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On the Kuratowski 
onvergen
e of analyti
 setsby Maciej P. Denkowski and Rafał Pierzchała (Kraków)Abstra
t. We dis
uss some 
onditions whi
h guarantee that the Kuratowski limit ofa sequen
e of analyti
 sets is a Nash set.1. Preliminaries. Let X ⊂ C
n be a lo
ally 
losed set. Let FX denotethe family of all 
losed subsets of X. In FX we have the topology generatedby the sets

U(S, K) = {F ∈ FX : F ∩ K = ∅, F ∩ U 6= ∅ for U ∈ S},where K ⊂ X is 
ompa
t and S is a �nite family of open subsets of X. Thistopology has the following properties:(1) FX is a metrizable 
ompa
t spa
e. The 
onvergen
e in this topologyis 
alled the Kuratowski 
onvergen
e.(2) Fν → F in FX if and only if for any x ∈ F there exist xν ∈ Fνsu
h that xν → x and for every 
ompa
t subset K ⊂ X \ F we have
K ∩ Fν = ∅ for all su�
iently large ν.(3) The map FX ×FX ∋ (A, B) 7→ A ∪ B ∈ FX is 
ontinuous.(4) If Y ⊂ X is open, then the map FX ∋ F 7→ F∩Y ∈ FY is 
ontinuous.For (1) and (2), see [10, Lemmas 1 and 2℄. The remaining two propertiesfollow easily from (2).Remark 1.1. Let Ω ⊂ C

n be open. If Aν → A in FΩ and Aν are analyti
and irredu
ible, then(1) A need not be analyti
.(2) If A is analyti
, it need not be irredu
ible.Proof. Put Aν := {zpν = yqν} ⊂ C
2, where pν , qν are positive integerssu
h that gcd(pν , qν) = 1 and pν/qν →

√
2. Passing to a subsequen
e ifne
essary we may assume that Aν → A. Suppose that A is analyti
. Notethat (0, 0) /∈ IntA. Clearly, if a 
onvergent power series f(z, y) =

∑
aijz
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102 M. P. Denkowski and R. Pierz
haªavanishes on the 
urve Γ = {(t, t
√

2) ∈ R
2 : t ∈ [0, ε]}, where ε > 0, then

f ≡ 0 (be
ause the map N
2 ∋ (i, j) 7→ i+j

√
2 ∈ R is inje
tive). Sin
e Γ ⊂ A,we easily obtain a 
ontradi
tion.For the se
ond part of the remark, we put Aν := {zy = 1/ν} ⊂ C

2 and
A := {zy = 0}.Let G′

k(C
n) denote the set of all k-dimensional a�ne subspa
es of C

n (
f.[6℄). �ojasiewi
z de�nes a topology (we 
all it τ) in G′
k(C

n) in su
h a way thatit is metrizable and has the following property: for any L = z0 +
∑k

j=1 Czj ∈
G′

k(C
n) and Lν ∈ G′

k(C
n) (ν ∈ N),

Lν
τ−→ L ⇔ Lν = zν

0 +
k∑

j=1

Czν
j for some zν

j → zj (j = 0, 1, . . . , k).

On the other hand, sin
e G′
k(C

n) ⊂ FCn , we have the subspa
e topology in
G′

k(C
n) (see also [12℄). The following lemma states that these two topologies
oin
ide.Lemma 1.2. Suppose that (Lν) is a sequen
e in G′

k(C
n) and let L ∈

G′
k(C

n). Then
Lν

τ−→ L ⇔ Lν
FCn−−→ L.Proof. Assume that Lν

τ−→ L, where Lν , L ∈ G′
k(C

n). Let L = z0 +∑k
j=1 Czj . We know that Lν = zν

0 +
∑k

j=1 Czν
j for some zν

j → zj (j =
0, 1, . . . , k). Obviously, for any x ∈ L there exist xν ∈ Lν su
h that xν → x.Take now a 
ompa
t set K ⊂ C

n su
h that L ∩ K = ∅. We need to showthat for some ν0 ∈ N we have Lν ∩ K = ∅ whenever ν ≥ ν0. Suppose thatthis is not the 
ase. Passing to a subsequen
e if ne
essary we may assumethat Lν ∩ K 6= ∅ for any ν. So let yν ∈ Lν ∩ K. We have
(⋆) yν = zν

