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Lifting distributions to the cotangent bundle

by Włodzimierz M. Mikulski (Kraków)

Abstract. A classification of all Mfm-natural operators A : Grp  Grq T ∗ lifting
p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions
A(D) ⊂ TT ∗M on the cotangent bundle T ∗M is given.

1. A p-dimensional distribution on a manifoldM is a smooth (C∞) vector
subbundle D ⊂ TM of the tangent bundle of M such that dim(Dx) = p for
any point x ∈ M . Thus a p-dimensional distribution D is a smooth (C∞)
section of the Grassmann bundle GrpM of M .

Given a manifold M , let T ∗M = (TM)∗ be the cotangent bundle of M .
Every embedding f : M → N of m-manifolds induces a vector bundle em-
bedding T ∗f := (T (f−1))∗ : T ∗M → T ∗N covering f , where Tf denotes the
differential of f .

A general concept of natural operators can be found in [1]. We need the
following partial definition of natural operators only.

Let m, p and q be integers such that m ≥ 1, 0 ≤ p ≤ m and 0 ≤
q ≤ 2m. AnMfm-natural operator A : Grp  Grq T ∗ lifting p-dimensional
distributions D fromm-manifoldsM to q-dimensional distributions A(D) on
the cotangent bundle T ∗M is a family of Mfm-invariant regular operators
(functions)

A : Grp(M)→ Grq(T ∗M)

from the set Grp(M) of all p-dimensional distributions on M (sections of
GrpM → M) into the set Grq(T ∗M) of all q-dimensional distributions on
T ∗M (sections of Grq(T ∗M)→ T ∗M) for anyMfm-object M , whereMfm
is the category of m-dimensional manifolds and their embeddings. The in-
variance means that if D1 ∈ Grp(M) and D2 ∈ Grp(N) are f -related (i.e.
Grp f ◦ D1 = D2 ◦ f) for some Mfm-map f : M → N then A(D1) and
A(D2) are T ∗f -related. (We recall that Grp f : GrpM → GrpN is the map
induced by f given by Grp f(W ) = Tf(W ) for any W ∈ (GrpM)x, i.e. for
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any p-dimensional subspace W ⊂ TxM , x ∈M .) The regularity means that
A transforms smoothly parametrized families of distributions into smoothly
parametrized families of distributions.

We have the followingMfm-natural operators A : Grp  Grq T ∗.

Example 1. A[1](D)ω = {0} for all ω ∈ (T ∗M)x, x ∈M , D ∈ Grp(M).

Example 2. A[2](D)ω =
{
d
dt(ω + tσ)t=0 ∈ TωT ∗M : σ ∈ Ann(Dx)

}
for

all ω ∈ (T ∗M)x, x ∈ M , D ∈ Grp(M), where Ann(W ) = {σ ∈ (TxM)∗ |
〈σ,w〉 = 0 for all w ∈W} is the annihilator of a vector subspace W ⊂ TxM .

Example 3. A[3](D)ω = ker(TωπM ) for all ω ∈ (T ∗M)x, x ∈ M ,
D ∈ Grp(M), where πM : T ∗M →M is the cotangent bundle projection.

Example 4. A[4](D)ω = (TωπM )−1(Dx) for all ω ∈ (T ∗M)x, x ∈ M ,
D ∈ Grp(M).

Example 5. A[5](D)ω = TωT
∗M for all ω ∈ (T ∗M)x, x ∈ M ,

D ∈ Grp(M).

The main result in this paper is the following theorem.

Theorem 1. All Mfm-natural operators A : Grp  Grq T ∗ are de-
scribed in Examples 1–5.

From now on let x1, . . . , xm be the usual coordinates on Rm. Let Dp

be the integrable p-dimensional distribution on Rm spanned by ∂/∂x1, . . . ,
∂/∂xp.

2. First we prove the following proposition.

Proposition 1. All Mfm-natural operators A : Grp  Grq T ∗ such
that A(D) ⊂ V T ∗M = ker(TπM ) for any D ∈ Grp(M) are described in
Examples 1–3.

Lemma 1. Let A1, A2 : Grp  Grq T ∗ be Mfm-natural operators such
that A1(D) ⊂ V T ∗M and A2(D) ⊂ V T ∗M for any D ∈ Grp(M). As-
sume A1(Dp)θ = A2(Dp)θ, where θ ∈ (T ∗Rm)0 is the zero element. Then
A1(D)ω = A2(D)ω for any p-dimensional distribution D on an m-manifold
M and any ω ∈ (T ∗M)x, x ∈M , i.e. A1 = A2.

