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On the Kuratowski convergence of analytic sets

by MACIEJ P. DENKOWSKI and RAFAL PIERZCHALA (Krakow)

Abstract. We discuss some conditions which guarantee that the Kuratowski limit of
a sequence of analytic sets is a Nash set.

1. Preliminaries. Let X C C" be a locally closed set. Let Fx denote
the family of all closed subsets of X. In Fx we have the topology generated
by the sets

USK)={FeFx: FNK=0,FNU #( for U € S},

where K C X is compact and S is a finite family of open subsets of X. This
topology has the following properties:

(1) Fx is a metrizable compact space. The convergence in this topology
is called the Kuratowski convergence.

(2) F, — F in Fx if and only if for any x € F there exist z, € F,
such that x, — z and for every compact subset K C X \ F' we have
K N F, =0 for all sufficiently large v.

(3) The map Fx x Fx 3 (A, B) — AU B € Fx is continuous.

(4) IfY C X is open, then the map Fx > F — FNY € Fy is continuous.

For (1) and (2), see [10, Lemmas 1 and 2]. The remaining two properties
follow easily from (2).

REMARK 1.1. Let 2 C C™ be open. If A, — A in F and A, are analytic
and irreducible, then

(1) A need not be analytic.
(2) If A is analytic, it need not be irreducible.

Proof. Put A, := {zP» = y?} C C2, where p,,q, are positive integers
such that ged(p,,q,) = 1 and p,/q, — /2. Passing to a subsequence if

necessary we may assume that A, — A. Suppose that A is analytic. Note
that (0,0) ¢ Int A. Clearly, if a convergent power series f(z,y) = > a;j2"'y’
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vanishes on the curve I' = {(t,tV2) € R? : ¢ € [0, €]}, where £ > 0, then
f = 0 (because the map N? > (4, j) +— i+ /2 € R is injective). Since I" C A,
we easily obtain a contradiction.

For the second part of the remark, we put A, := {zy = 1/v} C C? and

A:={zy =0}

Let G7.(C™) denote the set of all k-dimensional affine subspaces of C™ (cf.
[6]). Lojasiewicz defines a topology (we call it 7) in G}, (C") in such a way that
it is metrizable and has the following property: for any L = z +Z§:1 Cz €
G,.(C") and L, € G|(C") (v € N),

k
L, L < Lyzz('j—i—Z(Cz}’ for some 2] — z; (j=0,1,...,k).
j=1
On the other hand, since G} (C™) C Fcn, we have the subspace topology in
G}.(C™) (see also [12]). The following lemma states that these two topologies
coincide.

/ LEMMA 1.2. Suppose that (L,) is a sequence in G} (C") and let L €
G.(C"). Then
L, 5L e L,

Proof. Assume that L, — L, where L,,L € G,(C"). Let L = z +

Z?:l Czj. We know that L, = z§ + Z?:l Czy for some 2 — z; (j =
0,1,...,k). Obviously, for any x € L there exist ¥ € L, such that ¥ — x.
Take now a compact set K C C" such that L N K = (). We need to show
that for some vy € N we have L, N K = () whenever v > 1. Suppose that
this is not the case. Passing to a subsequence if necessary we may assume

that L, N K # () for any v. So let 4 € L, N K. We have
k
s v Yo
j=1

for some a;f eC((j=1,...,k). Take 1 <3 < --- < I < n such that
det[r(z1),...,m(zk))] # 0, where

T:C"> (tl,...,tn) — (tl1>--'7tlk) e Ck.

Then for each v large enough we have |det[r(2]),...,m(2}))]| > M, where M
is a positive constant. We can treat (x) as a system of linear equations, where

«; are the unknowns. By Cramer’s rule applied to the equation w(y”) =

m(2y) + Z _yajm(2Y), all o are bounded. Passing again to a subsequence
if necessary we can assume that a — a; € C. This is a contradiction, since

y::ZQ—FZ?:lajzj eLNK.
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Assume now that L, Ter, L, where L,,L € G(C") and L = 2z +
Z?Zl Cz;. Take z; € L, such that z§ — 2o, and a]”- € L, such that a]”- —
zot+zjforj=1,....k Put 2} :=a¥ —z7 (j =1,...,k). Obviously, 27 — 2;.
Moreover, 27, ..., z; € L,—zj are linearly independent for all v large enough
and thus L, = 2§ + Z§:1 Czf.

Let {2 C C™ be an open set. We denote by Ax(2) the set of all analytic
sets in {2 of pure dimension k (1). Since Ay (£2) C Fp, we have the subspace
topology in A (£2). Recall the following theorem due to Tworzewski and
Winiarski.

