field X on M induces a vector field A(X) on $K_k^r M$ and proved that for sufficiently large n every natural operator $A: T_{|\mathcal{M} f_n} \leadsto TK_k^r$ is a constant multiple of the complete lifting \mathcal{K}_k^r .

In [6], I. Kolář and the author investigated the naturality problem for bundle mappings $B:K_k^rM\to K_k^rM$ and deduced the so called rigidity theorem for K_k^r saying that the only natural transformation $B:K_k^r\to K_k^r$ over n-manifolds is the identity. They also studied the naturality problem for affinors (i.e. tensor fields of type (1,1)) $C:TK_k^rM\to TK_k^rM$ on K_k^rM and derived that for sufficiently large n every natural affinor $C:TK_k^r\to TK_k^r$ on K_k^r over n-manifolds is a constant multiple of the identity. Moreover they analysed how a 1-form ω on M can induce a 1-form $D(\omega)$ on K_k^rM and showed that for sufficiently large n every natural operator $D:T_{|\mathcal{M}f_n}^*\hookrightarrow T^*K_k^r$ is a constant multiple of the vertical lifting. Some generalizations of the above results can be found in [8].

Similarly to (k, r)-elements, C. Ehresmann introduced the fiber bundle $K_k^{r*}M = \operatorname{reg} T_k^{r*}M/L_k^r$ of contact (k, r)-coelements over an n-dimensional manifold M. So, we have the bundle functor $K_k^{r*}: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$. In [9], we

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A20.

Key words and phrases: bundle functor, natural operator, jet, connection.

studied for $K_k^{r*}M$ the same naturality problems as for K_k^rM and proved the same results.

In the present paper we continue the investigation of K_k^rM and $K_k^{r*}M$.

In the first part of the paper, we study the problem of whether a torsion free linear r-order connection $\lambda:TM\to J^rTM$ on an n-manifold M induces a connection $A(\lambda):T(\operatorname{reg} T_k^rM)\to l_k^r=\operatorname{Lie}(L_k^r)$ on the principal fiber bundle $\operatorname{reg} T_k^rM\to K_k^rM$ with structure group L_k^r . This problem is reflected in the concept of natural operators $A:C_0^r\leadsto Q(\operatorname{reg} T_k^r\to K_k^r)$ in the sense of [5]. We prove that if $n\geq k+1$, then there are no natural operators $C_0^r\leadsto Q(\operatorname{reg} T_k^r\to K_k^r)$ over n-manifolds. We find an assumption on a bundle functor $F:\mathcal{M}f_n\to\mathcal{F}\mathcal{M}$ under which there are no natural operators $F\leadsto Q(\operatorname{reg} T_k^r\to K_k^r)$. We give an example of a bundle functor $F:\mathcal{M}f_n\to\mathcal{F}\mathcal{M}$ $(n\geq k+1)$ and a natural operator $A:F\leadsto Q(\operatorname{reg} T_k^r\to K_k^r)$.

In the second part we study the problem of whether a torsion free linear r-order connection $\lambda: TM \to J^rTM$ on an n-manifold M induces a connection $A(\lambda): T(\operatorname{reg} T_k^{r*}M) \to l_k^r$ on the principal fiber bundle $\operatorname{reg} T_k^{r*}M \to K_k^{r*}M$ with structure group L_k^r . We prove that if $n \geq k+1$ then there are no natural operators $C_0^r \leadsto Q(\operatorname{reg} T_k^{r*} \to K_k^{r*})$ over n-manifolds. We find an assumption on a bundle functor $F: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ under which there are no natural operators $F \leadsto Q(\operatorname{reg} T_k^{r*} \to K_k^{r*})$. We observe that there is a bundle functor $F: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ with $n \geq k+1$ and a natural operator $A: F \leadsto Q(\operatorname{reg} T_k^{r*} \to K_k^{r*})$.

Natural operations with connections have been studied by many authors; see e.g. [2], [4], [5], [7], etc.

From now on x^1, \ldots, x^n and t^1, \ldots, t^k are the usual coordinates on \mathbb{R}^n and \mathbb{R}^k respectively.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

I. Torsion free linear connections of order r and the bundle of contact (k, r)-elements

1. The bundle functor K_k^r of contact (k,r)-elements. Let n and k be natural numbers. For every n-manifold M we have the bundle $T_k^rM = J_0^r(\mathbb{R}^k, M)$ over M of so-called (k,r)-velocities on M. Every embedding $\varphi: M \to N$ of n-manifolds induces a bundle map $T_k^r\varphi: T_k^rM \to T_k^rN$ by $T_k^r\varphi(j_0^r\gamma) = j_0^r(\varphi \circ \gamma)$ for $\gamma: \mathbb{R}^k \to M$. The correspondence $T_k^r: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ is a bundle functor of order r from the category $\mathcal{M}f_n$ of n-dimensional manifolds and their embeddings into the category $\mathcal{F}\mathcal{M}$ of fibered manifolds and their fibered maps.

