Lifting distributions to the cotangent bundle

by Włodzimierz M. Mikulski (Kraków)

Abstract. A classification of all $\mathcal{M}f_m$ -natural operators $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ lifting *p*-dimensional distributions $D \subset TM$ on *m*-manifolds *M* to *q*-dimensional distributions $A(D) \subset TT^*M$ on the cotangent bundle T^*M is given.

1. A *p*-dimensional distribution on a manifold M is a smooth (C^{∞}) vector subbundle $D \subset TM$ of the tangent bundle of M such that $\dim(D_x) = p$ for any point $x \in M$. Thus a *p*-dimensional distribution D is a smooth (C^{∞}) section of the Grassmann bundle $\operatorname{Gr}_p M$ of M.

Given a manifold M, let $T^*M = (TM)^*$ be the cotangent bundle of M. Every embedding $f : M \to N$ of *m*-manifolds induces a vector bundle embedding $T^*f := (T(f^{-1}))^* : T^*M \to T^*N$ covering f, where Tf denotes the differential of f.

A general concept of natural operators can be found in [1]. We need the following partial definition of natural operators only.

Let m, p and q be integers such that $m \ge 1$, $0 \le p \le m$ and $0 \le q \le 2m$. An $\mathcal{M}f_m$ -natural operator $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ lifting p-dimensional distributions D from m-manifolds M to q-dimensional distributions A(D) on the cotangent bundle T^*M is a family of $\mathcal{M}f_m$ -invariant regular operators (functions)

$$A: \operatorname{Gr}_p(M) \to \operatorname{Gr}_q(T^*M)$$

from the set $\underline{\operatorname{Gr}}_p(M)$ of all *p*-dimensional distributions on M (sections of $\operatorname{Gr}_p M \to M$) into the set $\underline{\operatorname{Gr}}_q(T^*M)$ of all *q*-dimensional distributions on T^*M (sections of $\operatorname{Gr}_q(T^*M) \to T^*M$) for any $\mathcal{M}f_m$ -object M, where $\mathcal{M}f_m$ is the category of *m*-dimensional manifolds and their embeddings. The *invariance* means that if $D_1 \in \underline{\operatorname{Gr}}_p(M)$ and $D_2 \in \underline{\operatorname{Gr}}_p(N)$ are *f*-related (i.e. $\operatorname{Gr}_p f \circ D_1 = D_2 \circ f$) for some $\mathcal{M}f_m$ -map $f : \overline{M} \to N$ then $A(D_1)$ and $A(D_2)$ are T^*f -related. (We recall that $\operatorname{Gr}_p f : \operatorname{Gr}_p M \to \operatorname{Gr}_p N$ is the map induced by f given by $\operatorname{Gr}_p f(W) = Tf(W)$ for any $W \in (\operatorname{Gr}_p M)_x$, i.e. for

²⁰⁰⁰ Mathematics Subject Classification: 58A20, 58A32.

Key words and phrases: distribution, Grassmann bundle, natural operator.

any p-dimensional subspace $W \subset T_x M$, $x \in M$.) The regularity means that A transforms smoothly parametrized families of distributions into smoothly parametrized families of distributions.

We have the following $\mathcal{M}f_m$ -natural operators $A: \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$.

EXAMPLE 1. $A^{[1]}(D)_{\omega} = \{0\}$ for all $\omega \in (T^*M)_x, x \in M, D \in \operatorname{Gr}_p(M)$.

EXAMPLE 2. $A^{[2]}(D)_{\omega} = \left\{ \frac{d}{dt} (\omega + t\sigma)_{t=0} \in T_{\omega}T^*M : \sigma \in \operatorname{Ann}(D_x) \right\}$ for all $\omega \in (T^*M)_x, x \in M, D \in \operatorname{Gr}_p(M)$, where $\operatorname{Ann}(W) = \{ \sigma \in (T_xM)^* \mid \langle \sigma, w \rangle = 0 \text{ for all } w \in W \}$ is the annihilator of a vector subspace $W \subset T_xM$.

EXAMPLE 3. $A^{[3]}(D)_{\omega} = \ker(T_{\omega}\pi_M)$ for all $\omega \in (T^*M)_x$, $x \in M$, $D \in \operatorname{Gr}_p(M)$, where $\pi_M : T^*M \to M$ is the cotangent bundle projection.

EXAMPLE 4. $A^{[4]}(D)_{\omega} = (T_{\omega}\pi_M)^{-1}(D_x)$ for all $\omega \in (T^*M)_x, x \in M$, $D \in \operatorname{Gr}_p(M)$.