THEOREM 1.3 (Tworzewski, Winiarski). Let W € Ag(£2) and Vy €
A1 (£2) be such that Vo N W € Ao(£2). Then the mapping

A (2)5V =V NW e Fy
1s continuous at V.
Proof. Cf. |10, Corollary 2].

COROLLARY 1.4. Let L € G, _,(C") and A € Ay(U), where U C C" is
open. Suppose that L N A contains (at least) p isolated points. Then

e There exists an open neighbourhood of L in G! _,(C") such that for
any H from this neighbourhood we have

#(HNA) >p.

e There exists an open neighbourhood of A in Ak(U) such that for any
V' from this neighbourhood we have

#(LNV)=p.
Proof. We prove only the first part, since the proof of the second is quite
similar. Let 2 C U be open, bounded and such that #(L N 2N A) = p.
Suppose that there exist H, € G!,_, (C") such that H, — L and #(H, N A)

< p. Obviously, H, N {2 — LN {2 in Fp. By the previous theorem, we get
H, N2NA—-LN2NAIin Fona, but this is impossible.

2. Degree of analytic set. Let V' C C" be an algebraic set of pure
dimension k. Recall that we define the degree degV of V as the unique
number p such that #(L N V) = p for each L from some open dense (%)
subset of G/, _, (C") (cf. [6]).

REMARK 2.1. Corollary 1.4 implies that
degV =sup{#(LNV): L e G, _(C"), #(LNV) < oo}

(*) We assume that @ is of pure dimension k for any k € N.

(?) In the topology 7 which is equivalent by Lemma 1.2 to the topology induced from
Fen.



104 M. P. Denkowski and R. Pierzchala

Recall the following

THEOREM 2.2. If A is an analytic set of dimension k in some open
set 2 C C" then L N A is discrete for each L from a dense subset of

Gn—k((cn) (3)
Proof. Cf. [6, p. 185].

Assume now that 2 C C" is an open set and let A be an analytic subset

of £2. We define dg(A4; 2) as follows:
(1) If A is of pure dimension k, then we put
dg(4; 2) := sup{#(LNA): Le G’ _,(C™), LNA is a discrete set} (4).

(2) If A =|J A, where 4; is the union of all irreducible components of
A of dimension [, then we put

dg(A; 2) = ng(Al; 2) e NU{o0o}.
!

REMARK 2.3. We have the following properties:

e If A is an analytic subset of §2, then
dg(A4; 02) <) " dg(Ci; 02),

where A = |J C; is the decomposition of A into irreducible components.
o IfV C C" is algebraic of pure dimension, then

dg(V;C") =degV.

Proof. The first part is trivial. The second follows immediately from
Remark 2.1.

Let us add that for any analytic set A C C™ we have:
A is algebraic < dg(4;C") < oc.

This is a consequence of the following two theorems. The first one is due to
Gruman. The second is a more precise version of Theorem 2.2.

THEOREM 2.4 (Gruman). Suppose that A € Ax(C"). If LN A is finite
for any L € E, where E C G,,_(C™) is a set of positive volume, then A is
algebraic.

Proof. Cf. |7, Corollary 4.4].

(®) Gn—_x(C™) denotes the Grassmann manifold of all (n — k)-dimensional subspaces
of C™.

(*) Note that Theorem 2.2 implies in particular that the family of all L € G%,_, (C™)
such that L N A is a discrete set is nonempty.
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THEOREM 2.5. Assume that A is an analytic set of dimension k in some
open set {2 C C™. Then there exists a subset S C Gp,_;(C™) of measure zero
such that L N A is discrete for each L € Gp,—(C")\ S.

Proof. This follows from a more general result stated in the Appendix.

Let N be a Nash subset of an open set £2 C C" (see 9] for the definition
and properties of Nash sets). Recall a characterization of Nash sets:

THEOREM 2.6 (Tworzewski). If N # 0 is irreducible, then there exists
an wrreducible algebraic set V- C C™ such that N s an irreducible component

of VN 12.
Proof. Cf. |9, Theorem 2.10].

REMARK 2.7. It is easy to see that the algebraic set V' in the above
theorem is unique.

We define deg(N; £2) as follows:
(1) If N # () is irreducible, then we put
deg(N; 2) :=degV,

where V is from Theorem 2.6. Moreover, we put deg(); £2) := 0.
(2) If N = [JN; is the decomposition into irreducible components (°),
then we put

deg(N; 02) := Zdeg(Ni; 2) e NU {o0}.