0 +

k∑

j=1

αν
j zν

jfor some αν
j ∈ C (j = 1, . . . , k). Take 1 ≤ l1 < · · · < lk ≤ n su
h that

det[π(z1), . . . , π(zk))] 6= 0, where
π : C

n ∋ (t1, . . . , tn) 7→ (tl1 , . . . , tlk) ∈ C
k.Then for ea
h ν large enough we have |det[π(zν

1 ), . . . , π(zν
k))]| ≥ M , where Mis a positive 
onstant. We 
an treat (⋆) as a system of linear equations, where

αν
j are the unknowns. By Cramer's rule applied to the equation π(yν) =

π(zν
0 ) +

∑k
j=1 αν

j π(zν
j ), all αν

j are bounded. Passing again to a subsequen
eif ne
essary we 
an assume that αν
j → αj ∈ C. This is a 
ontradi
tion, sin
e

y := z0 +
∑k

j=1 αjzj ∈ L ∩ K.
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onvergen
e of analyti
 sets 103Assume now that Lν
FCn−−→ L, where Lν , L ∈ G′

k(C
n) and L = z0 +∑k

j=1 Czj . Take zν
0 ∈ Lν su
h that zν

0 → z0, and aν
j ∈ Lν su
h that aν

j →
z0 +zj for j = 1, . . . , k. Put zν

j := aν
j −zν

0 (j = 1, . . . , k). Obviously, zν
j → zj.Moreover, zν

1 , . . . , zν
k ∈ Lν−zν

0 are linearly independent for all ν large enoughand thus Lν = zν
0 +

∑k
j=1 Czν

j .Let Ω ⊂ C
n be an open set. We denote by Ak(Ω) the set of all analyti
sets in Ω of pure dimension k (1). Sin
e Ak(Ω) ⊂ FΩ, we have the subspa
etopology in Ak(Ω). Re
all the following theorem due to Tworzewski andWiniarski.Theorem 1.3 (Tworzewski, Winiarski). Let W ∈ Ak(Ω) and V0 ∈

An−k(Ω) be su
h that V0 ∩ W ∈ A0(Ω). Then the mapping
An−k(Ω) ∋ V 7→ V ∩ W ∈ FWis 
ontinuous at V0.Proof. Cf. [10, Corollary 2℄.Corollary 1.4. Let L ∈ G′

n−k(C
n) and A ∈ Ak(U), where U ⊂ C

n isopen. Suppose that L ∩ A 
ontains (at least) p isolated points. Then
• There exists an open neighbourhood of L in G′

n−k(C
n) su
h that forany H from this neighbourhood we have

#(H ∩ A) ≥ p.

• There exists an open neighbourhood of A in Ak(U) su
h that for any
V from this neighbourhood we have

#(L ∩ V ) ≥ p.Proof. We prove only the �rst part, sin
e the proof of the se
ond is quitesimilar. Let Ω ⊂ U be open, bounded and su
h that #(L ∩ Ω ∩ A) = p.Suppose that there exist Hν ∈ G′
n−k(C

n) su
h that Hν → L and #(Hν ∩A)
< p. Obviously, Hν ∩ Ω → L ∩ Ω in FΩ. By the previous theorem, we get
Hν ∩ Ω ∩ A → L ∩ Ω ∩ A in FΩ∩A, but this is impossible.2. Degree of analyti
 set. Let V ⊂ C

n be an algebrai
 set of puredimension k. Re
all that we de�ne the degree deg V of V as the uniquenumber p su
h that #(L ∩ V ) = p for ea
h L from some open dense (2)subset of G′
n−k(C

n) (
f. [6℄).Remark 2.1. Corollary 1.4 implies that
deg V = sup{#(L ∩ V ) : L ∈ G′

n−k(C
n), #(L ∩ V ) < ∞}.