Every $\xi = j_0^r \psi \in L_k^r = \text{inv } J_0^r(\mathbb{R}^k, \mathbb{R}^k)_0$, the Lie group of invertible r-jets $\mathbb{R}^k \to \mathbb{R}^k$ with source and target $0 \in \mathbb{R}^k$, induces a natural automorphism

 $\overline{\xi}: T_k^r \to T_k^r, \, \overline{\xi}: T_k^r M \to T_k^r M \text{ by } \overline{\xi}(j_0^r \gamma) = j_0^r (\gamma \circ \psi^{-1}) \text{ for } \gamma: \mathbb{R}^k \to M.$ This defines a group homomorphism $L_k^r \to \operatorname{Aut}(T_k^r)$.

It is well known that if $n \geq k+1$ then the above homomorphism is an isomorphism, i.e. $\operatorname{Aut}(T_k^r) \cong L_k^r$.

Assume $n \geq k+1$. For every n-manifold M, $\widetilde{T}_k^r M = \operatorname{reg} J_0^r(\mathbb{R}^k, M) = \{j_0^r \gamma \mid \gamma : \mathbb{R}^k \to M, \operatorname{rank}(d_0 \gamma) = k\}$ is an open subbundle of $T_k^r M$. Elements of $\widetilde{T}_k^r M$ are called regular (k,r)-velocities on M. For every embedding φ : $M \to N$ of n-manifolds, $T_k^r \varphi(\widetilde{T}_k^r M) \subset \widetilde{T}_k^r N$, and we let $\widetilde{T}_k^r \varphi : \widetilde{T}_k^r M \to \widetilde{T}_k^r N$ be the restriction of $T_k^r \varphi$. The correspondence $\widetilde{T}_k^r : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ is a bundle functor of order r.

For every n-manifold M, $\widetilde{T}_k^r M$ is invariant with respect to the action of $L_k^r = \operatorname{Aut}(T_k^r)$ on $T_k^r M$. So, we have (by restriction) the left action of L_k^r on $\widetilde{T}_k^r M$, and the quotient bundle $K_k^r M = \widetilde{T}_k^r M / L_k^r$ over M of socalled contact (k,r)-elements. Let $\pi: K_k^r M \to M$ be the bundle projection. This bundle was introduced by C. Ehresmann [1]. The quotient projection $\kappa: \widetilde{T}_k^r M \to K_k^r M$ is a principal fiber bundle with structure group L_k^r . The right principal bundle action of L_k^r on $\widetilde{T}_k^r M$ is given by $v.\xi = \overline{\xi}^{-1}(v)$ for $\xi \in L_k^r, v \in \widetilde{T}_k^r M$. For every embedding $\varphi : M \to N$ of n-manifolds, $\widetilde{T}_k^r \varphi$ commutes with the left action of L_k^r on \widetilde{T}_k^rM and we have the quotient map $K_k^r \varphi: K_k^r M \to K_k^r N$. Then $\widetilde{T}_k^r \varphi$ is a principal bundle morphism covering $K_k^r \varphi$. The correspondence $K_k^r : \mathcal{M} f_n \to \mathcal{F} \mathcal{M}$ is a bundle functor of order r.

2. Principal fiber bundle $\kappa^0: P^0 \to Q^0$ and non-existence of $\mathrm{GL}(\mathbb{R}^n)$ -invariant connections on P^0 . Let $n \geq k+1$. Let $\kappa^0: P^0 \to Q^0$ be the restriction of $\kappa: \widetilde{T}_k^r \mathbb{R}^n \to K_k^r \mathbb{R}^n$ to the fibers over $0 \in \mathbb{R}^n$. Then κ^0 is a principal fiber bundle (a principal subbundle of κ) with structure group L_k^r . The right action of L_k^r on P^0 is the restriction of the right action of L_k^r on $\widetilde{T}_k^r \mathbb{R}^n$.

There is a left action $\alpha^0: \mathrm{GL}(\mathbb{R}^n) \times P^0 \to P^0$ given by $\alpha^0(\eta, p) = \widetilde{T}_k^r \eta(p)$ for $\eta \in GL(\mathbb{R}^n)$, $p \in P^0$. This action covers the left action $\beta^0 : GL(\mathbb{R}^n) \times$ $Q^0 \to Q^0$ defined by $\beta^0(\eta,q) = K_k^r \eta(q)$ for $\eta \in GL(\mathbb{R}^n)$, $q \in Q^0$. For every $\eta \in \mathrm{GL}(\mathbb{R}^n)$ the mapping $\alpha_\eta^0 = \alpha^0(\eta,\cdot) : P^0 \to P^0$ is a principal fiber bundle isomorphism covering $\beta_\eta^0 = \beta^0(\eta,\cdot) : Q^0 \to Q^0$.