EXAMPLE 5. $A^{[5]}(D)_{\omega} = T_{\omega}T^*M$ for all $\omega \in (T^*M)_x, x \in M, D \in \underline{\operatorname{Gr}_p}(M).$

The main result in this paper is the following theorem.

THEOREM 1. All $\mathcal{M}f_m$ -natural operators $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ are described in Examples 1–5.

From now on let x^1, \ldots, x^m be the usual coordinates on \mathbb{R}^m . Let D^p be the integrable *p*-dimensional distribution on \mathbb{R}^m spanned by $\partial/\partial x^1, \ldots, \partial/\partial x^p$.

2. First we prove the following proposition.

PROPOSITION 1. All $\mathcal{M}f_m$ -natural operators $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ such that $A(D) \subset VT^*M = \ker(T\pi_M)$ for any $D \in \underline{\operatorname{Gr}_p}(M)$ are described in Examples 1–3.

LEMMA 1. Let A^1, A^2 : $\operatorname{Gr}_p \to \operatorname{Gr}_q T^*$ be $\mathcal{M}f_m$ -natural operators such that $A^1(D) \subset VT^*M$ and $A^2(D) \subset VT^*M$ for any $D \in \operatorname{Gr}_p(M)$. Assume $A^1(D^p)_{\theta} = A^2(D^p)_{\theta}$, where $\theta \in (T^*\mathbb{R}^m)_0$ is the zero element. Then $A^1(D)_{\omega} = A^2(D)_{\omega}$ for any p-dimensional distribution D on an m-manifold M and any $\omega \in (T^*M)_x, x \in M$, i.e. $A^1 = A^2$.

Proof. By the $\mathcal{M}f_m$ -invariance of A^1 and A^2 we may assume that $M = \mathbb{R}^m, x = 0, D_0 = D_0^p$ and $\omega \in (T^*\mathbb{R}^m)_0$.

We have the standard identification $I_{\omega} : V_{\omega}T^*\mathbb{R}^m = T_{\omega}(T^*\mathbb{R}^m)_0 \to (T^*\mathbb{R}^m)_0 = \mathbb{R}^{m*}, \ \omega \in (T^*\mathbb{R}^m)_0$. Using the invariance of A^i with respect to the homotheties $a_t = (\frac{1}{t}x^1, \ldots, \frac{1}{t}x^m)$ for t > 0 we deduce that

$$I_{t\omega}(A^{i}((\operatorname{Gr}_{p}((a_{t})_{*}D)_{t\omega}))) = I_{\omega}(A^{i}(D)_{\omega})$$

for i = 1, 2. Letting $t \to 0$ we deduce that $I_{\omega}(A^i(D)_{\omega}) = I_{\theta}(A^i(D^p)_{\theta})$ for i = 1, 2. Then $A^1(D)_{\omega} = A^2(D)_{\omega}$ because of the assumption of the lemma.

LEMMA 2. Let $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ be an $\mathcal{M}f_m$ -natural operator such that $A(D) \subset VT^*M$ for any $D \in \underline{\operatorname{Gr}_p}(M)$. Then $A(D^p)_{\theta} = A^{[i]}(D^p)_{\theta}$ for some i = 1, 2, 3.

Proof. We may assume that $A(D^p)_{\theta} \neq \{0\}$.

If there is a point $v \in A(D^p)_{\theta} \setminus A^{[2]}(D^p)_{\theta}$, then using the invariance of A with respect to linear isomorphisms preserving D^p we see that $V_{\theta}T^*\mathbb{R}^m \setminus A^{[2]}(D^p)_{\theta} \subset A(D^p)_{\theta}$ (if $w \in V_{\theta}T^*\mathbb{R}^m \setminus A^{[2]}(D^p)_{\theta}$ then there exists a linear isomorphism ψ preserving D^p such that $w = TT^*\psi(v)$, and thus $w \in A(D^p)_{\theta}$ because of the invariance of A with respect to ψ and $v \in A(D^p)_{\theta}$); consequently, $A(D^p)_{\theta} = A^{[3]}(D^p)_{\theta}$.

So we may assume $A(D^p)_{\theta} \subset A^{[2]}(D^p)_{\theta}$. There is an element $v \in A(D^p)_{\theta}$, $v \neq 0$. Then using the invariance of A with respect to linear isomorphisms preserving D^p we see that $A^{[2]}(D^p)_{\theta} \subset A(D^p)_{\theta}$. Thus $A(D^p)_{\theta} = A^{[2]}(D^p)_{\theta}$.