(1) We assume that ∅ is of pure dimension k for any k ∈ N.
(2) In the topology τ whi
h is equivalent by Lemma 1.2 to the topology indu
ed from

FCn .
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haªaRe
all the followingTheorem 2.2. If A is an analyti
 set of dimension k in some openset Ω ⊂ C
n, then L ∩ A is dis
rete for ea
h L from a dense subset of

Gn−k(C
n) (3).Proof. Cf. [6, p. 185℄.Assume now that Ω ⊂ C

n is an open set and let A be an analyti
 subsetof Ω. We de�ne dg(A; Ω) as follows:(1) If A is of pure dimension k, then we put
dg(A; Ω) := sup{#(L∩A) : L∈G′

n−k(C
n), L∩A is a dis
rete set} (4).(2) If A =

⋃
Al, where Al is the union of all irredu
ible 
omponents of

A of dimension l, then we put
dg(A; Ω) :=

∑

l

dg(Al; Ω) ∈ N ∪ {∞}.Remark 2.3. We have the following properties :
• If A is an analyti
 subset of Ω, then

dg(A; Ω) ≤
∑

i

dg(Ci; Ω),where A =
⋃

Ci is the de
omposition of A into irredu
ible 
omponents.
• If V ⊂ C

n is algebrai
 of pure dimension, then
dg(V ; Cn) = deg V.Proof. The �rst part is trivial. The se
ond follows immediately fromRemark 2.1.Let us add that for any analyti
 set A ⊂ C

n we have:
A is algebrai
 ⇔ dg(A; Cn) < ∞.This is a 
onsequen
e of the following two theorems. The �rst one is due toGruman. The se
ond is a more pre
ise version of Theorem 2.2.Theorem 2.4 (Gruman). Suppose that A ∈ Ak(C

n). If L ∩ A is �nitefor any L ∈ E, where E ⊂ Gn−k(C
n) is a set of positive volume, then A isalgebrai
.Proof. Cf. [7, Corollary 4.4℄.

(3) Gn−k(Cn) denotes the Grassmann manifold of all (n − k)-dimensional subspa
esof C
n.
(4) Note that Theorem 2.2 implies in parti
ular that the family of all L ∈ G′

n−k(Cn)su
h that L ∩ A is a dis
rete set is nonempty.
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 sets 105Theorem 2.5. Assume that A is an analyti
 set of dimension k in someopen set Ω ⊂ C
n. Then there exists a subset S ⊂ Gn−k(C

n) of measure zerosu
h that L ∩ A is dis
rete for ea
h L ∈ Gn−k(C
n) \ S.Proof. This follows from a more general result stated in the Appendix.Let N be a Nash subset of an open set Ω ⊂ C
n (see [9℄ for the de�nitionand properties of Nash sets). Re
all a 
hara
terization of Nash sets:Theorem 2.6 (Tworzewski). If N 6= ∅ is irredu
ible, then there existsan irredu
ible algebrai
 set V ⊂ C

n su
h that N is an irredu
ible 
omponentof V ∩ Ω.Proof. Cf. [9, Theorem 2.10℄.Remark 2.7. It is easy to see that the algebrai
 set V in the abovetheorem is unique.We de�ne deg(N ; Ω) as follows:(1) If N 6= ∅ is irredu
ible, then we put
deg(N ; Ω) := deg V,where V is from Theorem 2.6. Moreover, we put deg(∅; Ω) := 0.(2) If N =

⋃
Ni is the de
omposition into irredu
ible 
omponents (5),then we put

deg(N ; Ω) :=
∑

i

deg(Ni; Ω) ∈ N ∪ {∞}.Remark 2.8. We have the following properties:(1) If V ⊂ C
n is algebrai
 of pure dimension, then

deg(V ; Cn) = deg V.(2) If N is a Nash subset of Ω ⊂ C
n, then

dg(N ; Ω) ≤ deg(N ; Ω).The above inequality may be stri
t even if N is irredu
ible.Proof. Part (1) follows from the following fa
t: if V = V1 ∪ · · · ∪ Vp isthe de
omposition into irredu
ible 
omponents, then deg V = deg V1 + · · ·+
deg Vp (
f. [6, p. 310℄).Let us pass to (2). By Remark 2.3, we may restri
t ourselves to the 
asewhen N 6= ∅ is irredu
ible. Put k := dim N . Take L ∈ G′