A connection $\omega : TP^0 \to l_k^r = \mathrm{Lie}(L_k^r)$ on P^0 is called $\mathrm{GL}(\mathbb{R}^n)$ -invariant

if $(\alpha_n^0)^*\omega = \omega$ for every $\eta \in GL(\mathbb{R}^n)$.

Proposition 1. There are no $GL(\mathbb{R}^n)$ -invariant connections $\omega: TP^0$ $\rightarrow l_k^r$ on P^0 .

Proof. Suppose $\omega: TP^0 \to l_n^r$ is a $\mathrm{GL}(\mathbb{R}^n)$ -invariant connection. According to the general theory of invariant connections (see Kobayashi and

Nomizu [3]), there is a linear map $\Lambda: \operatorname{gl}(\mathbb{R}^n) \to l_k^r$ satisfying the following two conditions:

- (1) $\Lambda(X) = \lambda(X)$ for $X \in \text{Lie}(J)$;
- (2) $\Lambda(\operatorname{ad}(j)(X)) = \operatorname{ad}(\lambda(j))\Lambda(X)$ for $j \in J$ and $X \in \operatorname{gl}(\mathbb{R}^n)$.

Here $J \subset GL(\mathbb{R}^n)$ is the stabilizer of $\kappa^0(\sigma_0) \in Q^0$, $\sigma_0 = j_0^r(t^1, \dots, t^k, 0, \dots, 0) \in P^0$, and $\lambda : \text{Lie}(J) \to l_k^r$ is the Lie algebra homomorphism corresponding to the group homomorphism $\lambda : J \to L_k^r$, that is, $j.\sigma_0 = \sigma_0.\lambda(j)$ for $j \in J$. We recall that $\Lambda(X) = \omega_{\sigma_0}(\widetilde{X})$ for $X \in gl(\mathbb{R}^n)$, where \widetilde{X} is the vector field on P^0 induced by X.

We have the Lie algebra isomorphism $l_n^r = J_0^r(T\mathbb{R}^n)_0 := \{j_0^r X \mid X \in \mathcal{X}(\mathbb{R}^n), X_0 = 0\}$, where the bracket in $J_0^r(T\mathbb{R}^n)_0$ is given by $[j_0^r X, j_0^r Y] = j_0^r([Y, X])$ (see [5]).

Consider the elements

$$X^{1} = j_{0}^{r} \left(x^{1} \frac{\partial}{\partial x^{k+1}} \right), \quad X^{3} = j_{0}^{r} \left(x^{k+1} \frac{\partial}{\partial x^{k+1}} \right),$$
$$X^{2} = j_{0}^{r} \left(x^{1} \frac{\partial}{\partial x^{1}} \right), \quad X^{4} = j_{0}^{r} \left(x^{k+1} \frac{\partial}{\partial x^{1}} \right)$$

of $\mathrm{gl}(\mathbb{R}^n)\subset l_n^r$. Their one-parameter subgroups in $\mathrm{GL}(\mathbb{R}^n)\subset L_n^r$ are

$$a_t^1 = j_0^r(x^1, \dots, x^k, x^{k+1} + tx^1, x^{k+2}, \dots, x^n),$$

$$a_t^2 = j_0^r(e^t x^1, x^2, \dots, x^n),$$

$$a_t^3 = j_0^r(x^1, \dots, x^k, e^t x^{k+1}, x^{k+2}, \dots, x^n),$$

$$a_t^4 = j_0^r(x^1 + tx^{k+1}, x^2, \dots, x^n).$$

Of course $a_t^2, a_t^3, a_t^4 \in J$, $\lambda(a_t^2) \neq \operatorname{id}$, $\lambda(a_t^3) = \operatorname{id}$, $\lambda(a_t^4) = \operatorname{id}$ and $a_t^1 \in \operatorname{GL}(\mathbb{R}^n) \subset L_n^r$. Hence $X^2, X^3, X^4 \in \operatorname{Lie}(J), X^1 \in \operatorname{gl}(\mathbb{R}^n), \Lambda(X^3) = \Lambda(X^4) = 0$ and $\Lambda(X^2) \neq 0$.