Proof of Proposition 1. Proposition 1 is an immediate consequence of Lemmas 1 and 2. \blacksquare

3. Now, we prove the following proposition.

PROPOSITION 2. Let $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ be an $\mathcal{M}f_m$ -natural operator such that $A(D) \subset A^{[4]}(D)$ for any $D \in \underline{\operatorname{Gr}_p}(M)$ and $A(D^p)_{\theta} \setminus V_{\theta}T^*\mathbb{R}^m \neq \emptyset$. Then $A = A^{[4]}$.

LEMMA 3. Under the assumptions of Proposition 2 we have the inclusion $A(D^p)_{\theta} \supset V_{\theta}T^*\mathbb{R}^m$.

Proof. There exists a > 0 such that $A(D^p)_{ad_0x^1} \setminus V_{ad_0x^1}T^*\mathbb{R}^m \neq \emptyset$. Then using the invariance of A with respect to the homotheties $b_t = (tx^1, \ldots, tx^m)$ for t > 0 we find that $A(D^p)_{d_0x^1} \setminus V_{d_0x^1}T^*\mathbb{R}^m \neq \emptyset$.

There exist real numbers $a_1, \ldots, a_m, b_1, \ldots, b_p \in \mathbb{R}$ such that

$$Y = a_1 \frac{d}{dt} [d_0 x^1 + t d_0 x^1]_{t=0} + \dots + a_m \frac{d}{dt} [d_0 x^1 + t d_0 x^m]_{t=0}$$
$$+ b_1 \mathcal{T}^* \left(\frac{\partial}{\partial x^1}\right)_{d_0 x^1} + \dots + b_p \mathcal{T}^* \left(\frac{\partial}{\partial x^p}\right)_{d_0 x^1} \in A(D^p)_{d_0 x^1}$$

and $b_q \neq 0$ for some $q \in \{1, \ldots, p\}$, where $\mathcal{T}^*(X)$ denotes the flow lifting of a vector X on M to T^*M .

Consider $k \in \{1, \ldots, m\}$. Let $\varphi : \mathbb{R}^m \to \mathbb{R}^m$ be a diffeomorphism such that $\varphi^{-1}(y^1, \ldots, y^m) = (y^1 + y^q y^k, y^2, \ldots, y^m)$ on some open neighborhood of $0 \in \mathbb{R}^m$. Then φ preserves $d_0 x^1$ and D^p . By standard verification one can

show that

$$TT^*\varphi(Y) = Y + b_q \frac{d}{dt} [d_0 x^1 + t d_0 x^k]_{t=0} + b_k \frac{d}{dt} [d_0 x^1 + t d_0 x^q]_{t=0}.$$

By the invariance of A with respect to φ we have $TT^*\varphi(Y) \in A(D^p)_{d_0x^1}$, and so

$$b_q \frac{d}{dt} [d_0 x^1 + t d_0 x^k]_{t=0} + b_k \frac{d}{dt} [d_0 x^1 + t d_0 x^q]_{t=0} \in A(D^p)_{d_0 x^1}.$$

Putting k = q we find $\frac{d}{dt}[d_0x^1 + td_0x^q]_{t=0} \in A(D^p)_{d_0x^1}$, and hence $\frac{d}{dt}[d_0x^1 + td_0x^k]_{t=0} \in A(D^p)_{d_0x^1}$. Thus $A(D^p)_{d_0x^1} \supset V_{d_0x^1}T^*\mathbb{R}^m$. Then using the invariance of A with respect to the homotheties $a_t = (\frac{1}{t}x^1, \ldots, \frac{1}{t}x^m)$ for t > 0 and next letting $t \to 0$ we deduce that $A(D^p)_{\theta} \supset V_{\theta}T^*\mathbb{R}^m$.

Proof of Proposition 2. By Lemma 3 and the assumptions of the proposition, there exists a constant vector field $W = a_1 \partial / \partial x^1 + \cdots + a_p \partial / \partial x^p \neq 0$ on \mathbb{R}^m such that $\mathcal{T}^*(W)_{\theta} \in A(D^p)_{\theta}$. Using the invariance of A with respect to linear isomorphisms preserving D^p we deduce that $\mathcal{T}^*(\partial / \partial x^i)_{\theta} \in A(D^p)_{\theta}$ for $i = 1, \ldots, p$. Then using Lemma 3 we get $A(D^p)_{\theta} = A^{[4]}(D^p)_{\theta}$. Thus $q = \dim(A(D^p)_{\theta}) = m + p$. Hence $A(D) \subset A^{[4]}(D)$ is an (m+p)-dimensional distribution for any $D \in \underline{\operatorname{Gr}_p}(M)$. Therefore $A(D) = A^{[4]}(D)$ for any $D \in \operatorname{Gr}_p(M)$, i.e. $A = A^{[4]}$.