REMARK 2.8. We have the following properties:

(1) If V C C™ is algebraic of pure dimension, then
deg(V;C") = deg V.
(2) If N is a Nash subset of {2 C C", then
dg(N; £2) < deg(N; 02).
The above inequality may be strict even if N is irreducible.

Proof. Part (1) follows from the following fact: if V=1V, U--- UV, is
the decomposition into irreducible components, then degV = degV; +--- +
deg V), (cf. [6, p. 310]).

Let us pass to (2). By Remark 2.3, we may restrict ourselves to the case
when N # () is irreducible. Put k := dim N. Take L € G/, _, (C") such that
LNN is a discrete set. We need to show that #(LNN) < deg(N; §2) = degV,

where V is the unique algebraic set as in Theorem 2.6. Suppose that this is
not the case. Corollary 1.4 implies that #(H N N) > degV for each H in

(°) They are Nash subsets of 2 (cf. [9, Theorem 2.11]).
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some nonempty open set in G, _, (C"). Hence #(HNV) > deg V. This gives
a contradiction.

To see that the inequality in (2) may be strict consider the set A :=
{(z,y) € C%: y = 22 + 23}. Note that deg(A N §2; 2) > 3 whenever 2 C C?
is an open set such that AN 2 # (). Put 2 := {|z| < 1/3} x C. Suppose
that dg(A N $2;$2) > 3. Since AN 2 is of pure dimension 1, it follows that
there exist some a,b € C such that the equation az + b = 2% + 23 has three
different roots z1, 22, z3 in {|z| < 1/3}. We obtain a contradiction, because
z21+ 29+ 23 = —1.

3. Limits of analytic sets. Recall the main result of [11].

THEOREM 3.1 (Tworzewski, Winiarski). The set H%(C") := {V € A, (C"):
V is algebraic, degV < d} is compact in Fcn.

Proof. Cf. [11, Theorem 2].

Tworzewski and Winiarski use among others the following tools:

THEOREM 3.2 (Bishop). Let 2 C C" be open and let A, € Ap(12),
v=12,.... If the 2k-dimensional volumes of A, are finite and bounded by
a positive constant independent of v and A, — A in Fp, then A € Ar(£2).

Proof. Cf. |2, Theorem 1|. See also [8, Theorem C].

THEOREM 3.3 (Griffiths). Let V' C C™ be an algebraic set of pure dimen-
ston k. Then
volor (V N B[r]) < a(k) - degV - r2*
for any r > 0, where B[r] := {z € C" : ||z|| < r} and a(k) is a positive
constant independent of V.

Proof. Cf. |4, Theorems 1.3 and 1.8].
We will now prove a refined version of Theorem 3.1.

THEOREM 3.4. Suppose that A C C" and let 2 be open in C™. Assume
that there exists a sequence (N,) of Nash subsets of {2 such that N, — AN
in Fpo and deg(N,; 2) < d. Then ANS? is a Nash subset of 2. Moreover, if
additionally 2 = C™ or A is analytic irreducible such that AN (2 # (0, then
A is algebraic.

Proof. Since deg(N,;2) < d, each N, contains at most d irreducible
components. Passing to a subsequence if necessary we may assume that for
each v we have the following decomposition into irreducible components:

s Di
w=UUw

i=1j=1
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where for any i € {1,...,s}, NI (j =1,...,p;) denote the components of
dimension k;. Obviously,

ZZdeg NY: ) <d.

=1 j=1
For each N/ take the unique algebraic set V7 as in Theorem 2.6. Then:
o N is an irreducible component of Vi n 0,
o degVy W = deg(NY; 2) < d,
° Vl,’] is irreducible of dimension k;.
Again passing to a subsequence if necessary we may assume that N, vi_y N
in Fp and Vi s vii in Fen. It follows from Theorem 3.1 that V7 is an
algebraic set of pure dimension k;. By Theorem 3.3, we get
volox, (V49 N Br]) < a(k;) - d - r%*
and thus
volak, (N2 N Br]) < a(ki) - d - r%*

Theorem 3.2 implies that N%/ € Ay (§2). Since N/ C V& N 2 and VI
is of pure dimension k;, N/ is a union of some irreducible components of
Vi M §2. Therefore N*J is a locally finite (in £2) union of Nash sets. By
Proposition 2.6 in [9], N%/ is a Nash subset of 2. Now it is enough to see

that
s pi
Ane={JJN".
i=1j=1
It follows from the proof that for {2 = C", A is algebraic. If A is analytic
irreducible and A N 2 # (), then A is algebraic as well (cf. [9, Theorems 2.9
and 2.12]).