On the other hand if $\varphi = (x^1 + x^{k+1}, x^2, \dots, x^n)$ then $j = j_0^r \varphi \in J$ and $\lambda(j) = \text{id}$. So,

$$\Lambda(X^{1}) = \operatorname{ad}(\lambda(j))\Lambda(X^{1}) = \Lambda(\operatorname{ad}(j)X^{1}) = \Lambda\left(j_{0}^{r}\left(\varphi_{*}\left(x^{1}\frac{\partial}{\partial x^{k+1}}\right)\right)\right)$$
$$= \Lambda(X^{1} + X^{2} - X^{3} - X^{4}) = \Lambda(X^{1}) + \Lambda(X^{2}),$$

i.e. $\Lambda(X^2) = 0$.

This contradiction ends the proof of Proposition 1. \blacksquare

3. Linear connections of order r**.** A linear r-order connection on an n-manifold M is a vector bundle morphism $\lambda : TM \to J^rTM$ such that $\pi_0^r \circ \lambda = \mathrm{id}_{TM}$, where $\pi_0^r : J^rTM \to TM$ is the target projection (see [10]).

REMARK 1. If M is an n-manifold we have the principal fiber bundle $P^rM = \text{inv } J_0^r(\mathbb{R}^n, M)$ over M with standard group L_n^r . The right action of L_n^r on P^rM is given by the composition of jets. If $\varphi: M \to N$ is an embedding of n-manifolds, then we define $P^r(\varphi): P(M) \to P(N)$ by composition of jets. There is a canonical bijection between connections $\omega: TP^rM \to l_n^r$ on P^rM and linear r-order connections $\lambda: TM \to J^rTM$ on M by $H^\omega = \mathcal{P}^r \circ (\lambda \times_M \operatorname{id}_{P^rM})$, where $H^\omega: TM \times_M P^rM \to TP^rM$ is the horizontal lifting morphism of ω , and $\mathcal{P}^r: J^rTM \times_M P^rM \to TP^rM$ is the flow morphism of P^r (see [10]).

Given an n-manifold M we define $C^r(M) = (\mathrm{id}_{T^*M} \otimes \pi_0^r)^{-1}(\mathrm{id}_{TM}) \subset T^*M \otimes J^rTM$ to be the subbundle in $T^*M \otimes J^rTM$, where $\pi_0^r: J^rTM \to TM$ is the target projection. It is called the bundle of linear r-order connections on M. The sections of $C^r(M)$ are exactly the linear r-order connections on M. For every embedding $\varphi: M \to N$ the mapping $T^*\varphi \otimes J^rT\varphi: T^*M \otimes J^rTM \to T^*N \otimes J^rTN$ sends $C^r(M)$ into $C^r(N)$ and we have (by restriction) a fiber bundle map $C^r(\varphi): C^r(M) \to C^r(N)$. The correspondence $C^r: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ is a bundle functor of order r+1.

An r-order linear connection $\lambda: TM \to J^rTM$ is called torsion free if $\{\lambda(u), \lambda(v)\} = 0$ for any $u, v \in T_xM$, $x \in M$. Here $\{\cdot, \cdot\}: J^rTM \times_M J^rTM \to J^{r-1}TM$ is the algebraic bracket given by

$${j_x^r X, j_x^r Y} = j_x^{r-1}([X, Y])$$

(see [10]).

By the Frobenius theorem, an r-order connection λ on an n-manifold M is torsion free iff for each $x \in M$ there is a chart Φ near x such that $\Phi(x) = 0$ and $C^r(\Phi)(\lambda_x) = \lambda^0$, where $\lambda^0 : T_0\mathbb{R}^n \to J_0^rT\mathbb{R}^n$ is defined by $\lambda^0(u) = j_0^r\widetilde{u}$ for $u \in T_0\mathbb{R}^n$ and \widetilde{u} is the constant vector field on \mathbb{R}^n such that $\widetilde{u}_0 = u$. The coordinates Φ corresponding to Φ are called normal coordinates of λ at x then $\overline{\Phi} = A \circ \Phi$ for some $A \in GL(\mathbb{R}^n)$.

Given an n-manifold M we define $C_0^r(M)$ to be the orbit in $T^*M\otimes J^rTM$ of λ^0 with respect to embeddings $\psi:\mathbb{R}^n\to M$, where $\lambda^0\in (T_0^*\mathbb{R}^n)\otimes (J_0^rT\mathbb{R}^n)$ is as above. It is a subbundle of $T^*M\otimes J^rTM$ and it is called the bundle of torsion free linear r-order connections on M. The sections of $C_0^r(M)$ are exactly the torsion free linear r-order connections on M. For every embedding $\varphi:M\to N$ the mapping $T^*\varphi\otimes J^rT\varphi:T^*M\otimes J^rTM\to T^*N\otimes J^rTN$ sends $C_0^r(M)$ into $C_0^r(N)$ and we have (by restriction) a fiber bundle map $C_0^r(\varphi):C_0^r(M)\to C_0^r(N)$. The correspondence $C_0^r:\mathcal{M}f_n\to\mathcal{F}\mathcal{M}$ is a bundle functor of order r+1.