Proof. By the Mfm-invariance of A1 and A2 we may assume that
M = Rm, x = 0, D0 = Dp

0 and ω ∈ (T ∗Rm)0.
We have the standard identification Iω : VωT ∗Rm = Tω(T ∗Rm)0 →

(T ∗Rm)0 = Rm∗, ω ∈ (T ∗Rm)0. Using the invariance of Ai with respect
to the homotheties at =

(
1
tx

1, . . . , 1
tx

m
)
for t > 0 we deduce that

Itω(Ai((Grp((at)∗D)tω))) = Iω(Ai(D)ω)
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for i = 1, 2. Letting t → 0 we deduce that Iω(Ai(D)ω) = Iθ(Ai(Dp)θ) for
i = 1, 2. Then A1(D)ω = A2(D)ω because of the assumption of the lemma.

Lemma 2. Let A : Grp  Grq T ∗ be an Mfm-natural operator such that
A(D) ⊂ V T ∗M for any D ∈ Grp(M). Then A(Dp)θ = A[i](Dp)θ for some
i = 1, 2, 3.

Proof. We may assume that A(Dp)θ 6= {0}.
If there is a point v ∈ A(Dp)θ \ A[2](Dp)θ, then using the invariance

of A with respect to linear isomorphisms preserving Dp we see that
VθT

∗Rm \ A[2](Dp)θ ⊂ A(Dp)θ (if w ∈ VθT ∗Rm \ A[2](Dp)θ then there ex-
ists a linear isomorphism ψ preserving Dp such that w = TT ∗ψ(v), and
thus w ∈ A(Dp)θ because of the invariance of A with respect to ψ and
v ∈ A(Dp)θ); consequently, A(Dp)θ = A[3](Dp)θ.

So we may assume A(Dp)θ ⊂ A[2](Dp)θ. There is an element v ∈ A(Dp)θ,
v 6= 0. Then using the invariance of A with respect to linear isomorphisms
preserving Dp we see that A[2](Dp)θ ⊂ A(Dp)θ. Thus A(Dp)θ = A[2](Dp)θ.

Proof of Proposition 1. Proposition 1 is an immediate consequence of
Lemmas 1 and 2.

3. Now, we prove the following proposition.

Proposition 2. Let A : Grp  Grq T ∗ be an Mfm-natural operator
such that A(D) ⊂ A[4](D) for any D ∈ Grp(M) and A(Dp)θ \VθT ∗Rm 6= ∅.
Then A = A[4].

Lemma 3. Under the assumptions of Proposition 2 we have the inclusion
A(Dp)θ ⊃ VθT ∗Rm.

Proof. There exists a > 0 such that A(Dp)ad0x1 \Vad0x1T ∗Rm 6= ∅. Then
using the invariance of A with respect to the homotheties bt = (tx1, . . . , txm)
for t > 0 we find that A(Dp)d0x1 \ Vd0x1T ∗Rm 6= ∅.

There exist real numbers a1, . . . , am, b1, . . . , bp ∈ R such that

Y = a1
d

dt
[d0x

1 + td0x
1]t=0 + · · ·+ am

d

dt
[d0x

1 + td0x
m]t=0

+ b1T ∗
(

∂

∂x1

)
d0x1

+ · · ·+ bpT ∗
(

∂

∂xp

)
d0x1

∈ A(Dp)d0x1

and bq 6= 0 for some q ∈ {1, . . . , p}, where T ∗(X) denotes the flow lifting of
a vector X on M to T ∗M .

Consider k ∈ {1, . . . ,m}. Let ϕ : Rm → Rm be a diffeomorphism such
that ϕ−1(y1, . . . , ym) = (y1 + yqyk, y2, . . . , ym) on some open neighborhood
of 0 ∈ Rm. Then ϕ preserves d0x

1 and Dp. By standard verification one can
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show that

TT ∗ϕ(Y ) = Y + bq
d

dt
[d0x

1 + td0x
k]t=0 + bk

d

dt
[d0x

1 + td0x
q]t=0.

By the invariance of A with respect to ϕ we have TT ∗ϕ(Y ) ∈ A(Dp)d0x1 ,
and so

bq
d

dt
[d0x

1 + td0x
k]t=0 + bk

d

dt
[d0x

1 + td0x
q]t=0 ∈ A(Dp)d0x1 .