COROLLARY 3.5. Let 2 C C™ be open and let N C {2 x C™ be a Nash
—
set with a finite number of irreducible components. Then w(N)  is Nash in
£2, where w: C" x C™ — C"™ denotes the natural projection.

Proof. 1t is enough to repeat the proof of Corollary in [11].

REMARK 3.6. One cannot omit the assumption that N has a finite num-
ber of irreducible components. To see this consider N := {(1/v,v) : v € N}
(n =m = 1). In this case we have 7(N) = {1/v : v € N} U{0}, which is not
even analytic.

If we replace deg(N,; {2) in Theorem 3.4 by dg(N,; {2), then the conclu-
sion is no longer true, even if we assume that N, are irreducible and A is

analytic irreducible. We give an example in the next section. However, we
can prove the following theorem.
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THEOREM 3.7. Let A € Ai(C") and let Uy C U C --- be a sequence of
open subsets of C™ such that | JU; = C". Assume that there is some positive
integer d such that for each i there exists a sequence (A;;) in Ag(U;) with
the following properties:

] Aij — ANU; in fUi,
[} dg(Aij; UZ) S d.

Then A s algebraic.

Proof. Fix i € N. By Theorem 2.5, we get a subset S; C G,_;(C")
of measure zero such that the sets LN A;; (j = 1,2,...) and LNANU;
are discrete for each L € G,_(C") \ S;. Fix L € G,_;(C") \ S;. Since
dg(Ai;; U;) < d, we have #(L N A;j;) < d. Assume that #(LNANT;) > d.
Then L N AN U; contains d 4+ 1 isolated points. Now it is enough to use
Corollary 1.4 to get a contradiction. To summarize, for each ¢ € N and

L € G,—(C")\ S; we have
#(LﬂAﬂUZ) <d.
Put S:=JS;. For any L € G,,_(C™) \ S we have #(L N A) < d. Now the

result follows from Theorem 2.4.

4. An example. We will now give an example announced in the previous
section. First, we need some lemmata.
For any v € N put

2V Zl/—l

hy(2) = J‘f‘m‘i—"'ﬁ-z—Fl-
LEMMA 4.1. If the equation h,(z) = az + b, where a,b € C, has two
different roots in {|z| < 1}, then |a| < e and |b| < 2e. The same is true for

the equation e* = az + b.

Proof. Let u,w € {|z| < 1} be two different roots of the equation h,(z) =
az +b. Then

v

a(u—w):z ! () —w?).

il

j=1
Therefore we have
1 1 1
ol ST+ 524 5784+~ v<e

and
6] < [hy(u)] + |au| < 2e.

Just in the same way we prove the second statement.
LEMMA 4.2. There exists a positive integer d such that for any a,b € C,
#{2€C:|z| <1, =az+b} <d.
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Proof. By Lemma 4.1, we may assume that |a| < e and |b|] < 2e. Consider
the set

K :={ue RO : eT1 it — (xo +iy2)(x1 +iy1) + 23 +iys} N T,

where T := {||Ju1]| < 1, |luz| < e, [Jug]| < 2e} € RS, w = (u1,us,u3) and
u; = (z,y5) € R? for j = 1,2,3. Note that K is a semianalytic (°) compact
subset of RC. Since for any (u2,u3) € R? x R? the fibre K is finite,
there exists a positive integer d such that #K y < d.

u2,u3)

u2,u3

LEMMA 4.3. There exists vy € N such that for any v > 1y and any
a,b € C the equation h,(z) = az + b has at most 2d distinct roots in the set
{|z] < 1}, where d is from the previous lemma.

Proof. Suppose that this is not the case. Then we can find a subsequence
v, — oo and sequences a,,, b, of complex numbers such that for any £ the
equation hy,, (2) = a2z + by, has at least 2d + 1 distinct roots in the set
{|z] < 1}. Denote these roots by 41*,..., 55, . Lemma 4.1 implies that
y,,, by, are bounded. Passing to a subsequence if necessary we may assume
that

y}”“—>yj (j=1,...,2d+1), ay —a, by, —Db,
for some y; € {|z| <1} and a,b € C. Put g(2) = ¢* —az — b and g,,(2) =
hy, () — ay, z — by, for z € C. Obviously, g,, — ¢ uniformly in {|z| <2}. It
is easy to see that g(y;) = 0 for j = 1,...,2d + 1. By the previous lemma,
at least three numbers among y1,...,y2q+1 are equal, say y1 = y2 = ys.