4. Non-existence of natural operators $C_0^r \rightsquigarrow Q(\widetilde{T}_k^r \to K_k^r)$. Let $P \to \underline{P}$ be a principal fiber bundle with structure group L_k^r and m-dimensio-

nal base. According to the general theory, connections $TP \to l_k^r$ on P can be identified with sections of some fiber bundle $QP = Q(P \to P)$ over P, called the bundle of connections on P. It is known that every local principal bundle isomorphism $\Psi: (P \to P) \to (H \to H)$ covering $\Psi: P \to H$ induces functorially a fiber bundle map $Q\Psi: QP \to QH$ over Ψ . The correspondence $Q: \mathcal{P}_m(L_k^r) \to \mathcal{FM}$ is a gauge bundle functor from the category $\mathcal{P}_m(L_k^r)$ of principal fiber bundles with structure group L_k^r and m-dimensional bases and their local principal bundle isomorphisms (see [5]).

According to [5] a natural operator $A:C_0^r\leadsto Q(\widetilde{T}_k^r\to K_k^r)$ over n-manifolds is a family of regular operators

$$A: C_M^{\infty}(C_0^r(M)) \to C_{K_k^rM}^{\infty}(Q(\widetilde{T}_k^rM \to K_k^rM))$$

from the set of torsion free r-order linear connections on M (sections of $C_0^r(M)$) into the set of connections on $\kappa: \widetilde{T}_k^rM \to K_k^rM$ (sections of $Q(\widetilde{T}_k^rM \to K_k^rM)$) for every n-manifold M such that the naturality condition with respect to $\mathcal{M}f_n$ -morphisms is satisfied. This means that for every $\lambda \in C_M^\infty(C_0^r(M))$ and $\overline{\lambda} \in C_N^\infty(C_0^r(N))$ and every $\mathcal{M}f_n$ -morphism $\varphi: M \to N$, if $\overline{\lambda}$ and λ are φ -related, then $A(\overline{\lambda})$ and $A(\lambda)$ are $Q\widetilde{T}_k^r\varphi$ -related.

The first main result of this paper is the following theorem.

THEOREM 1. Let n, k and r be natural numbers such that $n \geq k + 1$. There are no natural operators $C_0^r \rightsquigarrow Q(\widetilde{T}_k^r \to K_k^r)$ over n-manifolds.

Proof. Suppose that $A:C_0^r \leadsto Q(\widetilde{T}_k^r \to K_k^r)$ is a natural operator over n-manifolds. We define $H^\omega:TQ^0 \times_{Q^0} P^0 \to TP^0$ by

$$H^{\omega}(u,v) = H^{A(\widetilde{\lambda}^0)}(u,v)$$

for $u \in T_{\sigma}Q^{0}$, $\sigma \in Q^{0}$, $v \in P^{0}$, $\kappa^{0}(v) = \sigma$, where $H^{A(\widetilde{\lambda}^{0})}: TK_{k}^{r}\mathbb{R}^{n} \times_{K_{k}^{r}\mathbb{R}^{n}} \widetilde{T}_{k}^{r}\mathbb{R}^{n} \to T\widetilde{T}_{k}^{r}\mathbb{R}^{n}$ is the horizontal lifting morphism of $A(\widetilde{\lambda}^{0})$ and where $\widetilde{\lambda}^{0}$ is the translation invariant section of $C_{0}^{r}(\mathbb{R}^{n})$ such that $\widetilde{\lambda}_{|0}^{0} = \lambda^{0}$. Here λ_{0} is the element from $C_{0}^{r}(\mathbb{R}^{n})$ as in Section 3.

Clearly, $H^{\omega}(u,v) \in T_v \widetilde{T}_k^r \mathbb{R}^n$ and it projects on u under $T\kappa$. Hence $H^{\omega}(u,v)$ is $(\widetilde{T}_k^r \mathbb{R}^n \to \mathbb{R}^n)$ -vertical because u is π -vertical. Therefore, $H^{\omega}(u,v) \in TP^0$. Since $H^{\Lambda(\widetilde{\lambda}^0)}$ is a horizontal lifting, so is H^{ω} .