n−k(C
n) su
h that

L∩N is a dis
rete set. We need to show that #(L∩N) ≤ deg(N ; Ω) = deg V ,where V is the unique algebrai
 set as in Theorem 2.6. Suppose that this isnot the 
ase. Corollary 1.4 implies that #(H ∩ N) > deg V for ea
h H in
(5) They are Nash subsets of Ω (
f. [9, Theorem 2.11℄).
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haªasome nonempty open set in G′
n−k(C

n). Hen
e #(H ∩V ) > deg V . This givesa 
ontradi
tion.To see that the inequality in (2) may be stri
t 
onsider the set A :=
{(z, y) ∈ C

2 : y = z2 + z3}. Note that deg(A ∩ Ω; Ω) ≥ 3 whenever Ω ⊂ C
2is an open set su
h that A ∩ Ω 6= ∅. Put Ω := {|z| < 1/3} × C. Supposethat dg(A ∩ Ω; Ω) ≥ 3. Sin
e A ∩ Ω is of pure dimension 1, it follows thatthere exist some a, b ∈ C su
h that the equation az + b = z2 + z3 has threedi�erent roots z1, z2, z3 in {|z| < 1/3}. We obtain a 
ontradi
tion, be
ause

z1 + z2 + z3 = −1.3. Limits of analyti
 sets. Re
all the main result of [11℄.Theorem 3.1 (Tworzewski, Winiarski). The set Hk
d(Cn) := {V ∈Ak(C

n) :
V is algebrai
, deg V ≤ d} is 
ompa
t in FCn.Proof. Cf. [11, Theorem 2℄.Tworzewski and Winiarski use among others the following tools:Theorem 3.2 (Bishop). Let Ω ⊂ C

n be open and let Aν ∈ Ak(Ω),
ν = 1, 2, . . . . If the 2k-dimensional volumes of Aν are �nite and bounded bya positive 
onstant independent of ν and Aν → A in FΩ, then A ∈ Ak(Ω).Proof. Cf. [2, Theorem 1℄. See also [8, Theorem C℄.Theorem 3.3 (Gri�ths). Let V ⊂ C

n be an algebrai
 set of pure dimen-sion k. Then
vol2k(V ∩ B[r]) ≤ α(k) · deg V · r2kfor any r > 0, where B[r] := {z ∈ C

n : ‖z‖ < r} and α(k) is a positive
onstant independent of V .Proof. Cf. [4, Theorems 1.3 and 1.8℄.We will now prove a re�ned version of Theorem 3.1.Theorem 3.4. Suppose that A ⊂ C
n and let Ω be open in C

n. Assumethat there exists a sequen
e (Nν) of Nash subsets of Ω su
h that Nν → A∩Ωin FΩ and deg(Nν ; Ω) ≤ d. Then A∩Ω is a Nash subset of Ω. Moreover , ifadditionally Ω = C
n or A is analyti
 irredu
ible su
h that A ∩ Ω 6= ∅, then

A is algebrai
.Proof. Sin
e deg(Nν ; Ω) ≤ d, ea
h Nν 
ontains at most d irredu
ible
omponents. Passing to a subsequen
e if ne
essary we may assume that forea
h ν we have the following de
omposition into irredu
ible 
omponents:
Nν =

s⋃

i=1

pi⋃

j=1

N i,j
ν ,
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 sets 107where for any i ∈ {1, . . . , s}, N i,j
ν (j = 1, . . . , pi) denote the 
omponents ofdimension ki. Obviously,

s∑

i=1

pi∑

j=1

deg(N i,j
ν ; Ω) ≤ d.