By the Hurwitz theorem, y; is a zero of g of multiplicity at least 3. This is
impossible, because ¢”(y1) = e¥* # 0.

EXAMPLE 4.4. Let 2 := {|z| < 1} x C € C?. For any v € N put
N, :={(z,y) €C?: y=h,(2)} NN
and
A= {(z,y) €C*: y =¢7}.

Note that each N, is an irreducible Nash subset of {2 and A is an irreducible
analytic set in C2. Moreover, dg(N,;2) < 2d for v > vy (cf. Lemma 4.3)
and N, — AN {2 in Fq. Nevertheless, A is not algebraic.

5. Appendix. In this section we present a general result concerning
o-minimal structures (7) from which Theorem 2.5 follows immediately.

() See [5] and [1] for the definition and properties of semianalytic sets.
(") The definition and properties of o-minimal structures can be found in [3].
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Let J denote the set of all increasing functions « : {1,...,n — k} —
{1,...,n}. For each a € J put

n—k
Vo = Z(Cea(j), We = Z Ce,,
j=1

véima
where e, ..., ey is the usual basis in C". We denote by £2(V,,) the subset of
G (C™) consisting of all linear complements of V,,. Recall that the family of
maps

Co : L(Wa,Va) 3 L— L € 2(Vy),

where o € J and L := {y+L(y) : y € Wy}, is an inverse atlas on G;(C") (8).
We will use the following result:

THEOREM 5.1. Let f : X — R™ be definable in some o-minimal struc-
ture, where X C RP. For each j € {0,1,...,p} put A; := {& € R™ :
dim f~1(x) = j}. Then

dim f71(A;) = dim A4; + 5.
Proof. Cf. |3, p. 66].

THEOREM 5.2. Suppose that B C C" is definable (as a subset of R*") in
some o-minimal structure and dim B < 2(n—k). Then there exists a positive
integer d and a set S C G(C™) of measure zero such that #(HNB) < d for
any H € G,(C")\ S.

Proof. 1t is enough to show that for any o € J we can find a positive inte-
ger d,, and a subset S, C L(W,,, V,,) of measure zero such that #(L N B) < d,
whenever L € L(W,, V) \ Sa. We will prove this for V,, = {0} x C"*~* c C"
(the general case is analogous). Put V := V,,, W := W, = C* x {0} c C".
Define

F:CFx LW, V)3 (u,L) — (u,0) 4+ L(u,0) € C™.
Since C¥ = R?* and £(W, V) can be identified with R%*("=%)  F~1(B) may be
regarded as a subset of R?¥ x R2("=%) Obviously, F~(B) is then definable,
for F and B are. For fixed u € C¥ we have the linear mapping

hy : LW, V)2 L+ L(u,0) € V.
Note the following facts:

(1) If u # 0, then for any v € V the set h;'(v) is a (k — 1)(n — k)-
dimensional affine complex subspace.
(2) hy'(0) = L(W,V) and hy'(v) = 0 if v # 0.

(®) L(X,Y) denotes the space of all linear maps X — Y.



Kuratowski convergence of analytic sets 111

It is easy to see that for any z = (a/,2”) € CF x C"* = C" we have
F~Y(z) = {2/} x h,,'(0,2"). Therefore
dimFYz) <2k -1 (n—Fk) ifz#0, dimF 1(0)=2k(n—k). ()
By Theorem 5.1, we get dim F'~1(B\ {0}) < 2k(n — k). Combining this
with the fact that dim F~1(0) = 2k(n — k) we have
dim F~Y(B) < 2k(n — k).

Hence there exists a positive integer s and a nowhere dense and definable (19)
set Z C L(W, V) such that #F~Y(B); < s for any L € L(W, V) \ Z, where
F~Y(B) is the fibre of F~1(B) over L. Consider the bijection

g, : CF 3w (u,0) + L(u,0) € L.
Since F~Y(B), = ggl(f N B), we obtain
#F~'(B), = #(LN B).
To summarize, for any L € L(W,V)\ Z we have #(L N B) < s.

THEOREM 5.3. Let X C C"™. Suppose that for each x € X there exists
an open neighbourhood U, C C" of x such that Uy N X s definable in some
o-minimal structure (which may depend on x) and dim(U, N X) < 2(n — k).
Then there exists a subset S C Gr(C™) of measure zero such that H N X s
a discrete set for any H € G,(C")\ S.

Proof. 1t is enough to use the previous theorem and the following facts:

e X is a second-countable space,
e a countable union of sets of measure zero is of measure zero.

REMARK 5.4. Theorem 2.5 follows immediately from Theorem 5.3.
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