Let $\omega: TP^0 \to l_k^r$ be the corresponding connection on P^0 . Since $\widetilde{\lambda}^0$ is $\mathrm{GL}(\mathbb{R}^n)$ -invariant, so is $\Lambda(\widetilde{\lambda}^0)$ because of the naturality od Λ . Hence ω is $\mathrm{GL}(\mathbb{R}^n)$ -invariant.

This is a contradiction by Proposition 1.

We have the following obvious corollaries of Theorem 1.

COROLLARY 1. Let n, k and r be natural numbers such that $n \ge k + 1$. There are no natural operators $C^r \leadsto Q(\widetilde{T}_k^r \to K_k^r)$ over n-manifolds. COROLLARY 2. Let n, k and r be natural numbers such that $n \geq k + 1$. There are no canonical connections $\omega : T\widetilde{T}_k^r M \to l_k^r$ on $T\widetilde{T}_k^r M$ over n-manifolds.

5. A generalization. Using the same method as in the proof of Theorem 1 we obtain the following general fact.

THEOREM 2. Let n, k and r be natural numbers such that $n \ge k+1$. Let $F: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a bundle functor such that there is a $\mathrm{GL}(\mathbb{R}^n)$ -invariant element $\mu^0 \in F_0\mathbb{R}^n$. There are no natural operators $A: F \leadsto Q(\widetilde{T}_k^r \to K_k^r)$.

Proof. In the proof of Theorem 1 we replace $\widetilde{\lambda}^0$ by the translation invariant section $\widetilde{\mu}^0$ of $F\mathbb{R}^n$ such that $\widetilde{\mu}^0_{10} = \mu^0$.

Remark 2. There are many natural bundles FM satisfying the assumption of Theorem 2. For example, $C_0^s(M)$ and $C^s(M)$ for all s, fiber products $C_0^{s_1}(M) \times_M \ldots \times_M C_0^{s_K}(M)$, T^AM for all Weil algebras A, all natural vector bundles $(\bigotimes^p T^*M \otimes \bigotimes^q TM, T_k^rM, T_k^{r*}M, \ldots)$, etc.

COROLLARY 3. Let n, k and r be natural numbers such that $n \geq k+1$. There are no natural operators Λ sending a generalized connection Γ on $\widetilde{T}_k^r M \to M$ (or $K_k^r M \to M$) and a linear connection ∇ on M to a connection $\Lambda(\Gamma, \nabla) : T\widetilde{T}_k^r M \to l_k^r$.

Proof. Every r-order linear connection $\lambda: TM \to J^rTM$ on M gives rise to a generalized connection Γ on $\widetilde{T}_k^rM \to M$ (or $K_k^rM \to M$) because \widetilde{T}_k^r (or K_k^r) is of order r. Next we apply Theorem 2 and Remark 2. \blacksquare

The following example shows that Theorem 1 is not true for an arbitrary natural bundle F instead of C_0^r .

EXAMPLE 1. Let $F = P^{r+1} : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be the bundle functor from Remark 1. Consider a connection $\omega : T\widetilde{T}_k^r\mathbb{R}^n \to l_k^r$ on $\kappa : \widetilde{T}_k^r\mathbb{R}^n \to K_k^r\mathbb{R}^n$. Given a section ϱ of FM define $A(\varrho) : T\widetilde{T}_k^rM \to l_k^r$ by $A(\varrho)(v) = \omega(T\widetilde{T}_k^r\varphi^{-1}(v))$ for $j_0^{r+1}\varphi = \varrho(x), \ v \in (T\widetilde{T}_k^rM)_x, \ x \in M$. Then $A(\varrho)$ is a connection on $\kappa : \widetilde{T}_k^rM \to K_k^rM$. In this way we obtain a natural operator $A: F \leadsto Q(\widetilde{T}_k^r \to K_k^r)$.

II. Torsion free linear connections of order r and the bundle functor of contact (k, r)-coelements

6. The bundle functor K_k^{r*} **of contact** (k,r)-coelements. Let n and k be natural numbers. For every n-manifold M we have the bundle $T_k^{r*}M = J^r(M,\mathbb{R}^k)_0$ over M of so-called (k,r)-covelocities on M. Every embedding $\varphi: M \to N$ of n-manifolds induces a bundle map $T_k^{r*}\varphi: T_k^{r*}M \to T_k^{r*}N$

by $T_k^{r*}\varphi(j_x^r\gamma)=j_{\varphi(x)}^r(\gamma\circ\varphi^{-1})$ for $\gamma:M\to\mathbb{R}^k,\ x\in M,\ \gamma(x)=0$. The correspondence $T_k^{r*}:\mathcal{M}f_n\to\mathcal{F}\mathcal{M}$ is a bundle functor of order r.