For ea
h N i,j
ν take the unique algebrai
 set V i,j

ν as in Theorem 2.6. Then:
• N i,j

ν is an irredu
ible 
omponent of V i,j
ν ∩ Ω,

• deg V i,j
ν = deg(N i,j

ν ; Ω) ≤ d,
• V i,j

ν is irredu
ible of dimension ki.Again passing to a subsequen
e if ne
essary we may assume that N i,j
ν → N i,jin FΩ and V i,j

ν → V i,j in FCn . It follows from Theorem 3.1 that V i,j is analgebrai
 set of pure dimension ki. By Theorem 3.3, we get
vol2ki

(V i,j
ν ∩ B[r]) ≤ α(ki) · d · r2kiand thus

vol2ki
(N i,j

ν ∩ B[r]) ≤ α(ki) · d · r2ki .Theorem 3.2 implies that N i,j ∈ Aki
(Ω). Sin
e N i,j ⊂ V i,j ∩ Ω and V i,jis of pure dimension ki, N i,j is a union of some irredu
ible 
omponents of

V i,j ∩ Ω. Therefore N i,j is a lo
ally �nite (in Ω) union of Nash sets. ByProposition 2.6 in [9℄, N i,j is a Nash subset of Ω. Now it is enough to seethat
A ∩ Ω =

s⋃

i=1

pi⋃

j=1

N i,j .It follows from the proof that for Ω = C
n, A is algebrai
. If A is analyti
irredu
ible and A ∩ Ω 6= ∅, then A is algebrai
 as well (
f. [9, Theorems 2.9and 2.12℄).Corollary 3.5. Let Ω ⊂ C

n be open and let N ⊂ Ω × C
m be a Nashset with a �nite number of irredu
ible 
omponents. Then π(N)
Ω is Nash in

Ω, where π : C
n × C

m → C
n denotes the natural proje
tion.Proof. It is enough to repeat the proof of Corollary in [11℄.Remark 3.6. One 
annot omit the assumption that N has a �nite num-ber of irredu
ible 
omponents. To see this 
onsider N := {(1/ν, ν) : ν ∈ N}

(n = m = 1). In this 
ase we have π(N) = {1/ν : ν ∈ N} ∪ {0}, whi
h is noteven analyti
.If we repla
e deg(Nν ; Ω) in Theorem 3.4 by dg(Nν ; Ω), then the 
on
lu-sion is no longer true, even if we assume that Nν are irredu
ible and A isanalyti
 irredu
ible. We give an example in the next se
tion. However, we
an prove the following theorem.
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haªaTheorem 3.7. Let A ∈ Ak(C
n) and let U1 ⊂ U2 ⊂ · · · be a sequen
e ofopen subsets of C

n su
h that ⋃
Ui = C

n. Assume that there is some positiveinteger d su
h that for ea
h i there exists a sequen
e (Aij) in Ak(Ui) withthe following properties :
• Aij → A ∩ Ui in FUi

,
• dg(Aij ; Ui) ≤ d.Then A is algebrai
.Proof. Fix i ∈ N. By Theorem 2.5, we get a subset Si ⊂ Gn−k(C

n)of measure zero su
h that the sets L ∩ Aij (j = 1, 2, . . .) and L ∩ A ∩ Uiare dis
rete for ea
h L ∈ Gn−k(C
n) \ Si. Fix L ∈ Gn−k(C

n) \ Si. Sin
e
dg(Aij ; Ui) ≤ d, we have #(L ∩ Aij) ≤ d. Assume that #(L ∩ A ∩ Ui) > d.Then L ∩ A ∩ Ui 
ontains d + 1 isolated points. Now it is enough to useCorollary 1.4 to get a 
ontradi
tion. To summarize, for ea
h i ∈ N and
L ∈ Gn−k(C

n) \ Si we have
#(L ∩ A ∩ Ui) ≤ d.Put S :=

⋃
Si. For any L ∈ Gn−k(C

n) \ S we have #(L ∩ A) ≤ d. Now theresult follows from Theorem 2.4.4. An example. We will now give an example announ
ed in the previousse
tion. First, we need some lemmata.For any ν ∈ N put
hν(z) :=

zν

ν!
+

zν−1

(ν − 1)!
+ · · · + z + 1.Lemma 4.1. If the equation hν(z) = az + b, where a, b ∈ C, has twodi�erent roots in {|z| ≤ 1}, then |a| ≤ e and |b| ≤ 2e. The same is true forthe equation ez = az + b.Proof. Let u, w ∈ {|z| ≤ 1} be two di�erent roots of the equation hν(z) =

az + b. Then
a(u − w) =

ν∑

j=1

1

j!
(uj − wj).Therefore we have

|a| ≤ 1 +
1

2!
· 2 +

1

3!
· 3 + · · · + 1

ν!
· ν < eand

|b| ≤ |hν(u)| + |au| ≤ 2e.Just in the same way we prove the se
ond statement.Lemma 4.2. There exists a positive integer d su
h that for any a, b ∈ C,
#{z ∈ C : |z| ≤ 1, ez = az + b} ≤ d.
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 sets 109Proof. By Lemma 4.1, we may assume that |a| ≤ e and |b| ≤ 2e. Considerthe set
K := {u ∈ R