4. Quite similarly to Section 3 we prove the next proposition.

PROPOSITION 3. Let $A : \operatorname{Gr}_p \to \operatorname{Gr}_q T^*$ be an $\mathcal{M}f_m$ -natural operator such that $A(D^p)_{\theta} \setminus A^{[4]}(D^p)_{\theta} \neq \emptyset$. Then $A = A^{[5]}$.

LEMMA 4. Under the assumptions of Proposition 4 we have the inclusion $A(D^p)_{\theta} \supset V_{\theta}T^*\mathbb{R}^m$.

Proof. We modify the proof of Lemma 3 by replacing p by m wherever appropriate.

Proof of Proposition 3. By Lemma 4 and the assumptions of the proposition, there exists a constant vector field $W = a_1 \partial/\partial x^1 + \cdots + a_m \partial/\partial x^m$ with $a_i \neq 0$ for some $i = p + 1, \ldots, m$ such that $\mathcal{T}^*(W)_{\theta} \in A(D^p)_{\theta}$. Then using the invariance of A with respect to the linear isomorphisms preserving D^p we deduce that $\mathcal{T}^*(U)_{\theta} \in A(D^p)_{\theta}$ for any constant vector field $U = c_1 \partial/\partial x^1 + \cdots + c_m \partial/\partial x^m$ with $c_j \neq 0$ for some $j = p + 1, \ldots, m$. Hence using Lemma 4 we get $A(D^p)_{\theta} = T_{\theta}T^*\mathbb{R}^m$. Thus q = 2m and consequently $A = A^{[5]}$.

5. Proof of Theorem 1. Let $A : \operatorname{Gr}_p \rightsquigarrow \operatorname{Gr}_q T^*$ be an $\mathcal{M}f_m$ -natural operator. By the $\mathcal{M}f_m$ -invariance of A and Proposition 1 we may assume that $A(D)_{\omega} \setminus V_{\omega} T^* \mathbb{R}^m \neq \emptyset$ for some $D \in \operatorname{Gr}_p(\mathbb{R}^m)$ and $\omega \in (T^* \mathbb{R}^m)_0$. If $p \geq 1$,

by a density argument we may assume that $\omega \notin \operatorname{Ann}(D_0)$, and then using the invariance of A with respect to linear isomorphisms we may additionally assume that $\omega = d_0 x^1$ and $D_0 = D_0^p$. (The case p = 0 is of of course "equivalent" to the case p = m. In these two cases we have only canonical distributions on T^*M —as trivial distributions give no information.) Let $v \in A(D)_{d_0x^1} \setminus V_{d_0x^1}T^*\mathbb{R}^m$. Then standardly one can show that there exist a constant vector field $Y^0 \neq 0$ and a vector field Y^1 with $Y^1(0) = 0$ such that $\mathcal{T}^*(Y)_{d_0x^1} = v$, where $Y = Y^0 + Y^1$. There exists a local diffeomorphism ψ such that $j_0^1\psi = \operatorname{id}$ and $\psi_*Y = Y^0$ near 0. Using the invariance of Awith respect to ψ we may additionally assume $v = \mathcal{T}^*(Y^0)_{d_0x^1}$. Then using the invariance of A with respect to the homotheties $a_t = (\frac{1}{t}x^1, \ldots, \frac{1}{t}x^m)$ for t > 0 and letting $t \to 0$ we have $\mathcal{T}^*(Y^0)_{\theta} \in A(D^p)_{\theta} \setminus V_{\theta}T^*\mathbb{R}^m$. Thus $A(D^p)_{\theta} \setminus V_{\theta}T^*\mathbb{R}^m \neq \emptyset$.

If $A(D) \subset A^{[4]}(D)$ for any $D \in \underline{\operatorname{Gr}}_p(M)$, then $A = A^{[4]}$ because of Proposition 2.

Otherwise we may assume that $A(D)_{\omega} \setminus A^{[4]}(D)_{\omega} \neq \emptyset$ for some $D \in \underline{\operatorname{Gr}_p(\mathbb{R}^m)}$ with $D_0 = D_0^p$ and some $\omega \in (T^*\mathbb{R}^m)_0$. Then taking $v \in A(D)_{\overline{d_0x^1}} \setminus A^{[4]}(D)_{d_0x^1}$ we obtain (as above) $\mathcal{T}^*(Y^0)_{\theta} \in A(D^p)_{\theta} \setminus A^{[4]}(D^p)_{\theta}$. Thus $A(D^p)_{\theta} \setminus A^{[4]}(D^p)_{\theta} \neq \emptyset$. Finally, $A = A^{[5]}$ because of Proposition 3.

References

 I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059, Kraków, Poland E-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

> Received 16.10.2007 and in final form 18.1.2008 (1822)