Putting k = q we find d
dt [d0x

1 + td0x
q]t=0 ∈ A(Dp)d0x1 , and hence

d
dt [d0x

1 + td0x
k]t=0 ∈ A(Dp)d0x1 . Thus A(Dp)d0x1 ⊃ Vd0x1T ∗Rm. Then using

the invariance of A with respect to the homotheties at =
(

1
tx

1, . . . , 1
tx

m
)
for

t > 0 and next letting t→ 0 we deduce that A(Dp)θ ⊃ VθT ∗Rm.

Proof of Proposition 2. By Lemma 3 and the assumptions of the propo-
sition, there exists a constant vector field W = a1∂/∂x

1 + · · ·+ap∂/∂x
p 6= 0

on Rm such that T ∗(W )θ ∈ A(Dp)θ. Using the invariance of A with respect
to linear isomorphisms preserving Dp we deduce that T ∗(∂/∂xi)θ ∈ A(Dp)θ
for i = 1, . . . , p. Then using Lemma 3 we get A(Dp)θ = A[4](Dp)θ. Thus
q = dim(A(Dp)θ) = m+p. Hence A(D) ⊂ A[4](D) is an (m+p)-dimensional
distribution for any D ∈ Grp(M). Therefore A(D) = A[4](D) for any D ∈
Grp(M), i.e. A = A[4].

4. Quite similarly to Section 3 we prove the next proposition.

Proposition 3. Let A : Grp  Grq T ∗ be an Mfm-natural operator
such that A(Dp)θ \A[4](Dp)θ 6= ∅. Then A = A[5].

Lemma 4. Under the assumptions of Proposition 4 we have the inclusion
A(Dp)θ ⊃ VθT ∗Rm.

Proof. We modify the proof of Lemma 3 by replacing p by m wherever
appropriate.

Proof of Proposition 3. By Lemma 4 and the assumptions of the propo-
sition, there exists a constant vector field W = a1∂/∂x

1 + · · · + am∂/∂x
m

with ai 6= 0 for some i = p + 1, . . . ,m such that T ∗(W )θ ∈ A(Dp)θ. Then
using the invariance of A with respect to the linear isomorphisms preserv-
ing Dp we deduce that T ∗(U)θ ∈ A(Dp)θ for any constant vector field
U = c1∂/∂x

1 + · · ·+ cm∂/∂x
m with cj 6= 0 for some j = p+1, . . . ,m. Hence

using Lemma 4 we get A(Dp)θ = TθT
∗Rm. Thus q = 2m and consequently

A = A[5].

5. Proof of Theorem 1. Let A : Grp  Grq T ∗ be an Mfm-natural
operator. By the Mfm-invariance of A and Proposition 1 we may assume
that A(D)ω\VωT ∗Rm 6= ∅ for someD ∈ Grp(Rm) and ω ∈ (T ∗Rm)0. If p ≥ 1,
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by a density argument we may assume that ω 6∈ Ann(D0), and then using
the invariance of A with respect to linear isomorphisms we may additionally
assume that ω = d0x

1 and D0 = Dp
0. (The case p = 0 is of of course

“equivalent” to the case p = m. In these two cases we have only canonical
distributions on T ∗M—as trivial distributions give no information.) Let v ∈
A(D)d0x1 \ Vd0x1T ∗Rm. Then standardly one can show that there exist a
constant vector field Y 0 6= 0 and a vector field Y 1 with Y 1(0) = 0 such that
T ∗(Y )d0x1 = v, where Y = Y 0 + Y 1. There exists a local diffeomorphism
ψ such that j10ψ = id and ψ∗Y = Y 0 near 0. Using the invariance of A
with respect to ψ we may additionally assume v = T ∗(Y 0)d0x1 . Then using
the invariance of A with respect to the homotheties at =

(
1
tx

1, . . . , 1
tx

m
)

for t > 0 and letting t → 0 we have T ∗(Y 0)θ ∈ A(Dp)θ \ VθT ∗Rm. Thus
A(Dp)θ \ VθT ∗Rm 6= ∅.

If A(D) ⊂ A[4](D) for any D ∈ Grp(M), then A = A[4] because of
Proposition 2.

Otherwise we may assume that A(D)ω \ A[4](D)ω 6= ∅ for some
D ∈ Grp(Rm) with D0 = Dp

0 and some ω ∈ (T ∗Rm)0. Then taking v ∈
A(D)d0x1 \A[4](D)d0x1 we obtain (as above) T ∗(Y 0)θ ∈ A(Dp)θ \A[4](Dp)θ.
Thus A(Dp)θ \A[4](Dp)θ 6= ∅. Finally, A = A[5] because of Proposition 3.
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