6 : ex1+iy1 = (x2 + iy2)(x1 + iy1) + x3 + iy3} ∩ T,where T := {‖u1‖ ≤ 1, ‖u2‖ ≤ e, ‖u3‖ ≤ 2e} ⊂ R
6, u = (u1, u2, u3) and

uj = (xj, yj) ∈ R
2 for j = 1, 2, 3. Note that K is a semianalyti
 (6) 
ompa
tsubset of R

6. Sin
e for any (u2, u3) ∈ R
2 × R

2 the �bre K(u2,u3) is �nite,there exists a positive integer d su
h that #K(u2,u3) ≤ d.Lemma 4.3. There exists ν0 ∈ N su
h that for any ν ≥ ν0 and any
a, b ∈ C the equation hν(z) = az + b has at most 2d distin
t roots in the set
{|z| ≤ 1}, where d is from the previous lemma.Proof. Suppose that this is not the 
ase. Then we 
an �nd a subsequen
e
νk → ∞ and sequen
es aνk

, bνk
of 
omplex numbers su
h that for any k theequation hνk

(z) = aνk
z + bνk

has at least 2d + 1 distin
t roots in the set
{|z| ≤ 1}. Denote these roots by yνk

1 , . . . , yνk

2d+1. Lemma 4.1 implies that
aνk

, bνk
are bounded. Passing to a subsequen
e if ne
essary we may assumethat

yνk

j → yj (j = 1, . . . , 2d + 1), aνk
→ a, bνk

→ b,for some yj ∈ {|z| ≤ 1} and a, b ∈ C. Put g(z) = ez − az − b and gνk
(z) =

hνk
(z) − aνk

z − bνk
for z ∈ C. Obviously, gνk

→ g uniformly in {|z| ≤ 2}. Itis easy to see that g(yj) = 0 for j = 1, . . . , 2d + 1. By the previous lemma,at least three numbers among y1, . . . , y2d+1 are equal, say y1 = y2 = y3.By the Hurwitz theorem, y1 is a zero of g of multipli
ity at least 3. This isimpossible, be
ause g′′(y1) = ey1 6= 0.Example 4.4. Let Ω := {|z| < 1} × C ⊂ C
2. For any ν ∈ N put

Nν := {(z, y) ∈ C
2 : y = hν(z)} ∩ Ωand

A := {(z, y) ∈ C
2 : y = ez} .Note that ea
h Nν is an irredu
ible Nash subset of Ω and A is an irredu
ibleanalyti
 set in C

2. Moreover, dg(Nν ; Ω) ≤ 2d for ν ≥ ν0 (
f. Lemma 4.3)and Nν → A ∩ Ω in FΩ. Nevertheless, A is not algebrai
.5. Appendix. In this se
tion we present a general result 
on
erningo-minimal stru
tures (7) from whi
h Theorem 2.5 follows immediately.
(6) See [5℄ and [1℄ for the de�nition and properties of semianalyti
 sets.
(7) The de�nition and properties of o-minimal stru
tures 
an be found in [3℄.
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haªaLet J denote the set of all in
reasing fun
tions α : {1, . . . , n − k} →
{1, . . . , n}. For ea
h α ∈ J put

Vα :=
n−k∑

j=1

Ceα(j), Wα :=
∑

ν /∈im α

Ceν ,where e1, . . . , en is the usual basis in C
n. We denote by Ω(Vα) the subset of

Gk(C
n) 
onsisting of all linear 
omplements of Vα. Re
all that the family ofmaps