Every $\xi = j_0^r \psi \in L_k^r$ induces a natural automorphism $\overline{\xi}: T_k^{r*} \to T_k^{r*}$, $\overline{\xi}: T_k^{r*} \stackrel{\circ}{M} \to T_k^{r*} \stackrel{\circ}{M}$, defined by $\overline{\xi}(j_x^r \gamma) = j_x^r (\psi \circ \gamma)$ for $\gamma: M \to \mathbb{R}^k$, $x \in M$, $\gamma(x) = 0$. This defines a group homomorphism $L_k^r \to \operatorname{Aut}(T_k^{r*})$

If $n \geq k+1$ then the above homomorphism is an isomorphism, i.e. $\operatorname{Aut}(T_k^{r*}) \cong L_k^r$.

Assume $n \geq k+1$. For every n-manifold M, $\widetilde{T}_k^{r*}M = \operatorname{reg} J^r(M,\mathbb{R}^k)_0 =$ $\{j_x^r \gamma \mid \gamma: M \to \mathbb{R}^k, x \in M, \gamma(x) = 0, \operatorname{rank}(d_x \gamma) = k\}$ is an open subbundle of $T_k^{r*}M$. Elements of $\widetilde{T}_k^{r*}M$ are called regular (k,r)-covelocities on M. For every embedding $\varphi: M \to N$ of n-manifolds, $T_k^{r*}\varphi(\widetilde{T}_k^{r*}M) \subset \widetilde{T}_k^{r*}N$, and we let $\widetilde{T}_k^{r*}\varphi:\widetilde{T}_k^{r*}M \to \widetilde{T}_k^{r*}N$ be the restriction of $T_k^{r*}\varphi$. The correspondence $\widetilde{T}_{k}^{r*}: \mathcal{M}f_{n} \to \mathcal{F}\mathcal{M}$ is a bundle functor of order r.

For every n-manifold M, $\widetilde{T}_k^{r*}M$ is invariant with respect to the action of $L_k^r = \operatorname{Aut}(T_k^{r*})$ on $T_k^{r*}M$. So, we have (by restriction) the left action of L_k^r on $\widetilde{T}_k^{r*}M$, and the quotient bundle $K_k^{r*}M = \widetilde{T}_k^{r*}M/L_k^r$ over M of so called contact (k,r)-coelements. This bundle was introduced in [9]. The quotient projection $\kappa^*: \widetilde{T}_k^{r*}M \to K_k^{r*}M$ is a principal fiber bundle with structure group L_k^r . The right principal bundle action of L_k^r on $\widetilde{T}_k^{r*}M$ is given by $v.\xi = \overline{\xi}^{-1}(v)$ for $\xi \in L_k^r$, $v \in \widetilde{T}_k^{r*}M$. For every embedding $\varphi: M \to N$ of n-manifolds, $\widetilde{T}_k^{r*}\varphi$ commutes with the left action of L_k^r on $\widetilde{T}_k^{r*}M$ and we have the quotient map $K_k^{r*}\varphi:K_k^{r*}M\to K_k^{r*}N.$ Then $\widetilde{T}_k^{r*}\varphi$ is a principal bundle morphism covering $K_k^{r*}\varphi$. The correspondence $K_k^{r*}:\mathcal{M}f_n\to\mathcal{FM}$ is a bundle functor of order r (see [9]).

7. Principal fiber bundle $\kappa^{*0}: P^{*0} \to Q^{*0}$ and non-existence of $\mathrm{GL}(\mathbb{R}^n)$ -invariant connections on P^{*0} . Let $n \geq k+1$. Let $\kappa^{*0}: P^{*0} \to$ Q^{*0} be the restriction of $\kappa^*: \widetilde{T}_k^{r*}\mathbb{R}^n \to K_k^{r*}\mathbb{R}^n$ to the fibers over $0 \in \mathbb{R}^n$. Then κ^{*0} is a principal fiber bundle (a principal subbundle of κ^{*}) with structure group L_k^r . Its right action of L_k^r on P^{*0} is the restriction of the right action of L_k^r on $\widetilde{T}_k^{r*}\mathbb{R}^n$.