ϕα : L(Wα, Vα) ∋ L 7→ L̂ ∈ Ω(Vα),where α ∈ J and L̂ := {y+L(y) : y ∈ Wα}, is an inverse atlas on Gk(C
n) (8).We will use the following result:Theorem 5.1. Let f : X → R

m be de�nable in some o-minimal stru
-ture, where X ⊂ R
p. For ea
h j ∈ {0, 1, . . . , p} put Aj := {x ∈ R

m :
dim f−1(x) = j}. Then

dim f−1(Aj) = dim Aj + j.Proof. Cf. [3, p. 66℄.Theorem 5.2. Suppose that B ⊂ C
n is de�nable (as a subset of R

2n) insome o-minimal stru
ture and dimB ≤ 2(n−k). Then there exists a positiveinteger d and a set S ⊂ Gk(C
n) of measure zero su
h that #(H ∩B) ≤ d forany H ∈ Gk(C

n) \ S.Proof. It is enough to show that for any α ∈ J we 
an �nd a positive inte-ger dα and a subset Sα⊂L(Wα, Vα) of measure zero su
h that #(L̂ ∩ B) ≤ dαwhenever L ∈ L(Wα, Vα) \Sα. We will prove this for Vα = {0}×C
n−k ⊂ C

n(the general 
ase is analogous). Put V := Vα, W := Wα = C
k × {0} ⊂ C

n.De�ne
F : C

k × L(W, V ) ∋ (u, L) 7→ (u, 0) + L(u, 0) ∈ C
n.Sin
e C

k = R
2k and L(W, V ) 
an be identi�ed with R

2k(n−k), F−1(B) may beregarded as a subset of R
2k ×R

2k(n−k). Obviously, F−1(B) is then de�nable,for F and B are. For �xed u ∈ C
k we have the linear mapping

hu : L(W, V ) ∋ L 7→ L(u, 0) ∈ V.Note the following fa
ts:(1) If u 6= 0, then for any v ∈ V the set h−1
u (v) is a (k − 1)(n − k)-dimensional a�ne 
omplex subspa
e.(2) h−1

0 (0) = L(W, V ) and h−1
0 (v) = ∅ if v 6= 0.

(8) L(X, Y ) denotes the spa
e of all linear maps X → Y.
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 sets 111It is easy to see that for any x = (x′, x′′) ∈ C
k × C

n−k = C
n we have

F−1(x) = {x′} × h−1
x′ (0, x′′). Therefore

dim F−1(x) ≤ 2(k − 1)(n − k) if x 6= 0, dimF−1(0) = 2k(n − k). (9)By Theorem 5.1, we get dim F−1(B \ {0}) ≤ 2k(n − k). Combining thiswith the fa
t that dimF−1(0) = 2k(n − k) we have
dimF−1(B) ≤ 2k(n − k).Hen
e there exists a positive integer s and a nowhere dense and de�nable (10)set Z ⊂ L(W, V ) su
h that #F−1(B)L ≤ s for any L ∈ L(W, V ) \ Z, where

F−1(B)L is the �bre of F−1(B) over L. Consider the bije
tion
gL : C

k ∋ u 7→ (u, 0) + L(u, 0) ∈ L̂.Sin
e F−1(B)L = g−1
L (L̂ ∩ B), we obtain

#F−1(B)L = #(L̂ ∩ B).To summarize, for any L ∈ L(W, V ) \ Z we have #(L̂ ∩ B) ≤ s.Theorem 5.3. Let X ⊂ C
n. Suppose that for ea
h x ∈ X there existsan open neighbourhood Ux ⊂ C
n of x su
h that Ux ∩ X is de�nable in someo-minimal stru
ture (whi
h may depend on x) and dim(Ux ∩X) ≤ 2(n− k).Then there exists a subset S ⊂ Gk(C

n) of measure zero su
h that H ∩ X isa dis
rete set for any H ∈ Gk(C
n) \ S.Proof. It is enough to use the previous theorem and the following fa
ts:

• X is a se
ond-
ountable spa
e,
• a 
ountable union of sets of measure zero is of measure zero.Remark 5.4. Theorem 2.5 follows immediately from Theorem 5.3.A
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