There is a left action $\alpha^{*0}: \mathrm{GL}(\mathbb{R}^n) \times P^{*0} \to P^{*0}$ defined by $\alpha^{*0}(\eta, p) =$ $\widetilde{T}_k^{r*}\eta(p)$ for $\eta\in\mathrm{GL}(\mathbb{R}^n),\ p\in P^{*0}$. This action covers the left action β^{*0} : GL(\mathbb{R}^n)× $Q^{*0} \to Q^{*0}$ given by $\beta^{*0}(\eta,q) = K_k^{r*}\eta(q)$ for $\eta \in GL(\mathbb{R}^n)$, $q \in Q^{*0}$. For every $\eta \in GL(\mathbb{R}^n)$ the mapping $\alpha_\eta^{*0} = \alpha^{*0}(\eta,\cdot) : P^{*0} \to P^{*0}$ is a principal fiber bundle isomorphism covering $\beta_\eta^{*0} = \beta^{*0}(\eta,\cdot) : Q^{*0} \to Q^{*0}$. A connection $\omega : TP^{*0} \to l_k^r = \mathcal{L}(L_k^r)$ on P^{*0} is called $GL(\mathbb{R}^n)$ -invariant

if $(\alpha_n^{*0})^*\omega = \omega$ for every $\eta \in GL(\mathbb{R}^n)$.

Proposition 2. There are no $GL(\mathbb{R}^n)$ -invariant connections $\omega: TP^{*0}$ $\rightarrow l_k^r$ on P^{*0} .

Proof. Similar to the proof of Proposition 1.

8. Non-existence of natural operators $C_0^r \rightsquigarrow Q(\widetilde{T}_k^{r*} \to K_k^r)$. The definition of natural operators $C_0^r \rightsquigarrow Q(\widetilde{T}_k^{r*} \to K_k^r)$ is similar to that of natural operators $C_0^r \rightsquigarrow Q(\widetilde{T}_k^r \to K_k^r)$.

The second main result of this paper is the following theorem.

THEOREM 3. Let n, k and r be natural numbers such that $n \geq k + 1$. There are no natural operators $C_0^r \leadsto Q(\widetilde{T}_k^{r*} \to K_k^{r*})$ over n-manifolds.

Proof. The proof is similar to that of Theorem 1. One uses Proposition 2 instead of Proposition 1. \blacksquare

We have the following obvious corollaries of Theorem 3.

COROLLARY 4. Let n, k and r be natural numbers such that $n \geq k + 1$. There are no natural operators $C^r \rightsquigarrow Q(\widetilde{T}_k^{r*} \to K_k^{r*})$ over n-manifolds.

COROLLARY 5. Let n, k and r be natural numbers such that $n \geq k + 1$. There are no canonical connections $\omega : T\widetilde{T}_k^{r*}M \to l_k^r$ on $\widetilde{T}_k^{r*}M$ over n-manifolds.

9. A generalization. Using the same method as in the proof of Theorem 2 we obtain the following general fact.

THEOREM 4. Let n, r, k be natural numbers such that $n \geq k + 1$. Let $F: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a bundle functor such that there is a $\mathrm{GL}(\mathbb{R}^n)$ -invariant element $\mu^0 \in F_0\mathbb{R}^n$. Then there are no natural operators $A: F \leadsto Q(\widetilde{T}_k^{r*} \to K_k^{r*})$.

COROLLARY 6. Let n, r, k be natural numbers such that $n \geq k+1$. There are no natural operators Λ sending a generalized connection Γ on $\widetilde{T}_k^{r*}M \to M$ (or $K_k^{r*}M \to M$) and a linear connection ∇ on M to a connection $\Lambda(\Gamma, \nabla) : T\widetilde{T}_k^{r*}M \to l_k^r$.

REMARK 3. Modifying Example 1 we can show that Theorem 3 is not true for an arbitrary natural bundle F instead of C_0^r .

References

- [1] C. Ehresmann, Introduction à la théorie des structures infinitésimales et des pseudogroupes de Lie, in: Colloque de topologie et géométrie différentielle (Strasbourg, 1952), 97–110.
- [2] J. Gancarzewicz and I. Kolář, Some gauge natural operators on linear connections, Monatsh. Math. 111 (1991), 23–33.
- [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York, 1963.

- [4] I. Kolář, Gauge natural operators transforming connections to the tangent bundle, in: The Mathematical Heritage of C. F. Gauss, World Sci., Singapore, 1991, 416–426.
- [5] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [6] I. Kolář and W. M. Mikulski, Contact elements on fibered manifolds, Czechoslovak Math. J., to appear.
- [7] —, —, Natural lifting of connections to vertical bundles, Rend. Circ. Mat. Palermo Suppl. 63 (2000), 97–102.
- [8] M. Kureš and W. M. Mikulski, Natural lifting of vector fields to bundles of Weil contact elements, Czechoslovak Math. J., to appear.
- [9] W. M. Mikulski, On the contact (k,r)-coelements, Demonstratio Math., to appear.
- [10] M. Paluszny and A. Zajtz, Foundation of the Geometry of Natural Bundles, Lecture Notes, Univ. Caracas, 1984.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Reçu par la Rédaction le 15.5.2002 (1341)